Properties

Label 2070.4.a.j.1.1
Level $2070$
Weight $4$
Character 2070.1
Self dual yes
Analytic conductor $122.134$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2070,4,Mod(1,2070)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2070.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.133953712\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2070.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -5.00000 q^{5} +20.0000 q^{7} +8.00000 q^{8} -10.0000 q^{10} -6.00000 q^{11} +47.0000 q^{13} +40.0000 q^{14} +16.0000 q^{16} +132.000 q^{17} +146.000 q^{19} -20.0000 q^{20} -12.0000 q^{22} -23.0000 q^{23} +25.0000 q^{25} +94.0000 q^{26} +80.0000 q^{28} +99.0000 q^{29} -253.000 q^{31} +32.0000 q^{32} +264.000 q^{34} -100.000 q^{35} -118.000 q^{37} +292.000 q^{38} -40.0000 q^{40} -495.000 q^{41} +272.000 q^{43} -24.0000 q^{44} -46.0000 q^{46} -639.000 q^{47} +57.0000 q^{49} +50.0000 q^{50} +188.000 q^{52} +342.000 q^{53} +30.0000 q^{55} +160.000 q^{56} +198.000 q^{58} -240.000 q^{59} -370.000 q^{61} -506.000 q^{62} +64.0000 q^{64} -235.000 q^{65} +698.000 q^{67} +528.000 q^{68} -200.000 q^{70} +357.000 q^{71} -259.000 q^{73} -236.000 q^{74} +584.000 q^{76} -120.000 q^{77} +542.000 q^{79} -80.0000 q^{80} -990.000 q^{82} +1248.00 q^{83} -660.000 q^{85} +544.000 q^{86} -48.0000 q^{88} +828.000 q^{89} +940.000 q^{91} -92.0000 q^{92} -1278.00 q^{94} -730.000 q^{95} +992.000 q^{97} +114.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 20.0000 1.07990 0.539949 0.841698i \(-0.318443\pi\)
0.539949 + 0.841698i \(0.318443\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −6.00000 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(12\) 0 0
\(13\) 47.0000 1.00273 0.501364 0.865237i \(-0.332832\pi\)
0.501364 + 0.865237i \(0.332832\pi\)
\(14\) 40.0000 0.763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 132.000 1.88322 0.941609 0.336709i \(-0.109314\pi\)
0.941609 + 0.336709i \(0.109314\pi\)
\(18\) 0 0
\(19\) 146.000 1.76288 0.881439 0.472297i \(-0.156575\pi\)
0.881439 + 0.472297i \(0.156575\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) −12.0000 −0.116291
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 94.0000 0.709035
\(27\) 0 0
\(28\) 80.0000 0.539949
\(29\) 99.0000 0.633925 0.316963 0.948438i \(-0.397337\pi\)
0.316963 + 0.948438i \(0.397337\pi\)
\(30\) 0 0
\(31\) −253.000 −1.46581 −0.732906 0.680330i \(-0.761836\pi\)
−0.732906 + 0.680330i \(0.761836\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) 264.000 1.33164
\(35\) −100.000 −0.482945
\(36\) 0 0
\(37\) −118.000 −0.524299 −0.262150 0.965027i \(-0.584431\pi\)
−0.262150 + 0.965027i \(0.584431\pi\)
\(38\) 292.000 1.24654
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) −495.000 −1.88551 −0.942756 0.333483i \(-0.891776\pi\)
−0.942756 + 0.333483i \(0.891776\pi\)
\(42\) 0 0
\(43\) 272.000 0.964642 0.482321 0.875995i \(-0.339794\pi\)
0.482321 + 0.875995i \(0.339794\pi\)
\(44\) −24.0000 −0.0822304
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −639.000 −1.98314 −0.991572 0.129560i \(-0.958644\pi\)
−0.991572 + 0.129560i \(0.958644\pi\)
\(48\) 0 0
\(49\) 57.0000 0.166181
\(50\) 50.0000 0.141421
\(51\) 0 0
\(52\) 188.000 0.501364
\(53\) 342.000 0.886364 0.443182 0.896432i \(-0.353849\pi\)
0.443182 + 0.896432i \(0.353849\pi\)
\(54\) 0 0
\(55\) 30.0000 0.0735491
\(56\) 160.000 0.381802
\(57\) 0 0
\(58\) 198.000 0.448253
\(59\) −240.000 −0.529582 −0.264791 0.964306i \(-0.585303\pi\)
−0.264791 + 0.964306i \(0.585303\pi\)
\(60\) 0 0
\(61\) −370.000 −0.776617 −0.388309 0.921529i \(-0.626941\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(62\) −506.000 −1.03648
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −235.000 −0.448433
\(66\) 0 0
\(67\) 698.000 1.27275 0.636375 0.771380i \(-0.280433\pi\)
0.636375 + 0.771380i \(0.280433\pi\)
\(68\) 528.000 0.941609
\(69\) 0 0
\(70\) −200.000 −0.341494
\(71\) 357.000 0.596734 0.298367 0.954451i \(-0.403558\pi\)
0.298367 + 0.954451i \(0.403558\pi\)
\(72\) 0 0
\(73\) −259.000 −0.415256 −0.207628 0.978208i \(-0.566574\pi\)
−0.207628 + 0.978208i \(0.566574\pi\)
\(74\) −236.000 −0.370736
\(75\) 0 0
\(76\) 584.000 0.881439
\(77\) −120.000 −0.177601
\(78\) 0 0
\(79\) 542.000 0.771896 0.385948 0.922521i \(-0.373874\pi\)
0.385948 + 0.922521i \(0.373874\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −990.000 −1.33326
\(83\) 1248.00 1.65043 0.825216 0.564818i \(-0.191054\pi\)
0.825216 + 0.564818i \(0.191054\pi\)
\(84\) 0 0
\(85\) −660.000 −0.842201
\(86\) 544.000 0.682105
\(87\) 0 0
\(88\) −48.0000 −0.0581456
\(89\) 828.000 0.986155 0.493078 0.869985i \(-0.335872\pi\)
0.493078 + 0.869985i \(0.335872\pi\)
\(90\) 0 0
\(91\) 940.000 1.08284
\(92\) −92.0000 −0.104257
\(93\) 0 0
\(94\) −1278.00 −1.40229
\(95\) −730.000 −0.788383
\(96\) 0 0
\(97\) 992.000 1.03837 0.519187 0.854660i \(-0.326235\pi\)
0.519187 + 0.854660i \(0.326235\pi\)
\(98\) 114.000 0.117508
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 1542.00 1.51916 0.759578 0.650416i \(-0.225406\pi\)
0.759578 + 0.650416i \(0.225406\pi\)
\(102\) 0 0
\(103\) 32.0000 0.0306122 0.0153061 0.999883i \(-0.495128\pi\)
0.0153061 + 0.999883i \(0.495128\pi\)
\(104\) 376.000 0.354518
\(105\) 0 0
\(106\) 684.000 0.626754
\(107\) 834.000 0.753512 0.376756 0.926312i \(-0.377039\pi\)
0.376756 + 0.926312i \(0.377039\pi\)
\(108\) 0 0
\(109\) −1192.00 −1.04746 −0.523729 0.851885i \(-0.675460\pi\)
−0.523729 + 0.851885i \(0.675460\pi\)
\(110\) 60.0000 0.0520071
\(111\) 0 0
\(112\) 320.000 0.269975
\(113\) 132.000 0.109890 0.0549448 0.998489i \(-0.482502\pi\)
0.0549448 + 0.998489i \(0.482502\pi\)
\(114\) 0 0
\(115\) 115.000 0.0932505
\(116\) 396.000 0.316963
\(117\) 0 0
\(118\) −480.000 −0.374471
\(119\) 2640.00 2.03368
\(120\) 0 0
\(121\) −1295.00 −0.972953
\(122\) −740.000 −0.549151
\(123\) 0 0
\(124\) −1012.00 −0.732906
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 89.0000 0.0621848 0.0310924 0.999517i \(-0.490101\pi\)
0.0310924 + 0.999517i \(0.490101\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) −470.000 −0.317090
\(131\) 1797.00 1.19851 0.599254 0.800559i \(-0.295464\pi\)
0.599254 + 0.800559i \(0.295464\pi\)
\(132\) 0 0
\(133\) 2920.00 1.90373
\(134\) 1396.00 0.899970
\(135\) 0 0
\(136\) 1056.00 0.665818
\(137\) 1836.00 1.14496 0.572482 0.819917i \(-0.305981\pi\)
0.572482 + 0.819917i \(0.305981\pi\)
\(138\) 0 0
\(139\) −1027.00 −0.626683 −0.313342 0.949640i \(-0.601449\pi\)
−0.313342 + 0.949640i \(0.601449\pi\)
\(140\) −400.000 −0.241473
\(141\) 0 0
\(142\) 714.000 0.421955
\(143\) −282.000 −0.164909
\(144\) 0 0
\(145\) −495.000 −0.283500
\(146\) −518.000 −0.293630
\(147\) 0 0
\(148\) −472.000 −0.262150
\(149\) −2310.00 −1.27008 −0.635042 0.772477i \(-0.719017\pi\)
−0.635042 + 0.772477i \(0.719017\pi\)
\(150\) 0 0
\(151\) −2149.00 −1.15817 −0.579083 0.815268i \(-0.696589\pi\)
−0.579083 + 0.815268i \(0.696589\pi\)
\(152\) 1168.00 0.623272
\(153\) 0 0
\(154\) −240.000 −0.125583
\(155\) 1265.00 0.655531
\(156\) 0 0
\(157\) 1832.00 0.931271 0.465635 0.884977i \(-0.345826\pi\)
0.465635 + 0.884977i \(0.345826\pi\)
\(158\) 1084.00 0.545813
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) −460.000 −0.225174
\(162\) 0 0
\(163\) 1217.00 0.584802 0.292401 0.956296i \(-0.405546\pi\)
0.292401 + 0.956296i \(0.405546\pi\)
\(164\) −1980.00 −0.942756
\(165\) 0 0
\(166\) 2496.00 1.16703
\(167\) −3048.00 −1.41234 −0.706172 0.708041i \(-0.749579\pi\)
−0.706172 + 0.708041i \(0.749579\pi\)
\(168\) 0 0
\(169\) 12.0000 0.00546199
\(170\) −1320.00 −0.595526
\(171\) 0 0
\(172\) 1088.00 0.482321
\(173\) −774.000 −0.340151 −0.170076 0.985431i \(-0.554401\pi\)
−0.170076 + 0.985431i \(0.554401\pi\)
\(174\) 0 0
\(175\) 500.000 0.215980
\(176\) −96.0000 −0.0411152
\(177\) 0 0
\(178\) 1656.00 0.697317
\(179\) 1875.00 0.782928 0.391464 0.920193i \(-0.371969\pi\)
0.391464 + 0.920193i \(0.371969\pi\)
\(180\) 0 0
\(181\) −1606.00 −0.659520 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(182\) 1880.00 0.765686
\(183\) 0 0
\(184\) −184.000 −0.0737210
\(185\) 590.000 0.234474
\(186\) 0 0
\(187\) −792.000 −0.309715
\(188\) −2556.00 −0.991572
\(189\) 0 0
\(190\) −1460.00 −0.557471
\(191\) −2982.00 −1.12969 −0.564843 0.825199i \(-0.691063\pi\)
−0.564843 + 0.825199i \(0.691063\pi\)
\(192\) 0 0
\(193\) 1385.00 0.516552 0.258276 0.966071i \(-0.416846\pi\)
0.258276 + 0.966071i \(0.416846\pi\)
\(194\) 1984.00 0.734242
\(195\) 0 0
\(196\) 228.000 0.0830904
\(197\) −957.000 −0.346109 −0.173054 0.984912i \(-0.555364\pi\)
−0.173054 + 0.984912i \(0.555364\pi\)
\(198\) 0 0
\(199\) −358.000 −0.127527 −0.0637637 0.997965i \(-0.520310\pi\)
−0.0637637 + 0.997965i \(0.520310\pi\)
\(200\) 200.000 0.0707107
\(201\) 0 0
\(202\) 3084.00 1.07421
\(203\) 1980.00 0.684575
\(204\) 0 0
\(205\) 2475.00 0.843227
\(206\) 64.0000 0.0216461
\(207\) 0 0
\(208\) 752.000 0.250682
\(209\) −876.000 −0.289924
\(210\) 0 0
\(211\) −5380.00 −1.75533 −0.877665 0.479275i \(-0.840900\pi\)
−0.877665 + 0.479275i \(0.840900\pi\)
\(212\) 1368.00 0.443182
\(213\) 0 0
\(214\) 1668.00 0.532814
\(215\) −1360.00 −0.431401
\(216\) 0 0
\(217\) −5060.00 −1.58293
\(218\) −2384.00 −0.740664
\(219\) 0 0
\(220\) 120.000 0.0367745
\(221\) 6204.00 1.88835
\(222\) 0 0
\(223\) 1040.00 0.312303 0.156151 0.987733i \(-0.450091\pi\)
0.156151 + 0.987733i \(0.450091\pi\)
\(224\) 640.000 0.190901
\(225\) 0 0
\(226\) 264.000 0.0777036
\(227\) 3744.00 1.09470 0.547352 0.836902i \(-0.315636\pi\)
0.547352 + 0.836902i \(0.315636\pi\)
\(228\) 0 0
\(229\) 2804.00 0.809142 0.404571 0.914507i \(-0.367421\pi\)
0.404571 + 0.914507i \(0.367421\pi\)
\(230\) 230.000 0.0659380
\(231\) 0 0
\(232\) 792.000 0.224126
\(233\) 4869.00 1.36901 0.684504 0.729009i \(-0.260019\pi\)
0.684504 + 0.729009i \(0.260019\pi\)
\(234\) 0 0
\(235\) 3195.00 0.886889
\(236\) −960.000 −0.264791
\(237\) 0 0
\(238\) 5280.00 1.43803
\(239\) 2877.00 0.778651 0.389326 0.921100i \(-0.372708\pi\)
0.389326 + 0.921100i \(0.372708\pi\)
\(240\) 0 0
\(241\) 1622.00 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(242\) −2590.00 −0.687981
\(243\) 0 0
\(244\) −1480.00 −0.388309
\(245\) −285.000 −0.0743183
\(246\) 0 0
\(247\) 6862.00 1.76769
\(248\) −2024.00 −0.518242
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) 4752.00 1.19499 0.597497 0.801871i \(-0.296162\pi\)
0.597497 + 0.801871i \(0.296162\pi\)
\(252\) 0 0
\(253\) 138.000 0.0342924
\(254\) 178.000 0.0439713
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5073.00 1.23130 0.615652 0.788018i \(-0.288893\pi\)
0.615652 + 0.788018i \(0.288893\pi\)
\(258\) 0 0
\(259\) −2360.00 −0.566190
\(260\) −940.000 −0.224217
\(261\) 0 0
\(262\) 3594.00 0.847474
\(263\) −1314.00 −0.308079 −0.154039 0.988065i \(-0.549228\pi\)
−0.154039 + 0.988065i \(0.549228\pi\)
\(264\) 0 0
\(265\) −1710.00 −0.396394
\(266\) 5840.00 1.34614
\(267\) 0 0
\(268\) 2792.00 0.636375
\(269\) −5265.00 −1.19336 −0.596678 0.802481i \(-0.703513\pi\)
−0.596678 + 0.802481i \(0.703513\pi\)
\(270\) 0 0
\(271\) −2488.00 −0.557695 −0.278847 0.960335i \(-0.589952\pi\)
−0.278847 + 0.960335i \(0.589952\pi\)
\(272\) 2112.00 0.470804
\(273\) 0 0
\(274\) 3672.00 0.809612
\(275\) −150.000 −0.0328921
\(276\) 0 0
\(277\) 5465.00 1.18542 0.592708 0.805418i \(-0.298059\pi\)
0.592708 + 0.805418i \(0.298059\pi\)
\(278\) −2054.00 −0.443132
\(279\) 0 0
\(280\) −800.000 −0.170747
\(281\) −8940.00 −1.89792 −0.948960 0.315396i \(-0.897863\pi\)
−0.948960 + 0.315396i \(0.897863\pi\)
\(282\) 0 0
\(283\) 842.000 0.176861 0.0884306 0.996082i \(-0.471815\pi\)
0.0884306 + 0.996082i \(0.471815\pi\)
\(284\) 1428.00 0.298367
\(285\) 0 0
\(286\) −564.000 −0.116608
\(287\) −9900.00 −2.03616
\(288\) 0 0
\(289\) 12511.0 2.54651
\(290\) −990.000 −0.200465
\(291\) 0 0
\(292\) −1036.00 −0.207628
\(293\) 4032.00 0.803932 0.401966 0.915655i \(-0.368327\pi\)
0.401966 + 0.915655i \(0.368327\pi\)
\(294\) 0 0
\(295\) 1200.00 0.236836
\(296\) −944.000 −0.185368
\(297\) 0 0
\(298\) −4620.00 −0.898085
\(299\) −1081.00 −0.209083
\(300\) 0 0
\(301\) 5440.00 1.04172
\(302\) −4298.00 −0.818947
\(303\) 0 0
\(304\) 2336.00 0.440720
\(305\) 1850.00 0.347314
\(306\) 0 0
\(307\) −1096.00 −0.203753 −0.101876 0.994797i \(-0.532485\pi\)
−0.101876 + 0.994797i \(0.532485\pi\)
\(308\) −480.000 −0.0888004
\(309\) 0 0
\(310\) 2530.00 0.463530
\(311\) 4653.00 0.848384 0.424192 0.905572i \(-0.360558\pi\)
0.424192 + 0.905572i \(0.360558\pi\)
\(312\) 0 0
\(313\) 3440.00 0.621215 0.310608 0.950538i \(-0.399468\pi\)
0.310608 + 0.950538i \(0.399468\pi\)
\(314\) 3664.00 0.658508
\(315\) 0 0
\(316\) 2168.00 0.385948
\(317\) −3066.00 −0.543229 −0.271615 0.962406i \(-0.587558\pi\)
−0.271615 + 0.962406i \(0.587558\pi\)
\(318\) 0 0
\(319\) −594.000 −0.104256
\(320\) −320.000 −0.0559017
\(321\) 0 0
\(322\) −920.000 −0.159222
\(323\) 19272.0 3.31988
\(324\) 0 0
\(325\) 1175.00 0.200545
\(326\) 2434.00 0.413518
\(327\) 0 0
\(328\) −3960.00 −0.666629
\(329\) −12780.0 −2.14159
\(330\) 0 0
\(331\) 1505.00 0.249916 0.124958 0.992162i \(-0.460120\pi\)
0.124958 + 0.992162i \(0.460120\pi\)
\(332\) 4992.00 0.825216
\(333\) 0 0
\(334\) −6096.00 −0.998677
\(335\) −3490.00 −0.569191
\(336\) 0 0
\(337\) −3268.00 −0.528247 −0.264124 0.964489i \(-0.585083\pi\)
−0.264124 + 0.964489i \(0.585083\pi\)
\(338\) 24.0000 0.00386221
\(339\) 0 0
\(340\) −2640.00 −0.421100
\(341\) 1518.00 0.241068
\(342\) 0 0
\(343\) −5720.00 −0.900440
\(344\) 2176.00 0.341052
\(345\) 0 0
\(346\) −1548.00 −0.240523
\(347\) −4164.00 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −2911.00 −0.446482 −0.223241 0.974763i \(-0.571664\pi\)
−0.223241 + 0.974763i \(0.571664\pi\)
\(350\) 1000.00 0.152721
\(351\) 0 0
\(352\) −192.000 −0.0290728
\(353\) −9753.00 −1.47054 −0.735269 0.677776i \(-0.762944\pi\)
−0.735269 + 0.677776i \(0.762944\pi\)
\(354\) 0 0
\(355\) −1785.00 −0.266868
\(356\) 3312.00 0.493078
\(357\) 0 0
\(358\) 3750.00 0.553614
\(359\) −3858.00 −0.567180 −0.283590 0.958946i \(-0.591525\pi\)
−0.283590 + 0.958946i \(0.591525\pi\)
\(360\) 0 0
\(361\) 14457.0 2.10774
\(362\) −3212.00 −0.466351
\(363\) 0 0
\(364\) 3760.00 0.541422
\(365\) 1295.00 0.185708
\(366\) 0 0
\(367\) 7856.00 1.11738 0.558692 0.829375i \(-0.311303\pi\)
0.558692 + 0.829375i \(0.311303\pi\)
\(368\) −368.000 −0.0521286
\(369\) 0 0
\(370\) 1180.00 0.165798
\(371\) 6840.00 0.957184
\(372\) 0 0
\(373\) −34.0000 −0.00471971 −0.00235986 0.999997i \(-0.500751\pi\)
−0.00235986 + 0.999997i \(0.500751\pi\)
\(374\) −1584.00 −0.219002
\(375\) 0 0
\(376\) −5112.00 −0.701147
\(377\) 4653.00 0.635654
\(378\) 0 0
\(379\) −6064.00 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −2920.00 −0.394192
\(381\) 0 0
\(382\) −5964.00 −0.798808
\(383\) −11868.0 −1.58336 −0.791679 0.610937i \(-0.790793\pi\)
−0.791679 + 0.610937i \(0.790793\pi\)
\(384\) 0 0
\(385\) 600.000 0.0794255
\(386\) 2770.00 0.365257
\(387\) 0 0
\(388\) 3968.00 0.519187
\(389\) −8616.00 −1.12300 −0.561502 0.827475i \(-0.689776\pi\)
−0.561502 + 0.827475i \(0.689776\pi\)
\(390\) 0 0
\(391\) −3036.00 −0.392678
\(392\) 456.000 0.0587538
\(393\) 0 0
\(394\) −1914.00 −0.244736
\(395\) −2710.00 −0.345202
\(396\) 0 0
\(397\) 3119.00 0.394303 0.197151 0.980373i \(-0.436831\pi\)
0.197151 + 0.980373i \(0.436831\pi\)
\(398\) −716.000 −0.0901755
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) −7986.00 −0.994518 −0.497259 0.867602i \(-0.665660\pi\)
−0.497259 + 0.867602i \(0.665660\pi\)
\(402\) 0 0
\(403\) −11891.0 −1.46981
\(404\) 6168.00 0.759578
\(405\) 0 0
\(406\) 3960.00 0.484068
\(407\) 708.000 0.0862267
\(408\) 0 0
\(409\) −3475.00 −0.420117 −0.210058 0.977689i \(-0.567365\pi\)
−0.210058 + 0.977689i \(0.567365\pi\)
\(410\) 4950.00 0.596251
\(411\) 0 0
\(412\) 128.000 0.0153061
\(413\) −4800.00 −0.571895
\(414\) 0 0
\(415\) −6240.00 −0.738095
\(416\) 1504.00 0.177259
\(417\) 0 0
\(418\) −1752.00 −0.205007
\(419\) −10992.0 −1.28161 −0.640805 0.767704i \(-0.721399\pi\)
−0.640805 + 0.767704i \(0.721399\pi\)
\(420\) 0 0
\(421\) 2012.00 0.232919 0.116459 0.993195i \(-0.462845\pi\)
0.116459 + 0.993195i \(0.462845\pi\)
\(422\) −10760.0 −1.24121
\(423\) 0 0
\(424\) 2736.00 0.313377
\(425\) 3300.00 0.376644
\(426\) 0 0
\(427\) −7400.00 −0.838668
\(428\) 3336.00 0.376756
\(429\) 0 0
\(430\) −2720.00 −0.305047
\(431\) 9792.00 1.09435 0.547174 0.837019i \(-0.315704\pi\)
0.547174 + 0.837019i \(0.315704\pi\)
\(432\) 0 0
\(433\) 5786.00 0.642165 0.321082 0.947051i \(-0.395953\pi\)
0.321082 + 0.947051i \(0.395953\pi\)
\(434\) −10120.0 −1.11930
\(435\) 0 0
\(436\) −4768.00 −0.523729
\(437\) −3358.00 −0.367586
\(438\) 0 0
\(439\) 2549.00 0.277123 0.138562 0.990354i \(-0.455752\pi\)
0.138562 + 0.990354i \(0.455752\pi\)
\(440\) 240.000 0.0260035
\(441\) 0 0
\(442\) 12408.0 1.33527
\(443\) −1311.00 −0.140604 −0.0703019 0.997526i \(-0.522396\pi\)
−0.0703019 + 0.997526i \(0.522396\pi\)
\(444\) 0 0
\(445\) −4140.00 −0.441022
\(446\) 2080.00 0.220832
\(447\) 0 0
\(448\) 1280.00 0.134987
\(449\) 14610.0 1.53561 0.767805 0.640684i \(-0.221349\pi\)
0.767805 + 0.640684i \(0.221349\pi\)
\(450\) 0 0
\(451\) 2970.00 0.310093
\(452\) 528.000 0.0549448
\(453\) 0 0
\(454\) 7488.00 0.774073
\(455\) −4700.00 −0.484262
\(456\) 0 0
\(457\) 80.0000 0.00818871 0.00409436 0.999992i \(-0.498697\pi\)
0.00409436 + 0.999992i \(0.498697\pi\)
\(458\) 5608.00 0.572150
\(459\) 0 0
\(460\) 460.000 0.0466252
\(461\) 2343.00 0.236712 0.118356 0.992971i \(-0.462238\pi\)
0.118356 + 0.992971i \(0.462238\pi\)
\(462\) 0 0
\(463\) −3400.00 −0.341277 −0.170639 0.985334i \(-0.554583\pi\)
−0.170639 + 0.985334i \(0.554583\pi\)
\(464\) 1584.00 0.158481
\(465\) 0 0
\(466\) 9738.00 0.968035
\(467\) 1374.00 0.136148 0.0680740 0.997680i \(-0.478315\pi\)
0.0680740 + 0.997680i \(0.478315\pi\)
\(468\) 0 0
\(469\) 13960.0 1.37444
\(470\) 6390.00 0.627125
\(471\) 0 0
\(472\) −1920.00 −0.187236
\(473\) −1632.00 −0.158646
\(474\) 0 0
\(475\) 3650.00 0.352576
\(476\) 10560.0 1.01684
\(477\) 0 0
\(478\) 5754.00 0.550590
\(479\) −4536.00 −0.432683 −0.216341 0.976318i \(-0.569412\pi\)
−0.216341 + 0.976318i \(0.569412\pi\)
\(480\) 0 0
\(481\) −5546.00 −0.525729
\(482\) 3244.00 0.306556
\(483\) 0 0
\(484\) −5180.00 −0.486476
\(485\) −4960.00 −0.464375
\(486\) 0 0
\(487\) −11455.0 −1.06586 −0.532932 0.846158i \(-0.678910\pi\)
−0.532932 + 0.846158i \(0.678910\pi\)
\(488\) −2960.00 −0.274576
\(489\) 0 0
\(490\) −570.000 −0.0525510
\(491\) 10395.0 0.955437 0.477719 0.878513i \(-0.341464\pi\)
0.477719 + 0.878513i \(0.341464\pi\)
\(492\) 0 0
\(493\) 13068.0 1.19382
\(494\) 13724.0 1.24994
\(495\) 0 0
\(496\) −4048.00 −0.366453
\(497\) 7140.00 0.644412
\(498\) 0 0
\(499\) −5497.00 −0.493145 −0.246573 0.969124i \(-0.579304\pi\)
−0.246573 + 0.969124i \(0.579304\pi\)
\(500\) −500.000 −0.0447214
\(501\) 0 0
\(502\) 9504.00 0.844989
\(503\) −7158.00 −0.634512 −0.317256 0.948340i \(-0.602761\pi\)
−0.317256 + 0.948340i \(0.602761\pi\)
\(504\) 0 0
\(505\) −7710.00 −0.679387
\(506\) 276.000 0.0242484
\(507\) 0 0
\(508\) 356.000 0.0310924
\(509\) −12801.0 −1.11472 −0.557362 0.830270i \(-0.688186\pi\)
−0.557362 + 0.830270i \(0.688186\pi\)
\(510\) 0 0
\(511\) −5180.00 −0.448434
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 10146.0 0.870663
\(515\) −160.000 −0.0136902
\(516\) 0 0
\(517\) 3834.00 0.326149
\(518\) −4720.00 −0.400357
\(519\) 0 0
\(520\) −1880.00 −0.158545
\(521\) −16788.0 −1.41170 −0.705850 0.708361i \(-0.749435\pi\)
−0.705850 + 0.708361i \(0.749435\pi\)
\(522\) 0 0
\(523\) 19040.0 1.59189 0.795947 0.605366i \(-0.206973\pi\)
0.795947 + 0.605366i \(0.206973\pi\)
\(524\) 7188.00 0.599254
\(525\) 0 0
\(526\) −2628.00 −0.217845
\(527\) −33396.0 −2.76044
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −3420.00 −0.280293
\(531\) 0 0
\(532\) 11680.0 0.951865
\(533\) −23265.0 −1.89065
\(534\) 0 0
\(535\) −4170.00 −0.336981
\(536\) 5584.00 0.449985
\(537\) 0 0
\(538\) −10530.0 −0.843830
\(539\) −342.000 −0.0273302
\(540\) 0 0
\(541\) −13339.0 −1.06005 −0.530026 0.847981i \(-0.677818\pi\)
−0.530026 + 0.847981i \(0.677818\pi\)
\(542\) −4976.00 −0.394350
\(543\) 0 0
\(544\) 4224.00 0.332909
\(545\) 5960.00 0.468437
\(546\) 0 0
\(547\) −22975.0 −1.79587 −0.897934 0.440130i \(-0.854932\pi\)
−0.897934 + 0.440130i \(0.854932\pi\)
\(548\) 7344.00 0.572482
\(549\) 0 0
\(550\) −300.000 −0.0232583
\(551\) 14454.0 1.11753
\(552\) 0 0
\(553\) 10840.0 0.833569
\(554\) 10930.0 0.838215
\(555\) 0 0
\(556\) −4108.00 −0.313342
\(557\) 17964.0 1.36653 0.683267 0.730169i \(-0.260559\pi\)
0.683267 + 0.730169i \(0.260559\pi\)
\(558\) 0 0
\(559\) 12784.0 0.967273
\(560\) −1600.00 −0.120736
\(561\) 0 0
\(562\) −17880.0 −1.34203
\(563\) −12636.0 −0.945904 −0.472952 0.881088i \(-0.656812\pi\)
−0.472952 + 0.881088i \(0.656812\pi\)
\(564\) 0 0
\(565\) −660.000 −0.0491441
\(566\) 1684.00 0.125060
\(567\) 0 0
\(568\) 2856.00 0.210977
\(569\) 10302.0 0.759020 0.379510 0.925188i \(-0.376093\pi\)
0.379510 + 0.925188i \(0.376093\pi\)
\(570\) 0 0
\(571\) 12380.0 0.907333 0.453666 0.891172i \(-0.350116\pi\)
0.453666 + 0.891172i \(0.350116\pi\)
\(572\) −1128.00 −0.0824546
\(573\) 0 0
\(574\) −19800.0 −1.43978
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) 1913.00 0.138023 0.0690115 0.997616i \(-0.478015\pi\)
0.0690115 + 0.997616i \(0.478015\pi\)
\(578\) 25022.0 1.80065
\(579\) 0 0
\(580\) −1980.00 −0.141750
\(581\) 24960.0 1.78230
\(582\) 0 0
\(583\) −2052.00 −0.145772
\(584\) −2072.00 −0.146815
\(585\) 0 0
\(586\) 8064.00 0.568465
\(587\) −16767.0 −1.17896 −0.589479 0.807784i \(-0.700667\pi\)
−0.589479 + 0.807784i \(0.700667\pi\)
\(588\) 0 0
\(589\) −36938.0 −2.58405
\(590\) 2400.00 0.167469
\(591\) 0 0
\(592\) −1888.00 −0.131075
\(593\) 16722.0 1.15799 0.578997 0.815330i \(-0.303444\pi\)
0.578997 + 0.815330i \(0.303444\pi\)
\(594\) 0 0
\(595\) −13200.0 −0.909491
\(596\) −9240.00 −0.635042
\(597\) 0 0
\(598\) −2162.00 −0.147844
\(599\) 4200.00 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(600\) 0 0
\(601\) −19915.0 −1.35166 −0.675832 0.737056i \(-0.736215\pi\)
−0.675832 + 0.737056i \(0.736215\pi\)
\(602\) 10880.0 0.736604
\(603\) 0 0
\(604\) −8596.00 −0.579083
\(605\) 6475.00 0.435118
\(606\) 0 0
\(607\) 24044.0 1.60777 0.803885 0.594785i \(-0.202763\pi\)
0.803885 + 0.594785i \(0.202763\pi\)
\(608\) 4672.00 0.311636
\(609\) 0 0
\(610\) 3700.00 0.245588
\(611\) −30033.0 −1.98855
\(612\) 0 0
\(613\) 3452.00 0.227447 0.113723 0.993512i \(-0.463722\pi\)
0.113723 + 0.993512i \(0.463722\pi\)
\(614\) −2192.00 −0.144075
\(615\) 0 0
\(616\) −960.000 −0.0627914
\(617\) 16374.0 1.06838 0.534192 0.845363i \(-0.320616\pi\)
0.534192 + 0.845363i \(0.320616\pi\)
\(618\) 0 0
\(619\) −12760.0 −0.828542 −0.414271 0.910154i \(-0.635963\pi\)
−0.414271 + 0.910154i \(0.635963\pi\)
\(620\) 5060.00 0.327765
\(621\) 0 0
\(622\) 9306.00 0.599898
\(623\) 16560.0 1.06495
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 6880.00 0.439265
\(627\) 0 0
\(628\) 7328.00 0.465635
\(629\) −15576.0 −0.987370
\(630\) 0 0
\(631\) 29420.0 1.85609 0.928044 0.372470i \(-0.121489\pi\)
0.928044 + 0.372470i \(0.121489\pi\)
\(632\) 4336.00 0.272906
\(633\) 0 0
\(634\) −6132.00 −0.384121
\(635\) −445.000 −0.0278099
\(636\) 0 0
\(637\) 2679.00 0.166634
\(638\) −1188.00 −0.0737200
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 13692.0 0.843684 0.421842 0.906669i \(-0.361384\pi\)
0.421842 + 0.906669i \(0.361384\pi\)
\(642\) 0 0
\(643\) 27398.0 1.68036 0.840180 0.542307i \(-0.182449\pi\)
0.840180 + 0.542307i \(0.182449\pi\)
\(644\) −1840.00 −0.112587
\(645\) 0 0
\(646\) 38544.0 2.34751
\(647\) 6417.00 0.389920 0.194960 0.980811i \(-0.437542\pi\)
0.194960 + 0.980811i \(0.437542\pi\)
\(648\) 0 0
\(649\) 1440.00 0.0870954
\(650\) 2350.00 0.141807
\(651\) 0 0
\(652\) 4868.00 0.292401
\(653\) −14583.0 −0.873931 −0.436965 0.899478i \(-0.643947\pi\)
−0.436965 + 0.899478i \(0.643947\pi\)
\(654\) 0 0
\(655\) −8985.00 −0.535989
\(656\) −7920.00 −0.471378
\(657\) 0 0
\(658\) −25560.0 −1.51434
\(659\) 9624.00 0.568889 0.284444 0.958693i \(-0.408191\pi\)
0.284444 + 0.958693i \(0.408191\pi\)
\(660\) 0 0
\(661\) −24586.0 −1.44672 −0.723362 0.690469i \(-0.757404\pi\)
−0.723362 + 0.690469i \(0.757404\pi\)
\(662\) 3010.00 0.176717
\(663\) 0 0
\(664\) 9984.00 0.583516
\(665\) −14600.0 −0.851374
\(666\) 0 0
\(667\) −2277.00 −0.132183
\(668\) −12192.0 −0.706172
\(669\) 0 0
\(670\) −6980.00 −0.402479
\(671\) 2220.00 0.127723
\(672\) 0 0
\(673\) 14339.0 0.821289 0.410645 0.911795i \(-0.365304\pi\)
0.410645 + 0.911795i \(0.365304\pi\)
\(674\) −6536.00 −0.373527
\(675\) 0 0
\(676\) 48.0000 0.00273100
\(677\) −14658.0 −0.832131 −0.416066 0.909335i \(-0.636591\pi\)
−0.416066 + 0.909335i \(0.636591\pi\)
\(678\) 0 0
\(679\) 19840.0 1.12134
\(680\) −5280.00 −0.297763
\(681\) 0 0
\(682\) 3036.00 0.170461
\(683\) −16797.0 −0.941024 −0.470512 0.882394i \(-0.655931\pi\)
−0.470512 + 0.882394i \(0.655931\pi\)
\(684\) 0 0
\(685\) −9180.00 −0.512043
\(686\) −11440.0 −0.636707
\(687\) 0 0
\(688\) 4352.00 0.241161
\(689\) 16074.0 0.888782
\(690\) 0 0
\(691\) 8132.00 0.447693 0.223846 0.974624i \(-0.428139\pi\)
0.223846 + 0.974624i \(0.428139\pi\)
\(692\) −3096.00 −0.170076
\(693\) 0 0
\(694\) −8328.00 −0.455514
\(695\) 5135.00 0.280261
\(696\) 0 0
\(697\) −65340.0 −3.55083
\(698\) −5822.00 −0.315711
\(699\) 0 0
\(700\) 2000.00 0.107990
\(701\) −19668.0 −1.05970 −0.529850 0.848091i \(-0.677752\pi\)
−0.529850 + 0.848091i \(0.677752\pi\)
\(702\) 0 0
\(703\) −17228.0 −0.924276
\(704\) −384.000 −0.0205576
\(705\) 0 0
\(706\) −19506.0 −1.03983
\(707\) 30840.0 1.64053
\(708\) 0 0
\(709\) 18200.0 0.964055 0.482028 0.876156i \(-0.339900\pi\)
0.482028 + 0.876156i \(0.339900\pi\)
\(710\) −3570.00 −0.188704
\(711\) 0 0
\(712\) 6624.00 0.348659
\(713\) 5819.00 0.305643
\(714\) 0 0
\(715\) 1410.00 0.0737497
\(716\) 7500.00 0.391464
\(717\) 0 0
\(718\) −7716.00 −0.401056
\(719\) 11880.0 0.616202 0.308101 0.951354i \(-0.400307\pi\)
0.308101 + 0.951354i \(0.400307\pi\)
\(720\) 0 0
\(721\) 640.000 0.0330580
\(722\) 28914.0 1.49040
\(723\) 0 0
\(724\) −6424.00 −0.329760
\(725\) 2475.00 0.126785
\(726\) 0 0
\(727\) −2554.00 −0.130292 −0.0651462 0.997876i \(-0.520751\pi\)
−0.0651462 + 0.997876i \(0.520751\pi\)
\(728\) 7520.00 0.382843
\(729\) 0 0
\(730\) 2590.00 0.131315
\(731\) 35904.0 1.81663
\(732\) 0 0
\(733\) 6308.00 0.317860 0.158930 0.987290i \(-0.449196\pi\)
0.158930 + 0.987290i \(0.449196\pi\)
\(734\) 15712.0 0.790110
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −4188.00 −0.209317
\(738\) 0 0
\(739\) 9557.00 0.475724 0.237862 0.971299i \(-0.423553\pi\)
0.237862 + 0.971299i \(0.423553\pi\)
\(740\) 2360.00 0.117237
\(741\) 0 0
\(742\) 13680.0 0.676831
\(743\) −19128.0 −0.944466 −0.472233 0.881474i \(-0.656552\pi\)
−0.472233 + 0.881474i \(0.656552\pi\)
\(744\) 0 0
\(745\) 11550.0 0.567999
\(746\) −68.0000 −0.00333734
\(747\) 0 0
\(748\) −3168.00 −0.154858
\(749\) 16680.0 0.813717
\(750\) 0 0
\(751\) −18448.0 −0.896374 −0.448187 0.893940i \(-0.647930\pi\)
−0.448187 + 0.893940i \(0.647930\pi\)
\(752\) −10224.0 −0.495786
\(753\) 0 0
\(754\) 9306.00 0.449476
\(755\) 10745.0 0.517948
\(756\) 0 0
\(757\) −5602.00 −0.268967 −0.134484 0.990916i \(-0.542938\pi\)
−0.134484 + 0.990916i \(0.542938\pi\)
\(758\) −12128.0 −0.581146
\(759\) 0 0
\(760\) −5840.00 −0.278736
\(761\) −4005.00 −0.190777 −0.0953884 0.995440i \(-0.530409\pi\)
−0.0953884 + 0.995440i \(0.530409\pi\)
\(762\) 0 0
\(763\) −23840.0 −1.13115
\(764\) −11928.0 −0.564843
\(765\) 0 0
\(766\) −23736.0 −1.11960
\(767\) −11280.0 −0.531026
\(768\) 0 0
\(769\) 41726.0 1.95667 0.978334 0.207032i \(-0.0663803\pi\)
0.978334 + 0.207032i \(0.0663803\pi\)
\(770\) 1200.00 0.0561623
\(771\) 0 0
\(772\) 5540.00 0.258276
\(773\) −34116.0 −1.58741 −0.793705 0.608303i \(-0.791850\pi\)
−0.793705 + 0.608303i \(0.791850\pi\)
\(774\) 0 0
\(775\) −6325.00 −0.293162
\(776\) 7936.00 0.367121
\(777\) 0 0
\(778\) −17232.0 −0.794084
\(779\) −72270.0 −3.32393
\(780\) 0 0
\(781\) −2142.00 −0.0981393
\(782\) −6072.00 −0.277665
\(783\) 0 0
\(784\) 912.000 0.0415452
\(785\) −9160.00 −0.416477
\(786\) 0 0
\(787\) 1652.00 0.0748252 0.0374126 0.999300i \(-0.488088\pi\)
0.0374126 + 0.999300i \(0.488088\pi\)
\(788\) −3828.00 −0.173054
\(789\) 0 0
\(790\) −5420.00 −0.244095
\(791\) 2640.00 0.118670
\(792\) 0 0
\(793\) −17390.0 −0.778735
\(794\) 6238.00 0.278814
\(795\) 0 0
\(796\) −1432.00 −0.0637637
\(797\) −12486.0 −0.554927 −0.277463 0.960736i \(-0.589494\pi\)
−0.277463 + 0.960736i \(0.589494\pi\)
\(798\) 0 0
\(799\) −84348.0 −3.73469
\(800\) 800.000 0.0353553
\(801\) 0 0
\(802\) −15972.0 −0.703231
\(803\) 1554.00 0.0682932
\(804\) 0 0
\(805\) 2300.00 0.100701
\(806\) −23782.0 −1.03931
\(807\) 0 0
\(808\) 12336.0 0.537103
\(809\) −5490.00 −0.238589 −0.119294 0.992859i \(-0.538063\pi\)
−0.119294 + 0.992859i \(0.538063\pi\)
\(810\) 0 0
\(811\) −14785.0 −0.640162 −0.320081 0.947390i \(-0.603710\pi\)
−0.320081 + 0.947390i \(0.603710\pi\)
\(812\) 7920.00 0.342288
\(813\) 0 0
\(814\) 1416.00 0.0609715
\(815\) −6085.00 −0.261532
\(816\) 0 0
\(817\) 39712.0 1.70055
\(818\) −6950.00 −0.297067
\(819\) 0 0
\(820\) 9900.00 0.421613
\(821\) 12486.0 0.530773 0.265386 0.964142i \(-0.414500\pi\)
0.265386 + 0.964142i \(0.414500\pi\)
\(822\) 0 0
\(823\) −39805.0 −1.68592 −0.842962 0.537973i \(-0.819190\pi\)
−0.842962 + 0.537973i \(0.819190\pi\)
\(824\) 256.000 0.0108230
\(825\) 0 0
\(826\) −9600.00 −0.404391
\(827\) −15024.0 −0.631724 −0.315862 0.948805i \(-0.602294\pi\)
−0.315862 + 0.948805i \(0.602294\pi\)
\(828\) 0 0
\(829\) 14618.0 0.612430 0.306215 0.951962i \(-0.400937\pi\)
0.306215 + 0.951962i \(0.400937\pi\)
\(830\) −12480.0 −0.521912
\(831\) 0 0
\(832\) 3008.00 0.125341
\(833\) 7524.00 0.312955
\(834\) 0 0
\(835\) 15240.0 0.631619
\(836\) −3504.00 −0.144962
\(837\) 0 0
\(838\) −21984.0 −0.906235
\(839\) 10152.0 0.417743 0.208871 0.977943i \(-0.433021\pi\)
0.208871 + 0.977943i \(0.433021\pi\)
\(840\) 0 0
\(841\) −14588.0 −0.598139
\(842\) 4024.00 0.164699
\(843\) 0 0
\(844\) −21520.0 −0.877665
\(845\) −60.0000 −0.00244268
\(846\) 0 0
\(847\) −25900.0 −1.05069
\(848\) 5472.00 0.221591
\(849\) 0 0
\(850\) 6600.00 0.266327
\(851\) 2714.00 0.109324
\(852\) 0 0
\(853\) −22306.0 −0.895361 −0.447680 0.894194i \(-0.647750\pi\)
−0.447680 + 0.894194i \(0.647750\pi\)
\(854\) −14800.0 −0.593028
\(855\) 0 0
\(856\) 6672.00 0.266407
\(857\) −1731.00 −0.0689963 −0.0344982 0.999405i \(-0.510983\pi\)
−0.0344982 + 0.999405i \(0.510983\pi\)
\(858\) 0 0
\(859\) −12649.0 −0.502419 −0.251210 0.967933i \(-0.580828\pi\)
−0.251210 + 0.967933i \(0.580828\pi\)
\(860\) −5440.00 −0.215701
\(861\) 0 0
\(862\) 19584.0 0.773821
\(863\) 16143.0 0.636749 0.318374 0.947965i \(-0.396863\pi\)
0.318374 + 0.947965i \(0.396863\pi\)
\(864\) 0 0
\(865\) 3870.00 0.152120
\(866\) 11572.0 0.454079
\(867\) 0 0
\(868\) −20240.0 −0.791464
\(869\) −3252.00 −0.126947
\(870\) 0 0
\(871\) 32806.0 1.27622
\(872\) −9536.00 −0.370332
\(873\) 0 0
\(874\) −6716.00 −0.259922
\(875\) −2500.00 −0.0965891
\(876\) 0 0
\(877\) 4094.00 0.157633 0.0788167 0.996889i \(-0.474886\pi\)
0.0788167 + 0.996889i \(0.474886\pi\)
\(878\) 5098.00 0.195956
\(879\) 0 0
\(880\) 480.000 0.0183873
\(881\) −30396.0 −1.16239 −0.581196 0.813764i \(-0.697415\pi\)
−0.581196 + 0.813764i \(0.697415\pi\)
\(882\) 0 0
\(883\) −21148.0 −0.805987 −0.402994 0.915203i \(-0.632030\pi\)
−0.402994 + 0.915203i \(0.632030\pi\)
\(884\) 24816.0 0.944177
\(885\) 0 0
\(886\) −2622.00 −0.0994219
\(887\) −5031.00 −0.190445 −0.0952223 0.995456i \(-0.530356\pi\)
−0.0952223 + 0.995456i \(0.530356\pi\)
\(888\) 0 0
\(889\) 1780.00 0.0671533
\(890\) −8280.00 −0.311850
\(891\) 0 0
\(892\) 4160.00 0.156151
\(893\) −93294.0 −3.49604
\(894\) 0 0
\(895\) −9375.00 −0.350136
\(896\) 2560.00 0.0954504
\(897\) 0 0
\(898\) 29220.0 1.08584
\(899\) −25047.0 −0.929215
\(900\) 0 0
\(901\) 45144.0 1.66922
\(902\) 5940.00 0.219269
\(903\) 0 0
\(904\) 1056.00 0.0388518
\(905\) 8030.00 0.294946
\(906\) 0 0
\(907\) −538.000 −0.0196957 −0.00984785 0.999952i \(-0.503135\pi\)
−0.00984785 + 0.999952i \(0.503135\pi\)
\(908\) 14976.0 0.547352
\(909\) 0 0
\(910\) −9400.00 −0.342425
\(911\) −3078.00 −0.111941 −0.0559707 0.998432i \(-0.517825\pi\)
−0.0559707 + 0.998432i \(0.517825\pi\)
\(912\) 0 0
\(913\) −7488.00 −0.271431
\(914\) 160.000 0.00579029
\(915\) 0 0
\(916\) 11216.0 0.404571
\(917\) 35940.0 1.29427
\(918\) 0 0
\(919\) 20288.0 0.728226 0.364113 0.931355i \(-0.381372\pi\)
0.364113 + 0.931355i \(0.381372\pi\)
\(920\) 920.000 0.0329690
\(921\) 0 0
\(922\) 4686.00 0.167381
\(923\) 16779.0 0.598361
\(924\) 0 0
\(925\) −2950.00 −0.104860
\(926\) −6800.00 −0.241320
\(927\) 0 0
\(928\) 3168.00 0.112063
\(929\) −28911.0 −1.02103 −0.510516 0.859868i \(-0.670546\pi\)
−0.510516 + 0.859868i \(0.670546\pi\)
\(930\) 0 0
\(931\) 8322.00 0.292957
\(932\) 19476.0 0.684504
\(933\) 0 0
\(934\) 2748.00 0.0962712
\(935\) 3960.00 0.138509
\(936\) 0 0
\(937\) 14810.0 0.516352 0.258176 0.966098i \(-0.416879\pi\)
0.258176 + 0.966098i \(0.416879\pi\)
\(938\) 27920.0 0.971877
\(939\) 0 0
\(940\) 12780.0 0.443444
\(941\) 2544.00 0.0881318 0.0440659 0.999029i \(-0.485969\pi\)
0.0440659 + 0.999029i \(0.485969\pi\)
\(942\) 0 0
\(943\) 11385.0 0.393157
\(944\) −3840.00 −0.132396
\(945\) 0 0
\(946\) −3264.00 −0.112179
\(947\) 11145.0 0.382433 0.191216 0.981548i \(-0.438757\pi\)
0.191216 + 0.981548i \(0.438757\pi\)
\(948\) 0 0
\(949\) −12173.0 −0.416388
\(950\) 7300.00 0.249309
\(951\) 0 0
\(952\) 21120.0 0.719016
\(953\) 4386.00 0.149083 0.0745417 0.997218i \(-0.476251\pi\)
0.0745417 + 0.997218i \(0.476251\pi\)
\(954\) 0 0
\(955\) 14910.0 0.505211
\(956\) 11508.0 0.389326
\(957\) 0 0
\(958\) −9072.00 −0.305953
\(959\) 36720.0 1.23644
\(960\) 0 0
\(961\) 34218.0 1.14860
\(962\) −11092.0 −0.371747
\(963\) 0 0
\(964\) 6488.00 0.216768
\(965\) −6925.00 −0.231009
\(966\) 0 0
\(967\) 56381.0 1.87496 0.937482 0.348033i \(-0.113150\pi\)
0.937482 + 0.348033i \(0.113150\pi\)
\(968\) −10360.0 −0.343991
\(969\) 0 0
\(970\) −9920.00 −0.328363
\(971\) −43782.0 −1.44699 −0.723497 0.690327i \(-0.757466\pi\)
−0.723497 + 0.690327i \(0.757466\pi\)
\(972\) 0 0
\(973\) −20540.0 −0.676755
\(974\) −22910.0 −0.753679
\(975\) 0 0
\(976\) −5920.00 −0.194154
\(977\) −3714.00 −0.121619 −0.0608093 0.998149i \(-0.519368\pi\)
−0.0608093 + 0.998149i \(0.519368\pi\)
\(978\) 0 0
\(979\) −4968.00 −0.162184
\(980\) −1140.00 −0.0371591
\(981\) 0 0
\(982\) 20790.0 0.675596
\(983\) 4662.00 0.151266 0.0756331 0.997136i \(-0.475902\pi\)
0.0756331 + 0.997136i \(0.475902\pi\)
\(984\) 0 0
\(985\) 4785.00 0.154785
\(986\) 26136.0 0.844158
\(987\) 0 0
\(988\) 27448.0 0.883843
\(989\) −6256.00 −0.201142
\(990\) 0 0
\(991\) 51440.0 1.64889 0.824443 0.565945i \(-0.191489\pi\)
0.824443 + 0.565945i \(0.191489\pi\)
\(992\) −8096.00 −0.259121
\(993\) 0 0
\(994\) 14280.0 0.455668
\(995\) 1790.00 0.0570320
\(996\) 0 0
\(997\) 686.000 0.0217912 0.0108956 0.999941i \(-0.496532\pi\)
0.0108956 + 0.999941i \(0.496532\pi\)
\(998\) −10994.0 −0.348706
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.4.a.j.1.1 1
3.2 odd 2 230.4.a.c.1.1 1
12.11 even 2 1840.4.a.a.1.1 1
15.2 even 4 1150.4.b.b.599.1 2
15.8 even 4 1150.4.b.b.599.2 2
15.14 odd 2 1150.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.c.1.1 1 3.2 odd 2
1150.4.a.e.1.1 1 15.14 odd 2
1150.4.b.b.599.1 2 15.2 even 4
1150.4.b.b.599.2 2 15.8 even 4
1840.4.a.a.1.1 1 12.11 even 2
2070.4.a.j.1.1 1 1.1 even 1 trivial