Properties

Label 208.10.a.g.1.4
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [208,10,Mod(1,208)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(208, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("208.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-36.8028\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+204.594 q^{3} -258.914 q^{5} +8862.28 q^{7} +22175.6 q^{9} +O(q^{10})\) \(q+204.594 q^{3} -258.914 q^{5} +8862.28 q^{7} +22175.6 q^{9} -36087.9 q^{11} -28561.0 q^{13} -52972.2 q^{15} +327405. q^{17} -265525. q^{19} +1.81317e6 q^{21} +2.42458e6 q^{23} -1.88609e6 q^{25} +509973. q^{27} +3.99178e6 q^{29} +6.45220e6 q^{31} -7.38336e6 q^{33} -2.29457e6 q^{35} -8.15498e6 q^{37} -5.84340e6 q^{39} -720241. q^{41} +4.13245e7 q^{43} -5.74158e6 q^{45} -3.67369e7 q^{47} +3.81864e7 q^{49} +6.69850e7 q^{51} +1.67334e7 q^{53} +9.34367e6 q^{55} -5.43248e7 q^{57} +5.89865e7 q^{59} +1.28785e8 q^{61} +1.96527e8 q^{63} +7.39484e6 q^{65} +1.91470e8 q^{67} +4.96054e8 q^{69} -3.40865e8 q^{71} +3.19890e8 q^{73} -3.85882e8 q^{75} -3.19821e8 q^{77} -2.44328e8 q^{79} -3.32145e8 q^{81} +4.38630e8 q^{83} -8.47697e7 q^{85} +8.16693e8 q^{87} -7.90342e8 q^{89} -2.53116e8 q^{91} +1.32008e9 q^{93} +6.87481e7 q^{95} -1.65696e8 q^{97} -8.00272e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 163 q^{3} + 471 q^{5} + 11241 q^{7} - 29953 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 163 q^{3} + 471 q^{5} + 11241 q^{7} - 29953 q^{9} + 40140 q^{11} - 114244 q^{13} - 83307 q^{15} + 78717 q^{17} - 209664 q^{19} + 1138431 q^{21} + 4257444 q^{23} - 2900157 q^{25} + 2077801 q^{27} - 1647936 q^{29} + 11366002 q^{31} - 14413222 q^{33} + 13789797 q^{35} + 4636891 q^{37} - 4655443 q^{39} + 13859538 q^{41} + 33368081 q^{43} - 17423928 q^{45} + 3943005 q^{47} + 23294923 q^{49} + 19664471 q^{51} - 171019326 q^{53} + 121160538 q^{55} - 47829030 q^{57} + 63389388 q^{59} + 77050190 q^{61} + 155695476 q^{63} - 13452231 q^{65} + 41174072 q^{67} + 546642556 q^{69} - 252460989 q^{71} + 594415068 q^{73} - 533318748 q^{75} + 561950454 q^{77} - 115998984 q^{79} + 437803700 q^{81} + 79577862 q^{83} + 549463469 q^{85} + 1087526510 q^{87} - 1152240276 q^{89} - 321054201 q^{91} + 1618266556 q^{93} + 1273705170 q^{95} + 1049098084 q^{97} - 2132181050 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 204.594 1.45830 0.729150 0.684354i \(-0.239916\pi\)
0.729150 + 0.684354i \(0.239916\pi\)
\(4\) 0 0
\(5\) −258.914 −0.185264 −0.0926319 0.995700i \(-0.529528\pi\)
−0.0926319 + 0.995700i \(0.529528\pi\)
\(6\) 0 0
\(7\) 8862.28 1.39510 0.697548 0.716538i \(-0.254274\pi\)
0.697548 + 0.716538i \(0.254274\pi\)
\(8\) 0 0
\(9\) 22175.6 1.12664
\(10\) 0 0
\(11\) −36087.9 −0.743181 −0.371591 0.928397i \(-0.621188\pi\)
−0.371591 + 0.928397i \(0.621188\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) −52972.2 −0.270170
\(16\) 0 0
\(17\) 327405. 0.950747 0.475373 0.879784i \(-0.342313\pi\)
0.475373 + 0.879784i \(0.342313\pi\)
\(18\) 0 0
\(19\) −265525. −0.467428 −0.233714 0.972305i \(-0.575088\pi\)
−0.233714 + 0.972305i \(0.575088\pi\)
\(20\) 0 0
\(21\) 1.81317e6 2.03447
\(22\) 0 0
\(23\) 2.42458e6 1.80660 0.903299 0.429012i \(-0.141138\pi\)
0.903299 + 0.429012i \(0.141138\pi\)
\(24\) 0 0
\(25\) −1.88609e6 −0.965677
\(26\) 0 0
\(27\) 509973. 0.184676
\(28\) 0 0
\(29\) 3.99178e6 1.04803 0.524017 0.851708i \(-0.324433\pi\)
0.524017 + 0.851708i \(0.324433\pi\)
\(30\) 0 0
\(31\) 6.45220e6 1.25482 0.627408 0.778691i \(-0.284116\pi\)
0.627408 + 0.778691i \(0.284116\pi\)
\(32\) 0 0
\(33\) −7.38336e6 −1.08378
\(34\) 0 0
\(35\) −2.29457e6 −0.258461
\(36\) 0 0
\(37\) −8.15498e6 −0.715344 −0.357672 0.933847i \(-0.616429\pi\)
−0.357672 + 0.933847i \(0.616429\pi\)
\(38\) 0 0
\(39\) −5.84340e6 −0.404460
\(40\) 0 0
\(41\) −720241. −0.0398062 −0.0199031 0.999802i \(-0.506336\pi\)
−0.0199031 + 0.999802i \(0.506336\pi\)
\(42\) 0 0
\(43\) 4.13245e7 1.84332 0.921658 0.388004i \(-0.126835\pi\)
0.921658 + 0.388004i \(0.126835\pi\)
\(44\) 0 0
\(45\) −5.74158e6 −0.208725
\(46\) 0 0
\(47\) −3.67369e7 −1.09815 −0.549076 0.835772i \(-0.685020\pi\)
−0.549076 + 0.835772i \(0.685020\pi\)
\(48\) 0 0
\(49\) 3.81864e7 0.946295
\(50\) 0 0
\(51\) 6.69850e7 1.38647
\(52\) 0 0
\(53\) 1.67334e7 0.291302 0.145651 0.989336i \(-0.453472\pi\)
0.145651 + 0.989336i \(0.453472\pi\)
\(54\) 0 0
\(55\) 9.34367e6 0.137685
\(56\) 0 0
\(57\) −5.43248e7 −0.681649
\(58\) 0 0
\(59\) 5.89865e7 0.633751 0.316875 0.948467i \(-0.397366\pi\)
0.316875 + 0.948467i \(0.397366\pi\)
\(60\) 0 0
\(61\) 1.28785e8 1.19091 0.595456 0.803388i \(-0.296971\pi\)
0.595456 + 0.803388i \(0.296971\pi\)
\(62\) 0 0
\(63\) 1.96527e8 1.57177
\(64\) 0 0
\(65\) 7.39484e6 0.0513829
\(66\) 0 0
\(67\) 1.91470e8 1.16082 0.580410 0.814324i \(-0.302892\pi\)
0.580410 + 0.814324i \(0.302892\pi\)
\(68\) 0 0
\(69\) 4.96054e8 2.63456
\(70\) 0 0
\(71\) −3.40865e8 −1.59192 −0.795958 0.605351i \(-0.793033\pi\)
−0.795958 + 0.605351i \(0.793033\pi\)
\(72\) 0 0
\(73\) 3.19890e8 1.31840 0.659200 0.751968i \(-0.270895\pi\)
0.659200 + 0.751968i \(0.270895\pi\)
\(74\) 0 0
\(75\) −3.85882e8 −1.40825
\(76\) 0 0
\(77\) −3.19821e8 −1.03681
\(78\) 0 0
\(79\) −2.44328e8 −0.705751 −0.352876 0.935670i \(-0.614796\pi\)
−0.352876 + 0.935670i \(0.614796\pi\)
\(80\) 0 0
\(81\) −3.32145e8 −0.857325
\(82\) 0 0
\(83\) 4.38630e8 1.01449 0.507244 0.861802i \(-0.330664\pi\)
0.507244 + 0.861802i \(0.330664\pi\)
\(84\) 0 0
\(85\) −8.47697e7 −0.176139
\(86\) 0 0
\(87\) 8.16693e8 1.52835
\(88\) 0 0
\(89\) −7.90342e8 −1.33524 −0.667621 0.744501i \(-0.732688\pi\)
−0.667621 + 0.744501i \(0.732688\pi\)
\(90\) 0 0
\(91\) −2.53116e8 −0.386930
\(92\) 0 0
\(93\) 1.32008e9 1.82990
\(94\) 0 0
\(95\) 6.87481e7 0.0865974
\(96\) 0 0
\(97\) −1.65696e8 −0.190037 −0.0950185 0.995476i \(-0.530291\pi\)
−0.0950185 + 0.995476i \(0.530291\pi\)
\(98\) 0 0
\(99\) −8.00272e8 −0.837296
\(100\) 0 0
\(101\) −7.41636e8 −0.709161 −0.354580 0.935026i \(-0.615376\pi\)
−0.354580 + 0.935026i \(0.615376\pi\)
\(102\) 0 0
\(103\) −1.42175e9 −1.24467 −0.622336 0.782750i \(-0.713816\pi\)
−0.622336 + 0.782750i \(0.713816\pi\)
\(104\) 0 0
\(105\) −4.69454e8 −0.376913
\(106\) 0 0
\(107\) 1.44196e9 1.06347 0.531736 0.846910i \(-0.321540\pi\)
0.531736 + 0.846910i \(0.321540\pi\)
\(108\) 0 0
\(109\) −8.42758e7 −0.0571852 −0.0285926 0.999591i \(-0.509103\pi\)
−0.0285926 + 0.999591i \(0.509103\pi\)
\(110\) 0 0
\(111\) −1.66846e9 −1.04319
\(112\) 0 0
\(113\) 8.60241e8 0.496326 0.248163 0.968718i \(-0.420173\pi\)
0.248163 + 0.968718i \(0.420173\pi\)
\(114\) 0 0
\(115\) −6.27758e8 −0.334697
\(116\) 0 0
\(117\) −6.33358e8 −0.312473
\(118\) 0 0
\(119\) 2.90155e9 1.32638
\(120\) 0 0
\(121\) −1.05561e9 −0.447681
\(122\) 0 0
\(123\) −1.47357e8 −0.0580494
\(124\) 0 0
\(125\) 9.94026e8 0.364169
\(126\) 0 0
\(127\) 1.44120e9 0.491596 0.245798 0.969321i \(-0.420950\pi\)
0.245798 + 0.969321i \(0.420950\pi\)
\(128\) 0 0
\(129\) 8.45474e9 2.68811
\(130\) 0 0
\(131\) 4.54928e9 1.34965 0.674827 0.737976i \(-0.264218\pi\)
0.674827 + 0.737976i \(0.264218\pi\)
\(132\) 0 0
\(133\) −2.35316e9 −0.652107
\(134\) 0 0
\(135\) −1.32039e8 −0.0342138
\(136\) 0 0
\(137\) −1.99742e9 −0.484426 −0.242213 0.970223i \(-0.577873\pi\)
−0.242213 + 0.970223i \(0.577873\pi\)
\(138\) 0 0
\(139\) −3.55325e8 −0.0807345 −0.0403672 0.999185i \(-0.512853\pi\)
−0.0403672 + 0.999185i \(0.512853\pi\)
\(140\) 0 0
\(141\) −7.51615e9 −1.60143
\(142\) 0 0
\(143\) 1.03071e9 0.206121
\(144\) 0 0
\(145\) −1.03353e9 −0.194163
\(146\) 0 0
\(147\) 7.81270e9 1.37998
\(148\) 0 0
\(149\) 5.92546e9 0.984881 0.492440 0.870346i \(-0.336105\pi\)
0.492440 + 0.870346i \(0.336105\pi\)
\(150\) 0 0
\(151\) 1.07568e10 1.68378 0.841891 0.539647i \(-0.181442\pi\)
0.841891 + 0.539647i \(0.181442\pi\)
\(152\) 0 0
\(153\) 7.26040e9 1.07115
\(154\) 0 0
\(155\) −1.67056e9 −0.232472
\(156\) 0 0
\(157\) 8.87634e9 1.16597 0.582983 0.812485i \(-0.301886\pi\)
0.582983 + 0.812485i \(0.301886\pi\)
\(158\) 0 0
\(159\) 3.42355e9 0.424805
\(160\) 0 0
\(161\) 2.14873e10 2.52038
\(162\) 0 0
\(163\) −2.75052e9 −0.305190 −0.152595 0.988289i \(-0.548763\pi\)
−0.152595 + 0.988289i \(0.548763\pi\)
\(164\) 0 0
\(165\) 1.91166e9 0.200785
\(166\) 0 0
\(167\) 9.17849e9 0.913160 0.456580 0.889682i \(-0.349074\pi\)
0.456580 + 0.889682i \(0.349074\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −5.88818e9 −0.526622
\(172\) 0 0
\(173\) 9.75049e8 0.0827598 0.0413799 0.999143i \(-0.486825\pi\)
0.0413799 + 0.999143i \(0.486825\pi\)
\(174\) 0 0
\(175\) −1.67150e10 −1.34721
\(176\) 0 0
\(177\) 1.20683e10 0.924198
\(178\) 0 0
\(179\) 8.88356e9 0.646768 0.323384 0.946268i \(-0.395180\pi\)
0.323384 + 0.946268i \(0.395180\pi\)
\(180\) 0 0
\(181\) −5.22791e9 −0.362055 −0.181028 0.983478i \(-0.557942\pi\)
−0.181028 + 0.983478i \(0.557942\pi\)
\(182\) 0 0
\(183\) 2.63485e10 1.73671
\(184\) 0 0
\(185\) 2.11144e9 0.132527
\(186\) 0 0
\(187\) −1.18154e10 −0.706577
\(188\) 0 0
\(189\) 4.51952e9 0.257641
\(190\) 0 0
\(191\) −9.23471e9 −0.502080 −0.251040 0.967977i \(-0.580773\pi\)
−0.251040 + 0.967977i \(0.580773\pi\)
\(192\) 0 0
\(193\) 1.07065e10 0.555441 0.277720 0.960662i \(-0.410421\pi\)
0.277720 + 0.960662i \(0.410421\pi\)
\(194\) 0 0
\(195\) 1.51294e9 0.0749317
\(196\) 0 0
\(197\) −2.77001e10 −1.31034 −0.655169 0.755482i \(-0.727403\pi\)
−0.655169 + 0.755482i \(0.727403\pi\)
\(198\) 0 0
\(199\) −3.32299e10 −1.50207 −0.751035 0.660262i \(-0.770445\pi\)
−0.751035 + 0.660262i \(0.770445\pi\)
\(200\) 0 0
\(201\) 3.91737e10 1.69282
\(202\) 0 0
\(203\) 3.53763e10 1.46211
\(204\) 0 0
\(205\) 1.86481e8 0.00737465
\(206\) 0 0
\(207\) 5.37666e10 2.03538
\(208\) 0 0
\(209\) 9.58225e9 0.347383
\(210\) 0 0
\(211\) 1.49261e10 0.518411 0.259205 0.965822i \(-0.416539\pi\)
0.259205 + 0.965822i \(0.416539\pi\)
\(212\) 0 0
\(213\) −6.97389e10 −2.32149
\(214\) 0 0
\(215\) −1.06995e10 −0.341500
\(216\) 0 0
\(217\) 5.71812e10 1.75059
\(218\) 0 0
\(219\) 6.54474e10 1.92262
\(220\) 0 0
\(221\) −9.35101e9 −0.263690
\(222\) 0 0
\(223\) −2.23373e10 −0.604865 −0.302433 0.953171i \(-0.597799\pi\)
−0.302433 + 0.953171i \(0.597799\pi\)
\(224\) 0 0
\(225\) −4.18252e10 −1.08797
\(226\) 0 0
\(227\) −5.20726e9 −0.130165 −0.0650824 0.997880i \(-0.520731\pi\)
−0.0650824 + 0.997880i \(0.520731\pi\)
\(228\) 0 0
\(229\) 1.35573e10 0.325773 0.162887 0.986645i \(-0.447920\pi\)
0.162887 + 0.986645i \(0.447920\pi\)
\(230\) 0 0
\(231\) −6.54335e10 −1.51198
\(232\) 0 0
\(233\) 2.06224e8 0.00458393 0.00229196 0.999997i \(-0.499270\pi\)
0.00229196 + 0.999997i \(0.499270\pi\)
\(234\) 0 0
\(235\) 9.51170e9 0.203448
\(236\) 0 0
\(237\) −4.99880e10 −1.02920
\(238\) 0 0
\(239\) −1.89887e10 −0.376448 −0.188224 0.982126i \(-0.560273\pi\)
−0.188224 + 0.982126i \(0.560273\pi\)
\(240\) 0 0
\(241\) −6.11533e10 −1.16773 −0.583866 0.811850i \(-0.698461\pi\)
−0.583866 + 0.811850i \(0.698461\pi\)
\(242\) 0 0
\(243\) −7.79927e10 −1.43491
\(244\) 0 0
\(245\) −9.88700e9 −0.175314
\(246\) 0 0
\(247\) 7.58366e9 0.129641
\(248\) 0 0
\(249\) 8.97410e10 1.47943
\(250\) 0 0
\(251\) 3.20685e9 0.0509973 0.0254986 0.999675i \(-0.491883\pi\)
0.0254986 + 0.999675i \(0.491883\pi\)
\(252\) 0 0
\(253\) −8.74981e10 −1.34263
\(254\) 0 0
\(255\) −1.73433e10 −0.256863
\(256\) 0 0
\(257\) −2.80963e10 −0.401744 −0.200872 0.979617i \(-0.564378\pi\)
−0.200872 + 0.979617i \(0.564378\pi\)
\(258\) 0 0
\(259\) −7.22717e10 −0.997975
\(260\) 0 0
\(261\) 8.85201e10 1.18076
\(262\) 0 0
\(263\) 1.25524e11 1.61780 0.808902 0.587944i \(-0.200062\pi\)
0.808902 + 0.587944i \(0.200062\pi\)
\(264\) 0 0
\(265\) −4.33252e9 −0.0539677
\(266\) 0 0
\(267\) −1.61699e11 −1.94718
\(268\) 0 0
\(269\) −1.78558e10 −0.207918 −0.103959 0.994582i \(-0.533151\pi\)
−0.103959 + 0.994582i \(0.533151\pi\)
\(270\) 0 0
\(271\) −1.25204e11 −1.41013 −0.705063 0.709144i \(-0.749081\pi\)
−0.705063 + 0.709144i \(0.749081\pi\)
\(272\) 0 0
\(273\) −5.17859e10 −0.564260
\(274\) 0 0
\(275\) 6.80650e10 0.717673
\(276\) 0 0
\(277\) −5.55594e10 −0.567020 −0.283510 0.958969i \(-0.591499\pi\)
−0.283510 + 0.958969i \(0.591499\pi\)
\(278\) 0 0
\(279\) 1.43081e11 1.41372
\(280\) 0 0
\(281\) 1.01237e11 0.968635 0.484317 0.874892i \(-0.339068\pi\)
0.484317 + 0.874892i \(0.339068\pi\)
\(282\) 0 0
\(283\) 1.08041e11 1.00127 0.500635 0.865658i \(-0.333100\pi\)
0.500635 + 0.865658i \(0.333100\pi\)
\(284\) 0 0
\(285\) 1.40654e10 0.126285
\(286\) 0 0
\(287\) −6.38298e9 −0.0555335
\(288\) 0 0
\(289\) −1.13940e10 −0.0960810
\(290\) 0 0
\(291\) −3.39003e10 −0.277131
\(292\) 0 0
\(293\) 3.53224e9 0.0279992 0.0139996 0.999902i \(-0.495544\pi\)
0.0139996 + 0.999902i \(0.495544\pi\)
\(294\) 0 0
\(295\) −1.52724e10 −0.117411
\(296\) 0 0
\(297\) −1.84039e10 −0.137248
\(298\) 0 0
\(299\) −6.92485e10 −0.501060
\(300\) 0 0
\(301\) 3.66229e11 2.57160
\(302\) 0 0
\(303\) −1.51734e11 −1.03417
\(304\) 0 0
\(305\) −3.33441e10 −0.220633
\(306\) 0 0
\(307\) 1.82031e11 1.16956 0.584781 0.811191i \(-0.301180\pi\)
0.584781 + 0.811191i \(0.301180\pi\)
\(308\) 0 0
\(309\) −2.90881e11 −1.81510
\(310\) 0 0
\(311\) 1.51907e11 0.920781 0.460390 0.887717i \(-0.347709\pi\)
0.460390 + 0.887717i \(0.347709\pi\)
\(312\) 0 0
\(313\) 6.10194e10 0.359351 0.179675 0.983726i \(-0.442495\pi\)
0.179675 + 0.983726i \(0.442495\pi\)
\(314\) 0 0
\(315\) −5.08835e10 −0.291192
\(316\) 0 0
\(317\) 6.89227e10 0.383350 0.191675 0.981458i \(-0.438608\pi\)
0.191675 + 0.981458i \(0.438608\pi\)
\(318\) 0 0
\(319\) −1.44055e11 −0.778880
\(320\) 0 0
\(321\) 2.95016e11 1.55086
\(322\) 0 0
\(323\) −8.69341e10 −0.444405
\(324\) 0 0
\(325\) 5.38686e10 0.267831
\(326\) 0 0
\(327\) −1.72423e10 −0.0833931
\(328\) 0 0
\(329\) −3.25573e11 −1.53203
\(330\) 0 0
\(331\) −4.70422e10 −0.215408 −0.107704 0.994183i \(-0.534350\pi\)
−0.107704 + 0.994183i \(0.534350\pi\)
\(332\) 0 0
\(333\) −1.80842e11 −0.805934
\(334\) 0 0
\(335\) −4.95744e10 −0.215058
\(336\) 0 0
\(337\) −3.76711e11 −1.59101 −0.795507 0.605944i \(-0.792795\pi\)
−0.795507 + 0.605944i \(0.792795\pi\)
\(338\) 0 0
\(339\) 1.76000e11 0.723792
\(340\) 0 0
\(341\) −2.32846e11 −0.932556
\(342\) 0 0
\(343\) −1.92062e10 −0.0749235
\(344\) 0 0
\(345\) −1.28435e11 −0.488089
\(346\) 0 0
\(347\) −1.68331e11 −0.623278 −0.311639 0.950201i \(-0.600878\pi\)
−0.311639 + 0.950201i \(0.600878\pi\)
\(348\) 0 0
\(349\) −9.36126e10 −0.337769 −0.168884 0.985636i \(-0.554016\pi\)
−0.168884 + 0.985636i \(0.554016\pi\)
\(350\) 0 0
\(351\) −1.45653e10 −0.0512199
\(352\) 0 0
\(353\) −3.49043e11 −1.19644 −0.598222 0.801330i \(-0.704126\pi\)
−0.598222 + 0.801330i \(0.704126\pi\)
\(354\) 0 0
\(355\) 8.82548e10 0.294924
\(356\) 0 0
\(357\) 5.93640e11 1.93426
\(358\) 0 0
\(359\) −5.83173e11 −1.85299 −0.926493 0.376312i \(-0.877192\pi\)
−0.926493 + 0.376312i \(0.877192\pi\)
\(360\) 0 0
\(361\) −2.52184e11 −0.781512
\(362\) 0 0
\(363\) −2.15971e11 −0.652854
\(364\) 0 0
\(365\) −8.28239e10 −0.244252
\(366\) 0 0
\(367\) −5.28604e11 −1.52101 −0.760507 0.649329i \(-0.775050\pi\)
−0.760507 + 0.649329i \(0.775050\pi\)
\(368\) 0 0
\(369\) −1.59718e10 −0.0448472
\(370\) 0 0
\(371\) 1.48296e11 0.406394
\(372\) 0 0
\(373\) −4.19405e11 −1.12187 −0.560937 0.827858i \(-0.689559\pi\)
−0.560937 + 0.827858i \(0.689559\pi\)
\(374\) 0 0
\(375\) 2.03372e11 0.531067
\(376\) 0 0
\(377\) −1.14009e11 −0.290672
\(378\) 0 0
\(379\) −4.24128e11 −1.05590 −0.527948 0.849277i \(-0.677038\pi\)
−0.527948 + 0.849277i \(0.677038\pi\)
\(380\) 0 0
\(381\) 2.94861e11 0.716894
\(382\) 0 0
\(383\) −6.52696e10 −0.154995 −0.0774973 0.996993i \(-0.524693\pi\)
−0.0774973 + 0.996993i \(0.524693\pi\)
\(384\) 0 0
\(385\) 8.28062e10 0.192083
\(386\) 0 0
\(387\) 9.16396e11 2.07675
\(388\) 0 0
\(389\) −5.91803e11 −1.31040 −0.655200 0.755455i \(-0.727416\pi\)
−0.655200 + 0.755455i \(0.727416\pi\)
\(390\) 0 0
\(391\) 7.93819e11 1.71762
\(392\) 0 0
\(393\) 9.30755e11 1.96820
\(394\) 0 0
\(395\) 6.32600e10 0.130750
\(396\) 0 0
\(397\) −3.05131e11 −0.616495 −0.308248 0.951306i \(-0.599743\pi\)
−0.308248 + 0.951306i \(0.599743\pi\)
\(398\) 0 0
\(399\) −4.81441e11 −0.950967
\(400\) 0 0
\(401\) 2.56722e11 0.495808 0.247904 0.968785i \(-0.420258\pi\)
0.247904 + 0.968785i \(0.420258\pi\)
\(402\) 0 0
\(403\) −1.84281e11 −0.348023
\(404\) 0 0
\(405\) 8.59971e10 0.158831
\(406\) 0 0
\(407\) 2.94296e11 0.531631
\(408\) 0 0
\(409\) −4.57003e11 −0.807540 −0.403770 0.914860i \(-0.632300\pi\)
−0.403770 + 0.914860i \(0.632300\pi\)
\(410\) 0 0
\(411\) −4.08660e11 −0.706438
\(412\) 0 0
\(413\) 5.22755e11 0.884144
\(414\) 0 0
\(415\) −1.13567e11 −0.187948
\(416\) 0 0
\(417\) −7.26973e10 −0.117735
\(418\) 0 0
\(419\) 1.65068e11 0.261637 0.130818 0.991406i \(-0.458240\pi\)
0.130818 + 0.991406i \(0.458240\pi\)
\(420\) 0 0
\(421\) −9.10255e10 −0.141219 −0.0706096 0.997504i \(-0.522494\pi\)
−0.0706096 + 0.997504i \(0.522494\pi\)
\(422\) 0 0
\(423\) −8.14664e11 −1.23722
\(424\) 0 0
\(425\) −6.17514e11 −0.918114
\(426\) 0 0
\(427\) 1.14133e12 1.66144
\(428\) 0 0
\(429\) 2.10876e11 0.300587
\(430\) 0 0
\(431\) −7.94605e11 −1.10918 −0.554592 0.832122i \(-0.687126\pi\)
−0.554592 + 0.832122i \(0.687126\pi\)
\(432\) 0 0
\(433\) −8.26325e11 −1.12968 −0.564840 0.825200i \(-0.691062\pi\)
−0.564840 + 0.825200i \(0.691062\pi\)
\(434\) 0 0
\(435\) −2.11453e11 −0.283148
\(436\) 0 0
\(437\) −6.43787e11 −0.844453
\(438\) 0 0
\(439\) −1.21562e12 −1.56210 −0.781050 0.624469i \(-0.785316\pi\)
−0.781050 + 0.624469i \(0.785316\pi\)
\(440\) 0 0
\(441\) 8.46807e11 1.06613
\(442\) 0 0
\(443\) 8.73136e11 1.07712 0.538561 0.842586i \(-0.318968\pi\)
0.538561 + 0.842586i \(0.318968\pi\)
\(444\) 0 0
\(445\) 2.04631e11 0.247372
\(446\) 0 0
\(447\) 1.21231e12 1.43625
\(448\) 0 0
\(449\) 1.22107e12 1.41785 0.708927 0.705282i \(-0.249179\pi\)
0.708927 + 0.705282i \(0.249179\pi\)
\(450\) 0 0
\(451\) 2.59920e10 0.0295832
\(452\) 0 0
\(453\) 2.20077e12 2.45546
\(454\) 0 0
\(455\) 6.55352e10 0.0716842
\(456\) 0 0
\(457\) 6.32643e11 0.678478 0.339239 0.940700i \(-0.389830\pi\)
0.339239 + 0.940700i \(0.389830\pi\)
\(458\) 0 0
\(459\) 1.66968e11 0.175580
\(460\) 0 0
\(461\) 8.09117e11 0.834367 0.417184 0.908822i \(-0.363017\pi\)
0.417184 + 0.908822i \(0.363017\pi\)
\(462\) 0 0
\(463\) −7.69685e11 −0.778393 −0.389196 0.921155i \(-0.627247\pi\)
−0.389196 + 0.921155i \(0.627247\pi\)
\(464\) 0 0
\(465\) −3.41787e11 −0.339014
\(466\) 0 0
\(467\) −1.59708e12 −1.55382 −0.776909 0.629613i \(-0.783213\pi\)
−0.776909 + 0.629613i \(0.783213\pi\)
\(468\) 0 0
\(469\) 1.69686e12 1.61946
\(470\) 0 0
\(471\) 1.81604e12 1.70033
\(472\) 0 0
\(473\) −1.49132e12 −1.36992
\(474\) 0 0
\(475\) 5.00804e11 0.451384
\(476\) 0 0
\(477\) 3.71074e11 0.328192
\(478\) 0 0
\(479\) −1.61308e12 −1.40006 −0.700028 0.714115i \(-0.746829\pi\)
−0.700028 + 0.714115i \(0.746829\pi\)
\(480\) 0 0
\(481\) 2.32914e11 0.198401
\(482\) 0 0
\(483\) 4.39617e12 3.67547
\(484\) 0 0
\(485\) 4.29009e10 0.0352070
\(486\) 0 0
\(487\) −9.29058e11 −0.748449 −0.374225 0.927338i \(-0.622091\pi\)
−0.374225 + 0.927338i \(0.622091\pi\)
\(488\) 0 0
\(489\) −5.62739e11 −0.445058
\(490\) 0 0
\(491\) 2.30662e12 1.79106 0.895528 0.445005i \(-0.146798\pi\)
0.895528 + 0.445005i \(0.146798\pi\)
\(492\) 0 0
\(493\) 1.30693e12 0.996415
\(494\) 0 0
\(495\) 2.07202e11 0.155121
\(496\) 0 0
\(497\) −3.02084e12 −2.22088
\(498\) 0 0
\(499\) 1.31410e11 0.0948800 0.0474400 0.998874i \(-0.484894\pi\)
0.0474400 + 0.998874i \(0.484894\pi\)
\(500\) 0 0
\(501\) 1.87786e12 1.33166
\(502\) 0 0
\(503\) 1.88419e12 1.31241 0.656203 0.754584i \(-0.272162\pi\)
0.656203 + 0.754584i \(0.272162\pi\)
\(504\) 0 0
\(505\) 1.92020e11 0.131382
\(506\) 0 0
\(507\) 1.66893e11 0.112177
\(508\) 0 0
\(509\) −1.00390e11 −0.0662919 −0.0331459 0.999451i \(-0.510553\pi\)
−0.0331459 + 0.999451i \(0.510553\pi\)
\(510\) 0 0
\(511\) 2.83495e12 1.83930
\(512\) 0 0
\(513\) −1.35411e11 −0.0863226
\(514\) 0 0
\(515\) 3.68110e11 0.230593
\(516\) 0 0
\(517\) 1.32576e12 0.816126
\(518\) 0 0
\(519\) 1.99489e11 0.120689
\(520\) 0 0
\(521\) −1.04516e11 −0.0621462 −0.0310731 0.999517i \(-0.509892\pi\)
−0.0310731 + 0.999517i \(0.509892\pi\)
\(522\) 0 0
\(523\) −1.17694e12 −0.687855 −0.343927 0.938996i \(-0.611757\pi\)
−0.343927 + 0.938996i \(0.611757\pi\)
\(524\) 0 0
\(525\) −3.41979e12 −1.96464
\(526\) 0 0
\(527\) 2.11248e12 1.19301
\(528\) 0 0
\(529\) 4.07744e12 2.26379
\(530\) 0 0
\(531\) 1.30806e12 0.714008
\(532\) 0 0
\(533\) 2.05708e10 0.0110403
\(534\) 0 0
\(535\) −3.73343e11 −0.197023
\(536\) 0 0
\(537\) 1.81752e12 0.943181
\(538\) 0 0
\(539\) −1.37807e12 −0.703269
\(540\) 0 0
\(541\) −2.98502e12 −1.49817 −0.749083 0.662476i \(-0.769506\pi\)
−0.749083 + 0.662476i \(0.769506\pi\)
\(542\) 0 0
\(543\) −1.06960e12 −0.527985
\(544\) 0 0
\(545\) 2.18202e10 0.0105943
\(546\) 0 0
\(547\) −3.78628e12 −1.80830 −0.904148 0.427219i \(-0.859493\pi\)
−0.904148 + 0.427219i \(0.859493\pi\)
\(548\) 0 0
\(549\) 2.85588e12 1.34173
\(550\) 0 0
\(551\) −1.05992e12 −0.489880
\(552\) 0 0
\(553\) −2.16530e12 −0.984591
\(554\) 0 0
\(555\) 4.31987e11 0.193265
\(556\) 0 0
\(557\) 1.00551e12 0.442627 0.221313 0.975203i \(-0.428966\pi\)
0.221313 + 0.975203i \(0.428966\pi\)
\(558\) 0 0
\(559\) −1.18027e12 −0.511244
\(560\) 0 0
\(561\) −2.41735e12 −1.03040
\(562\) 0 0
\(563\) −2.76515e11 −0.115993 −0.0579964 0.998317i \(-0.518471\pi\)
−0.0579964 + 0.998317i \(0.518471\pi\)
\(564\) 0 0
\(565\) −2.22728e11 −0.0919512
\(566\) 0 0
\(567\) −2.94356e12 −1.19605
\(568\) 0 0
\(569\) 8.39220e11 0.335638 0.167819 0.985818i \(-0.446328\pi\)
0.167819 + 0.985818i \(0.446328\pi\)
\(570\) 0 0
\(571\) 1.02285e11 0.0402672 0.0201336 0.999797i \(-0.493591\pi\)
0.0201336 + 0.999797i \(0.493591\pi\)
\(572\) 0 0
\(573\) −1.88936e12 −0.732184
\(574\) 0 0
\(575\) −4.57297e12 −1.74459
\(576\) 0 0
\(577\) −1.44021e12 −0.540921 −0.270461 0.962731i \(-0.587176\pi\)
−0.270461 + 0.962731i \(0.587176\pi\)
\(578\) 0 0
\(579\) 2.19047e12 0.809999
\(580\) 0 0
\(581\) 3.88726e12 1.41531
\(582\) 0 0
\(583\) −6.03874e11 −0.216490
\(584\) 0 0
\(585\) 1.63985e11 0.0578899
\(586\) 0 0
\(587\) 2.13185e11 0.0741116 0.0370558 0.999313i \(-0.488202\pi\)
0.0370558 + 0.999313i \(0.488202\pi\)
\(588\) 0 0
\(589\) −1.71322e12 −0.586536
\(590\) 0 0
\(591\) −5.66727e12 −1.91087
\(592\) 0 0
\(593\) −1.76049e12 −0.584640 −0.292320 0.956321i \(-0.594427\pi\)
−0.292320 + 0.956321i \(0.594427\pi\)
\(594\) 0 0
\(595\) −7.51253e11 −0.245731
\(596\) 0 0
\(597\) −6.79863e12 −2.19047
\(598\) 0 0
\(599\) 2.06753e12 0.656191 0.328096 0.944644i \(-0.393593\pi\)
0.328096 + 0.944644i \(0.393593\pi\)
\(600\) 0 0
\(601\) −1.24403e12 −0.388951 −0.194476 0.980907i \(-0.562301\pi\)
−0.194476 + 0.980907i \(0.562301\pi\)
\(602\) 0 0
\(603\) 4.24597e12 1.30782
\(604\) 0 0
\(605\) 2.73312e11 0.0829391
\(606\) 0 0
\(607\) 1.31511e12 0.393200 0.196600 0.980484i \(-0.437010\pi\)
0.196600 + 0.980484i \(0.437010\pi\)
\(608\) 0 0
\(609\) 7.23776e12 2.13219
\(610\) 0 0
\(611\) 1.04924e12 0.304573
\(612\) 0 0
\(613\) −3.08252e12 −0.881726 −0.440863 0.897574i \(-0.645328\pi\)
−0.440863 + 0.897574i \(0.645328\pi\)
\(614\) 0 0
\(615\) 3.81528e10 0.0107544
\(616\) 0 0
\(617\) −2.29075e10 −0.00636348 −0.00318174 0.999995i \(-0.501013\pi\)
−0.00318174 + 0.999995i \(0.501013\pi\)
\(618\) 0 0
\(619\) 4.45350e12 1.21925 0.609626 0.792689i \(-0.291320\pi\)
0.609626 + 0.792689i \(0.291320\pi\)
\(620\) 0 0
\(621\) 1.23647e12 0.333635
\(622\) 0 0
\(623\) −7.00424e12 −1.86279
\(624\) 0 0
\(625\) 3.42640e12 0.898210
\(626\) 0 0
\(627\) 1.96047e12 0.506589
\(628\) 0 0
\(629\) −2.66998e12 −0.680111
\(630\) 0 0
\(631\) −3.83831e12 −0.963847 −0.481923 0.876213i \(-0.660062\pi\)
−0.481923 + 0.876213i \(0.660062\pi\)
\(632\) 0 0
\(633\) 3.05378e12 0.755998
\(634\) 0 0
\(635\) −3.73148e11 −0.0910749
\(636\) 0 0
\(637\) −1.09064e12 −0.262455
\(638\) 0 0
\(639\) −7.55890e12 −1.79351
\(640\) 0 0
\(641\) 9.09238e11 0.212724 0.106362 0.994327i \(-0.466080\pi\)
0.106362 + 0.994327i \(0.466080\pi\)
\(642\) 0 0
\(643\) −8.23839e12 −1.90061 −0.950305 0.311321i \(-0.899229\pi\)
−0.950305 + 0.311321i \(0.899229\pi\)
\(644\) 0 0
\(645\) −2.18905e12 −0.498009
\(646\) 0 0
\(647\) 8.73559e12 1.95985 0.979925 0.199365i \(-0.0638880\pi\)
0.979925 + 0.199365i \(0.0638880\pi\)
\(648\) 0 0
\(649\) −2.12870e12 −0.470992
\(650\) 0 0
\(651\) 1.16989e13 2.55289
\(652\) 0 0
\(653\) −6.13232e11 −0.131982 −0.0659911 0.997820i \(-0.521021\pi\)
−0.0659911 + 0.997820i \(0.521021\pi\)
\(654\) 0 0
\(655\) −1.17787e12 −0.250042
\(656\) 0 0
\(657\) 7.09375e12 1.48536
\(658\) 0 0
\(659\) 8.83233e12 1.82428 0.912139 0.409882i \(-0.134430\pi\)
0.912139 + 0.409882i \(0.134430\pi\)
\(660\) 0 0
\(661\) −5.61801e12 −1.14466 −0.572329 0.820024i \(-0.693960\pi\)
−0.572329 + 0.820024i \(0.693960\pi\)
\(662\) 0 0
\(663\) −1.91316e12 −0.384539
\(664\) 0 0
\(665\) 6.09265e11 0.120812
\(666\) 0 0
\(667\) 9.67839e12 1.89338
\(668\) 0 0
\(669\) −4.57007e12 −0.882075
\(670\) 0 0
\(671\) −4.64757e12 −0.885064
\(672\) 0 0
\(673\) 4.50151e12 0.845844 0.422922 0.906166i \(-0.361004\pi\)
0.422922 + 0.906166i \(0.361004\pi\)
\(674\) 0 0
\(675\) −9.61854e11 −0.178337
\(676\) 0 0
\(677\) 4.33098e12 0.792387 0.396193 0.918167i \(-0.370331\pi\)
0.396193 + 0.918167i \(0.370331\pi\)
\(678\) 0 0
\(679\) −1.46844e12 −0.265120
\(680\) 0 0
\(681\) −1.06537e12 −0.189819
\(682\) 0 0
\(683\) −6.25107e12 −1.09916 −0.549580 0.835441i \(-0.685212\pi\)
−0.549580 + 0.835441i \(0.685212\pi\)
\(684\) 0 0
\(685\) 5.17161e11 0.0897466
\(686\) 0 0
\(687\) 2.77375e12 0.475075
\(688\) 0 0
\(689\) −4.77923e11 −0.0807926
\(690\) 0 0
\(691\) −7.34082e12 −1.22488 −0.612440 0.790517i \(-0.709812\pi\)
−0.612440 + 0.790517i \(0.709812\pi\)
\(692\) 0 0
\(693\) −7.09223e12 −1.16811
\(694\) 0 0
\(695\) 9.19986e10 0.0149572
\(696\) 0 0
\(697\) −2.35810e11 −0.0378456
\(698\) 0 0
\(699\) 4.21922e10 0.00668474
\(700\) 0 0
\(701\) −1.71509e11 −0.0268259 −0.0134130 0.999910i \(-0.504270\pi\)
−0.0134130 + 0.999910i \(0.504270\pi\)
\(702\) 0 0
\(703\) 2.16535e12 0.334372
\(704\) 0 0
\(705\) 1.94604e12 0.296688
\(706\) 0 0
\(707\) −6.57259e12 −0.989348
\(708\) 0 0
\(709\) −1.00896e13 −1.49956 −0.749780 0.661687i \(-0.769841\pi\)
−0.749780 + 0.661687i \(0.769841\pi\)
\(710\) 0 0
\(711\) −5.41813e12 −0.795126
\(712\) 0 0
\(713\) 1.56439e13 2.26695
\(714\) 0 0
\(715\) −2.66865e11 −0.0381868
\(716\) 0 0
\(717\) −3.88497e12 −0.548974
\(718\) 0 0
\(719\) −8.18068e12 −1.14159 −0.570794 0.821093i \(-0.693365\pi\)
−0.570794 + 0.821093i \(0.693365\pi\)
\(720\) 0 0
\(721\) −1.25999e13 −1.73644
\(722\) 0 0
\(723\) −1.25116e13 −1.70290
\(724\) 0 0
\(725\) −7.52885e12 −1.01206
\(726\) 0 0
\(727\) 9.98421e11 0.132559 0.0662795 0.997801i \(-0.478887\pi\)
0.0662795 + 0.997801i \(0.478887\pi\)
\(728\) 0 0
\(729\) −9.41920e12 −1.23521
\(730\) 0 0
\(731\) 1.35298e13 1.75253
\(732\) 0 0
\(733\) −2.10457e12 −0.269274 −0.134637 0.990895i \(-0.542987\pi\)
−0.134637 + 0.990895i \(0.542987\pi\)
\(734\) 0 0
\(735\) −2.02282e12 −0.255661
\(736\) 0 0
\(737\) −6.90977e12 −0.862700
\(738\) 0 0
\(739\) 1.28931e13 1.59023 0.795113 0.606461i \(-0.207412\pi\)
0.795113 + 0.606461i \(0.207412\pi\)
\(740\) 0 0
\(741\) 1.55157e12 0.189056
\(742\) 0 0
\(743\) −2.72357e11 −0.0327861 −0.0163930 0.999866i \(-0.505218\pi\)
−0.0163930 + 0.999866i \(0.505218\pi\)
\(744\) 0 0
\(745\) −1.53418e12 −0.182463
\(746\) 0 0
\(747\) 9.72689e12 1.14296
\(748\) 0 0
\(749\) 1.27790e13 1.48365
\(750\) 0 0
\(751\) 1.40530e13 1.61209 0.806045 0.591855i \(-0.201604\pi\)
0.806045 + 0.591855i \(0.201604\pi\)
\(752\) 0 0
\(753\) 6.56102e11 0.0743693
\(754\) 0 0
\(755\) −2.78508e12 −0.311944
\(756\) 0 0
\(757\) 8.53220e12 0.944342 0.472171 0.881507i \(-0.343470\pi\)
0.472171 + 0.881507i \(0.343470\pi\)
\(758\) 0 0
\(759\) −1.79016e13 −1.95796
\(760\) 0 0
\(761\) 1.13835e13 1.23039 0.615197 0.788373i \(-0.289076\pi\)
0.615197 + 0.788373i \(0.289076\pi\)
\(762\) 0 0
\(763\) −7.46876e11 −0.0797789
\(764\) 0 0
\(765\) −1.87982e12 −0.198445
\(766\) 0 0
\(767\) −1.68471e12 −0.175771
\(768\) 0 0
\(769\) 1.94858e12 0.200933 0.100466 0.994940i \(-0.467967\pi\)
0.100466 + 0.994940i \(0.467967\pi\)
\(770\) 0 0
\(771\) −5.74832e12 −0.585864
\(772\) 0 0
\(773\) −1.09355e13 −1.10161 −0.550807 0.834633i \(-0.685680\pi\)
−0.550807 + 0.834633i \(0.685680\pi\)
\(774\) 0 0
\(775\) −1.21694e13 −1.21175
\(776\) 0 0
\(777\) −1.47863e13 −1.45535
\(778\) 0 0
\(779\) 1.91242e11 0.0186065
\(780\) 0 0
\(781\) 1.23011e13 1.18308
\(782\) 0 0
\(783\) 2.03570e12 0.193547
\(784\) 0 0
\(785\) −2.29821e12 −0.216011
\(786\) 0 0
\(787\) −7.50366e12 −0.697247 −0.348623 0.937263i \(-0.613351\pi\)
−0.348623 + 0.937263i \(0.613351\pi\)
\(788\) 0 0
\(789\) 2.56814e13 2.35924
\(790\) 0 0
\(791\) 7.62369e12 0.692423
\(792\) 0 0
\(793\) −3.67822e12 −0.330300
\(794\) 0 0
\(795\) −8.86406e11 −0.0787011
\(796\) 0 0
\(797\) 1.65844e12 0.145592 0.0727962 0.997347i \(-0.476808\pi\)
0.0727962 + 0.997347i \(0.476808\pi\)
\(798\) 0 0
\(799\) −1.20278e13 −1.04406
\(800\) 0 0
\(801\) −1.75263e13 −1.50434
\(802\) 0 0
\(803\) −1.15441e13 −0.979810
\(804\) 0 0
\(805\) −5.56337e12 −0.466935
\(806\) 0 0
\(807\) −3.65318e12 −0.303207
\(808\) 0 0
\(809\) −7.07921e12 −0.581054 −0.290527 0.956867i \(-0.593831\pi\)
−0.290527 + 0.956867i \(0.593831\pi\)
\(810\) 0 0
\(811\) 1.84596e13 1.49840 0.749201 0.662343i \(-0.230438\pi\)
0.749201 + 0.662343i \(0.230438\pi\)
\(812\) 0 0
\(813\) −2.56161e13 −2.05639
\(814\) 0 0
\(815\) 7.12147e11 0.0565406
\(816\) 0 0
\(817\) −1.09727e13 −0.861616
\(818\) 0 0
\(819\) −5.61299e12 −0.435930
\(820\) 0 0
\(821\) 2.40377e13 1.84650 0.923250 0.384200i \(-0.125523\pi\)
0.923250 + 0.384200i \(0.125523\pi\)
\(822\) 0 0
\(823\) 1.26494e12 0.0961104 0.0480552 0.998845i \(-0.484698\pi\)
0.0480552 + 0.998845i \(0.484698\pi\)
\(824\) 0 0
\(825\) 1.39257e13 1.04658
\(826\) 0 0
\(827\) 9.81229e12 0.729450 0.364725 0.931115i \(-0.381163\pi\)
0.364725 + 0.931115i \(0.381163\pi\)
\(828\) 0 0
\(829\) 1.26128e13 0.927504 0.463752 0.885965i \(-0.346503\pi\)
0.463752 + 0.885965i \(0.346503\pi\)
\(830\) 0 0
\(831\) −1.13671e13 −0.826886
\(832\) 0 0
\(833\) 1.25024e13 0.899687
\(834\) 0 0
\(835\) −2.37644e12 −0.169175
\(836\) 0 0
\(837\) 3.29045e12 0.231734
\(838\) 0 0
\(839\) 8.53632e12 0.594760 0.297380 0.954759i \(-0.403887\pi\)
0.297380 + 0.954759i \(0.403887\pi\)
\(840\) 0 0
\(841\) 1.42715e12 0.0983759
\(842\) 0 0
\(843\) 2.07124e13 1.41256
\(844\) 0 0
\(845\) −2.11204e11 −0.0142511
\(846\) 0 0
\(847\) −9.35511e12 −0.624559
\(848\) 0 0
\(849\) 2.21046e13 1.46015
\(850\) 0 0
\(851\) −1.97724e13 −1.29234
\(852\) 0 0
\(853\) −1.12025e13 −0.724507 −0.362254 0.932080i \(-0.617993\pi\)
−0.362254 + 0.932080i \(0.617993\pi\)
\(854\) 0 0
\(855\) 1.52453e12 0.0975639
\(856\) 0 0
\(857\) −2.23241e13 −1.41371 −0.706856 0.707357i \(-0.749887\pi\)
−0.706856 + 0.707357i \(0.749887\pi\)
\(858\) 0 0
\(859\) 2.11323e13 1.32428 0.662138 0.749382i \(-0.269649\pi\)
0.662138 + 0.749382i \(0.269649\pi\)
\(860\) 0 0
\(861\) −1.30592e12 −0.0809845
\(862\) 0 0
\(863\) −1.17061e13 −0.718395 −0.359197 0.933262i \(-0.616950\pi\)
−0.359197 + 0.933262i \(0.616950\pi\)
\(864\) 0 0
\(865\) −2.52454e11 −0.0153324
\(866\) 0 0
\(867\) −2.33115e12 −0.140115
\(868\) 0 0
\(869\) 8.81730e12 0.524501
\(870\) 0 0
\(871\) −5.46859e12 −0.321954
\(872\) 0 0
\(873\) −3.67440e12 −0.214103
\(874\) 0 0
\(875\) 8.80934e12 0.508051
\(876\) 0 0
\(877\) 1.17836e13 0.672638 0.336319 0.941748i \(-0.390818\pi\)
0.336319 + 0.941748i \(0.390818\pi\)
\(878\) 0 0
\(879\) 7.22674e11 0.0408312
\(880\) 0 0
\(881\) −1.93741e13 −1.08350 −0.541751 0.840539i \(-0.682238\pi\)
−0.541751 + 0.840539i \(0.682238\pi\)
\(882\) 0 0
\(883\) 1.50199e13 0.831466 0.415733 0.909487i \(-0.363525\pi\)
0.415733 + 0.909487i \(0.363525\pi\)
\(884\) 0 0
\(885\) −3.12464e12 −0.171220
\(886\) 0 0
\(887\) −1.23661e13 −0.670776 −0.335388 0.942080i \(-0.608867\pi\)
−0.335388 + 0.942080i \(0.608867\pi\)
\(888\) 0 0
\(889\) 1.27723e13 0.685824
\(890\) 0 0
\(891\) 1.19864e13 0.637148
\(892\) 0 0
\(893\) 9.75457e12 0.513306
\(894\) 0 0
\(895\) −2.30008e12 −0.119823
\(896\) 0 0
\(897\) −1.41678e13 −0.730696
\(898\) 0 0
\(899\) 2.57558e13 1.31509
\(900\) 0 0
\(901\) 5.47860e12 0.276954
\(902\) 0 0
\(903\) 7.49283e13 3.75017
\(904\) 0 0
\(905\) 1.35358e12 0.0670757
\(906\) 0 0
\(907\) −9.76708e12 −0.479217 −0.239608 0.970870i \(-0.577019\pi\)
−0.239608 + 0.970870i \(0.577019\pi\)
\(908\) 0 0
\(909\) −1.64462e13 −0.798967
\(910\) 0 0
\(911\) 1.91556e13 0.921430 0.460715 0.887548i \(-0.347593\pi\)
0.460715 + 0.887548i \(0.347593\pi\)
\(912\) 0 0
\(913\) −1.58293e13 −0.753949
\(914\) 0 0
\(915\) −6.82200e12 −0.321749
\(916\) 0 0
\(917\) 4.03170e13 1.88290
\(918\) 0 0
\(919\) 2.82464e13 1.30630 0.653150 0.757229i \(-0.273447\pi\)
0.653150 + 0.757229i \(0.273447\pi\)
\(920\) 0 0
\(921\) 3.72425e13 1.70557
\(922\) 0 0
\(923\) 9.73546e12 0.441518
\(924\) 0 0
\(925\) 1.53810e13 0.690792
\(926\) 0 0
\(927\) −3.15281e13 −1.40229
\(928\) 0 0
\(929\) 1.81017e13 0.797348 0.398674 0.917093i \(-0.369471\pi\)
0.398674 + 0.917093i \(0.369471\pi\)
\(930\) 0 0
\(931\) −1.01395e13 −0.442324
\(932\) 0 0
\(933\) 3.10792e13 1.34277
\(934\) 0 0
\(935\) 3.05916e12 0.130903
\(936\) 0 0
\(937\) 2.51202e13 1.06462 0.532310 0.846550i \(-0.321324\pi\)
0.532310 + 0.846550i \(0.321324\pi\)
\(938\) 0 0
\(939\) 1.24842e13 0.524041
\(940\) 0 0
\(941\) 8.09156e11 0.0336418 0.0168209 0.999859i \(-0.494645\pi\)
0.0168209 + 0.999859i \(0.494645\pi\)
\(942\) 0 0
\(943\) −1.74628e12 −0.0719138
\(944\) 0 0
\(945\) −1.17017e12 −0.0477315
\(946\) 0 0
\(947\) 1.25569e13 0.507349 0.253675 0.967290i \(-0.418361\pi\)
0.253675 + 0.967290i \(0.418361\pi\)
\(948\) 0 0
\(949\) −9.13636e12 −0.365658
\(950\) 0 0
\(951\) 1.41012e13 0.559040
\(952\) 0 0
\(953\) −3.64201e13 −1.43029 −0.715144 0.698977i \(-0.753639\pi\)
−0.715144 + 0.698977i \(0.753639\pi\)
\(954\) 0 0
\(955\) 2.39100e12 0.0930173
\(956\) 0 0
\(957\) −2.94728e13 −1.13584
\(958\) 0 0
\(959\) −1.77017e13 −0.675821
\(960\) 0 0
\(961\) 1.51913e13 0.574564
\(962\) 0 0
\(963\) 3.19763e13 1.19815
\(964\) 0 0
\(965\) −2.77205e12 −0.102903
\(966\) 0 0
\(967\) −2.96691e13 −1.09115 −0.545575 0.838062i \(-0.683689\pi\)
−0.545575 + 0.838062i \(0.683689\pi\)
\(968\) 0 0
\(969\) −1.77862e13 −0.648076
\(970\) 0 0
\(971\) 1.05417e13 0.380563 0.190281 0.981730i \(-0.439060\pi\)
0.190281 + 0.981730i \(0.439060\pi\)
\(972\) 0 0
\(973\) −3.14899e12 −0.112632
\(974\) 0 0
\(975\) 1.10212e13 0.390577
\(976\) 0 0
\(977\) −2.40729e13 −0.845285 −0.422643 0.906296i \(-0.638897\pi\)
−0.422643 + 0.906296i \(0.638897\pi\)
\(978\) 0 0
\(979\) 2.85218e13 0.992328
\(980\) 0 0
\(981\) −1.86887e12 −0.0644270
\(982\) 0 0
\(983\) 3.57135e13 1.21995 0.609974 0.792421i \(-0.291180\pi\)
0.609974 + 0.792421i \(0.291180\pi\)
\(984\) 0 0
\(985\) 7.17195e12 0.242758
\(986\) 0 0
\(987\) −6.66102e13 −2.23416
\(988\) 0 0
\(989\) 1.00195e14 3.33013
\(990\) 0 0
\(991\) −2.48780e13 −0.819376 −0.409688 0.912226i \(-0.634362\pi\)
−0.409688 + 0.912226i \(0.634362\pi\)
\(992\) 0 0
\(993\) −9.62454e12 −0.314129
\(994\) 0 0
\(995\) 8.60369e12 0.278279
\(996\) 0 0
\(997\) −3.31717e13 −1.06326 −0.531630 0.846977i \(-0.678420\pi\)
−0.531630 + 0.846977i \(0.678420\pi\)
\(998\) 0 0
\(999\) −4.15882e12 −0.132107
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.g.1.4 4
4.3 odd 2 13.10.a.a.1.4 4
12.11 even 2 117.10.a.c.1.1 4
20.19 odd 2 325.10.a.a.1.1 4
52.51 odd 2 169.10.a.a.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.a.1.4 4 4.3 odd 2
117.10.a.c.1.1 4 12.11 even 2
169.10.a.a.1.1 4 52.51 odd 2
208.10.a.g.1.4 4 1.1 even 1 trivial
325.10.a.a.1.1 4 20.19 odd 2