Properties

Label 208.10.a.h
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 32) q^{3} + ( - 2 \beta_{4} + \beta_{3} + \cdots + 361) q^{5}+ \cdots + (2 \beta_{4} - 57 \beta_{3} + \cdots + 12206) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{3} - 32) q^{3} + ( - 2 \beta_{4} + \beta_{3} + \cdots + 361) q^{5}+ \cdots + (8179 \beta_{4} + 3898245 \beta_{3} + \cdots - 602456384) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 161 q^{3} + 1803 q^{5} - 10099 q^{7} + 61060 q^{9} - 121746 q^{11} + 142805 q^{13} - 105973 q^{15} - 495669 q^{17} + 840738 q^{19} - 1599467 q^{21} + 592152 q^{23} + 1670362 q^{25} - 6847883 q^{27} + 10678182 q^{29} - 12885296 q^{31} + 17278298 q^{33} - 8380731 q^{35} + 7171823 q^{37} - 4598321 q^{39} + 9294012 q^{41} - 12831975 q^{43} + 26135198 q^{45} - 43354215 q^{47} + 25249488 q^{49} - 16905901 q^{51} + 93231780 q^{53} - 99448846 q^{55} + 90173382 q^{57} - 246496182 q^{59} - 132232612 q^{61} + 416955202 q^{63} + 51495483 q^{65} + 369388534 q^{67} - 579986760 q^{69} - 212150457 q^{71} - 252729806 q^{73} + 752457788 q^{75} + 449666118 q^{77} + 1247271728 q^{79} - 317713115 q^{81} - 1696894296 q^{83} - 775363765 q^{85} + 614530466 q^{87} - 753854382 q^{89} - 288437539 q^{91} - 892784668 q^{93} - 1442632962 q^{95} + 3824606 q^{97} - 3016199848 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 8\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{4} - 29\nu^{3} - 2583\nu^{2} + 4861\nu + 29588 ) / 544 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} + 55\nu^{3} + 317\nu^{2} - 41559\nu + 189604 ) / 1088 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -7\nu^{4} + 113\nu^{3} + 7659\nu^{2} - 62161\nu - 1120772 ) / 1088 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{4} - 4\beta_{3} + 4\beta_{2} + 5\beta _1 + 4600 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 48\beta_{4} + 144\beta_{3} + 80\beta_{2} + 941\beta _1 + 20000 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 3908\beta_{4} - 2052\beta_{3} + 5668\beta_{2} + 11781\beta _1 + 4075032 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
16.7176
−27.7188
35.1685
0.150341
−24.3176
0 −250.479 0 1555.58 0 8329.39 0 43056.6 0
1.2 0 −194.269 0 −920.299 0 −5359.02 0 18057.4 0
1.3 0 −47.8784 0 −109.762 0 −5947.44 0 −17390.7 0
1.4 0 136.532 0 2554.62 0 −9399.91 0 −1041.89 0
1.5 0 195.094 0 −1277.14 0 2277.98 0 18378.5 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.h 5
4.b odd 2 1 13.10.a.b 5
12.b even 2 1 117.10.a.e 5
20.d odd 2 1 325.10.a.b 5
52.b odd 2 1 169.10.a.b 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.10.a.b 5 4.b odd 2 1
117.10.a.e 5 12.b even 2 1
169.10.a.b 5 52.b odd 2 1
208.10.a.h 5 1.a even 1 1 trivial
325.10.a.b 5 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{5} + 161T_{3}^{4} - 66777T_{3}^{3} - 7746921T_{3}^{2} + 1090724832T_{3} + 62057286864 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + \cdots + 62057286864 \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots + 512670311383500 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots + 56\!\cdots\!88 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 19\!\cdots\!96 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 39\!\cdots\!92 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 42\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 44\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 48\!\cdots\!64 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 51\!\cdots\!48 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 49\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 16\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 36\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 57\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 85\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 41\!\cdots\!92 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 41\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 52\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 19\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 14\!\cdots\!32 \) Copy content Toggle raw display
show more
show less