Properties

Label 2070.4.a.bi.1.4
Level $2070$
Weight $4$
Character 2070.1
Self dual yes
Analytic conductor $122.134$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2070,4,Mod(1,2070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2070.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,20,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.133953712\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(4.26018\) of defining polynomial
Character \(\chi\) \(=\) 2070.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +5.00000 q^{5} +27.7921 q^{7} -8.00000 q^{8} -10.0000 q^{10} +10.8182 q^{11} +36.9683 q^{13} -55.5842 q^{14} +16.0000 q^{16} -118.996 q^{17} -19.3321 q^{19} +20.0000 q^{20} -21.6365 q^{22} -23.0000 q^{23} +25.0000 q^{25} -73.9366 q^{26} +111.168 q^{28} -234.499 q^{29} +165.319 q^{31} -32.0000 q^{32} +237.992 q^{34} +138.960 q^{35} +202.301 q^{37} +38.6643 q^{38} -40.0000 q^{40} +295.846 q^{41} -65.9221 q^{43} +43.2729 q^{44} +46.0000 q^{46} +110.279 q^{47} +429.400 q^{49} -50.0000 q^{50} +147.873 q^{52} +688.135 q^{53} +54.0911 q^{55} -222.337 q^{56} +468.998 q^{58} -10.5847 q^{59} +110.579 q^{61} -330.639 q^{62} +64.0000 q^{64} +184.842 q^{65} -643.290 q^{67} -475.984 q^{68} -277.921 q^{70} -143.216 q^{71} -158.213 q^{73} -404.601 q^{74} -77.3285 q^{76} +300.661 q^{77} +1123.34 q^{79} +80.0000 q^{80} -591.692 q^{82} +824.600 q^{83} -594.981 q^{85} +131.844 q^{86} -86.5458 q^{88} +879.672 q^{89} +1027.43 q^{91} -92.0000 q^{92} -220.557 q^{94} -96.6607 q^{95} -938.437 q^{97} -858.801 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} + 20 q^{5} + 26 q^{7} - 32 q^{8} - 40 q^{10} - 93 q^{11} + 32 q^{13} - 52 q^{14} + 64 q^{16} - 108 q^{17} + 185 q^{19} + 80 q^{20} + 186 q^{22} - 92 q^{23} + 100 q^{25} - 64 q^{26}+ \cdots - 1200 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 27.7921 1.50063 0.750316 0.661079i \(-0.229901\pi\)
0.750316 + 0.661079i \(0.229901\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) 10.8182 0.296529 0.148264 0.988948i \(-0.452631\pi\)
0.148264 + 0.988948i \(0.452631\pi\)
\(12\) 0 0
\(13\) 36.9683 0.788705 0.394352 0.918959i \(-0.370969\pi\)
0.394352 + 0.918959i \(0.370969\pi\)
\(14\) −55.5842 −1.06111
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −118.996 −1.69769 −0.848847 0.528639i \(-0.822703\pi\)
−0.848847 + 0.528639i \(0.822703\pi\)
\(18\) 0 0
\(19\) −19.3321 −0.233426 −0.116713 0.993166i \(-0.537236\pi\)
−0.116713 + 0.993166i \(0.537236\pi\)
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) −21.6365 −0.209678
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −73.9366 −0.557699
\(27\) 0 0
\(28\) 111.168 0.750316
\(29\) −234.499 −1.50156 −0.750782 0.660550i \(-0.770323\pi\)
−0.750782 + 0.660550i \(0.770323\pi\)
\(30\) 0 0
\(31\) 165.319 0.957814 0.478907 0.877866i \(-0.341033\pi\)
0.478907 + 0.877866i \(0.341033\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) 237.992 1.20045
\(35\) 138.960 0.671103
\(36\) 0 0
\(37\) 202.301 0.898865 0.449432 0.893314i \(-0.351626\pi\)
0.449432 + 0.893314i \(0.351626\pi\)
\(38\) 38.6643 0.165057
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) 295.846 1.12691 0.563456 0.826146i \(-0.309471\pi\)
0.563456 + 0.826146i \(0.309471\pi\)
\(42\) 0 0
\(43\) −65.9221 −0.233791 −0.116896 0.993144i \(-0.537294\pi\)
−0.116896 + 0.993144i \(0.537294\pi\)
\(44\) 43.2729 0.148264
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 110.279 0.342251 0.171126 0.985249i \(-0.445260\pi\)
0.171126 + 0.985249i \(0.445260\pi\)
\(48\) 0 0
\(49\) 429.400 1.25190
\(50\) −50.0000 −0.141421
\(51\) 0 0
\(52\) 147.873 0.394352
\(53\) 688.135 1.78345 0.891723 0.452582i \(-0.149497\pi\)
0.891723 + 0.452582i \(0.149497\pi\)
\(54\) 0 0
\(55\) 54.0911 0.132612
\(56\) −222.337 −0.530553
\(57\) 0 0
\(58\) 468.998 1.06177
\(59\) −10.5847 −0.0233561 −0.0116781 0.999932i \(-0.503717\pi\)
−0.0116781 + 0.999932i \(0.503717\pi\)
\(60\) 0 0
\(61\) 110.579 0.232101 0.116050 0.993243i \(-0.462977\pi\)
0.116050 + 0.993243i \(0.462977\pi\)
\(62\) −330.639 −0.677276
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 184.842 0.352720
\(66\) 0 0
\(67\) −643.290 −1.17299 −0.586496 0.809952i \(-0.699493\pi\)
−0.586496 + 0.809952i \(0.699493\pi\)
\(68\) −475.984 −0.848847
\(69\) 0 0
\(70\) −277.921 −0.474541
\(71\) −143.216 −0.239389 −0.119695 0.992811i \(-0.538192\pi\)
−0.119695 + 0.992811i \(0.538192\pi\)
\(72\) 0 0
\(73\) −158.213 −0.253664 −0.126832 0.991924i \(-0.540481\pi\)
−0.126832 + 0.991924i \(0.540481\pi\)
\(74\) −404.601 −0.635593
\(75\) 0 0
\(76\) −77.3285 −0.116713
\(77\) 300.661 0.444981
\(78\) 0 0
\(79\) 1123.34 1.59982 0.799912 0.600118i \(-0.204880\pi\)
0.799912 + 0.600118i \(0.204880\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) −591.692 −0.796847
\(83\) 824.600 1.09050 0.545251 0.838273i \(-0.316434\pi\)
0.545251 + 0.838273i \(0.316434\pi\)
\(84\) 0 0
\(85\) −594.981 −0.759232
\(86\) 131.844 0.165316
\(87\) 0 0
\(88\) −86.5458 −0.104839
\(89\) 879.672 1.04770 0.523849 0.851811i \(-0.324496\pi\)
0.523849 + 0.851811i \(0.324496\pi\)
\(90\) 0 0
\(91\) 1027.43 1.18356
\(92\) −92.0000 −0.104257
\(93\) 0 0
\(94\) −220.557 −0.242008
\(95\) −96.6607 −0.104391
\(96\) 0 0
\(97\) −938.437 −0.982308 −0.491154 0.871073i \(-0.663425\pi\)
−0.491154 + 0.871073i \(0.663425\pi\)
\(98\) −858.801 −0.885224
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 688.428 0.678229 0.339114 0.940745i \(-0.389873\pi\)
0.339114 + 0.940745i \(0.389873\pi\)
\(102\) 0 0
\(103\) 2041.55 1.95301 0.976504 0.215500i \(-0.0691381\pi\)
0.976504 + 0.215500i \(0.0691381\pi\)
\(104\) −295.746 −0.278849
\(105\) 0 0
\(106\) −1376.27 −1.26109
\(107\) −287.420 −0.259682 −0.129841 0.991535i \(-0.541447\pi\)
−0.129841 + 0.991535i \(0.541447\pi\)
\(108\) 0 0
\(109\) −1211.29 −1.06441 −0.532204 0.846616i \(-0.678636\pi\)
−0.532204 + 0.846616i \(0.678636\pi\)
\(110\) −108.182 −0.0937707
\(111\) 0 0
\(112\) 444.673 0.375158
\(113\) −741.316 −0.617143 −0.308571 0.951201i \(-0.599851\pi\)
−0.308571 + 0.951201i \(0.599851\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) −937.996 −0.750782
\(117\) 0 0
\(118\) 21.1694 0.0165153
\(119\) −3307.15 −2.54761
\(120\) 0 0
\(121\) −1213.97 −0.912071
\(122\) −221.157 −0.164120
\(123\) 0 0
\(124\) 661.277 0.478907
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1579.99 1.10395 0.551976 0.833860i \(-0.313874\pi\)
0.551976 + 0.833860i \(0.313874\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) −369.683 −0.249410
\(131\) 2348.86 1.56657 0.783285 0.621662i \(-0.213542\pi\)
0.783285 + 0.621662i \(0.213542\pi\)
\(132\) 0 0
\(133\) −537.280 −0.350287
\(134\) 1286.58 0.829430
\(135\) 0 0
\(136\) 951.969 0.600225
\(137\) 617.567 0.385127 0.192563 0.981285i \(-0.438320\pi\)
0.192563 + 0.981285i \(0.438320\pi\)
\(138\) 0 0
\(139\) 1509.75 0.921260 0.460630 0.887592i \(-0.347623\pi\)
0.460630 + 0.887592i \(0.347623\pi\)
\(140\) 555.842 0.335551
\(141\) 0 0
\(142\) 286.432 0.169274
\(143\) 399.932 0.233874
\(144\) 0 0
\(145\) −1172.49 −0.671520
\(146\) 316.427 0.179368
\(147\) 0 0
\(148\) 809.202 0.449432
\(149\) −1025.46 −0.563818 −0.281909 0.959441i \(-0.590968\pi\)
−0.281909 + 0.959441i \(0.590968\pi\)
\(150\) 0 0
\(151\) −1516.67 −0.817383 −0.408692 0.912672i \(-0.634015\pi\)
−0.408692 + 0.912672i \(0.634015\pi\)
\(152\) 154.657 0.0825286
\(153\) 0 0
\(154\) −601.322 −0.314649
\(155\) 826.596 0.428347
\(156\) 0 0
\(157\) −2757.31 −1.40164 −0.700819 0.713339i \(-0.747182\pi\)
−0.700819 + 0.713339i \(0.747182\pi\)
\(158\) −2246.69 −1.13125
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) −639.218 −0.312903
\(162\) 0 0
\(163\) 1263.29 0.607047 0.303524 0.952824i \(-0.401837\pi\)
0.303524 + 0.952824i \(0.401837\pi\)
\(164\) 1183.38 0.563456
\(165\) 0 0
\(166\) −1649.20 −0.771101
\(167\) 349.646 0.162014 0.0810072 0.996714i \(-0.474186\pi\)
0.0810072 + 0.996714i \(0.474186\pi\)
\(168\) 0 0
\(169\) −830.344 −0.377945
\(170\) 1189.96 0.536858
\(171\) 0 0
\(172\) −263.689 −0.116896
\(173\) −2313.83 −1.01686 −0.508432 0.861102i \(-0.669775\pi\)
−0.508432 + 0.861102i \(0.669775\pi\)
\(174\) 0 0
\(175\) 694.802 0.300126
\(176\) 173.092 0.0741322
\(177\) 0 0
\(178\) −1759.34 −0.740834
\(179\) 2347.69 0.980306 0.490153 0.871636i \(-0.336941\pi\)
0.490153 + 0.871636i \(0.336941\pi\)
\(180\) 0 0
\(181\) 4396.31 1.80539 0.902695 0.430282i \(-0.141586\pi\)
0.902695 + 0.430282i \(0.141586\pi\)
\(182\) −2054.85 −0.836900
\(183\) 0 0
\(184\) 184.000 0.0737210
\(185\) 1011.50 0.401985
\(186\) 0 0
\(187\) −1287.33 −0.503415
\(188\) 441.115 0.171126
\(189\) 0 0
\(190\) 193.321 0.0738158
\(191\) −4153.14 −1.57335 −0.786677 0.617365i \(-0.788200\pi\)
−0.786677 + 0.617365i \(0.788200\pi\)
\(192\) 0 0
\(193\) −1020.52 −0.380616 −0.190308 0.981724i \(-0.560949\pi\)
−0.190308 + 0.981724i \(0.560949\pi\)
\(194\) 1876.87 0.694596
\(195\) 0 0
\(196\) 1717.60 0.625948
\(197\) 398.643 0.144173 0.0720866 0.997398i \(-0.477034\pi\)
0.0720866 + 0.997398i \(0.477034\pi\)
\(198\) 0 0
\(199\) 4131.40 1.47169 0.735847 0.677148i \(-0.236784\pi\)
0.735847 + 0.677148i \(0.236784\pi\)
\(200\) −200.000 −0.0707107
\(201\) 0 0
\(202\) −1376.86 −0.479580
\(203\) −6517.22 −2.25329
\(204\) 0 0
\(205\) 1479.23 0.503970
\(206\) −4083.10 −1.38098
\(207\) 0 0
\(208\) 591.493 0.197176
\(209\) −209.139 −0.0692176
\(210\) 0 0
\(211\) 826.315 0.269601 0.134801 0.990873i \(-0.456961\pi\)
0.134801 + 0.990873i \(0.456961\pi\)
\(212\) 2752.54 0.891723
\(213\) 0 0
\(214\) 574.840 0.183623
\(215\) −329.611 −0.104555
\(216\) 0 0
\(217\) 4594.57 1.43733
\(218\) 2422.58 0.752650
\(219\) 0 0
\(220\) 216.365 0.0663059
\(221\) −4399.08 −1.33898
\(222\) 0 0
\(223\) 1110.09 0.333351 0.166676 0.986012i \(-0.446697\pi\)
0.166676 + 0.986012i \(0.446697\pi\)
\(224\) −889.347 −0.265277
\(225\) 0 0
\(226\) 1482.63 0.436386
\(227\) 4917.90 1.43794 0.718971 0.695040i \(-0.244614\pi\)
0.718971 + 0.695040i \(0.244614\pi\)
\(228\) 0 0
\(229\) −1390.62 −0.401288 −0.200644 0.979664i \(-0.564304\pi\)
−0.200644 + 0.979664i \(0.564304\pi\)
\(230\) 230.000 0.0659380
\(231\) 0 0
\(232\) 1875.99 0.530883
\(233\) 3409.59 0.958668 0.479334 0.877633i \(-0.340878\pi\)
0.479334 + 0.877633i \(0.340878\pi\)
\(234\) 0 0
\(235\) 551.394 0.153059
\(236\) −42.3388 −0.0116781
\(237\) 0 0
\(238\) 6614.30 1.80143
\(239\) −2056.35 −0.556544 −0.278272 0.960502i \(-0.589762\pi\)
−0.278272 + 0.960502i \(0.589762\pi\)
\(240\) 0 0
\(241\) −1957.03 −0.523085 −0.261543 0.965192i \(-0.584231\pi\)
−0.261543 + 0.965192i \(0.584231\pi\)
\(242\) 2427.93 0.644931
\(243\) 0 0
\(244\) 442.315 0.116050
\(245\) 2147.00 0.559865
\(246\) 0 0
\(247\) −714.676 −0.184104
\(248\) −1322.55 −0.338638
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) 1954.13 0.491410 0.245705 0.969345i \(-0.420981\pi\)
0.245705 + 0.969345i \(0.420981\pi\)
\(252\) 0 0
\(253\) −248.819 −0.0618306
\(254\) −3159.99 −0.780612
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −1958.40 −0.475338 −0.237669 0.971346i \(-0.576383\pi\)
−0.237669 + 0.971346i \(0.576383\pi\)
\(258\) 0 0
\(259\) 5622.35 1.34887
\(260\) 739.366 0.176360
\(261\) 0 0
\(262\) −4697.72 −1.10773
\(263\) −7205.23 −1.68933 −0.844665 0.535295i \(-0.820200\pi\)
−0.844665 + 0.535295i \(0.820200\pi\)
\(264\) 0 0
\(265\) 3440.67 0.797581
\(266\) 1074.56 0.247690
\(267\) 0 0
\(268\) −2573.16 −0.586496
\(269\) 3764.30 0.853210 0.426605 0.904438i \(-0.359709\pi\)
0.426605 + 0.904438i \(0.359709\pi\)
\(270\) 0 0
\(271\) −5208.88 −1.16759 −0.583795 0.811901i \(-0.698433\pi\)
−0.583795 + 0.811901i \(0.698433\pi\)
\(272\) −1903.94 −0.424423
\(273\) 0 0
\(274\) −1235.13 −0.272326
\(275\) 270.456 0.0593058
\(276\) 0 0
\(277\) 1550.21 0.336256 0.168128 0.985765i \(-0.446228\pi\)
0.168128 + 0.985765i \(0.446228\pi\)
\(278\) −3019.50 −0.651430
\(279\) 0 0
\(280\) −1111.68 −0.237271
\(281\) −7997.53 −1.69784 −0.848920 0.528522i \(-0.822746\pi\)
−0.848920 + 0.528522i \(0.822746\pi\)
\(282\) 0 0
\(283\) −5808.41 −1.22005 −0.610025 0.792382i \(-0.708841\pi\)
−0.610025 + 0.792382i \(0.708841\pi\)
\(284\) −572.864 −0.119695
\(285\) 0 0
\(286\) −799.863 −0.165374
\(287\) 8222.18 1.69108
\(288\) 0 0
\(289\) 9247.08 1.88216
\(290\) 2344.99 0.474836
\(291\) 0 0
\(292\) −632.854 −0.126832
\(293\) 8854.66 1.76551 0.882756 0.469832i \(-0.155686\pi\)
0.882756 + 0.469832i \(0.155686\pi\)
\(294\) 0 0
\(295\) −52.9235 −0.0104452
\(296\) −1618.40 −0.317797
\(297\) 0 0
\(298\) 2050.92 0.398680
\(299\) −850.271 −0.164456
\(300\) 0 0
\(301\) −1832.11 −0.350835
\(302\) 3033.34 0.577977
\(303\) 0 0
\(304\) −309.314 −0.0583565
\(305\) 552.893 0.103799
\(306\) 0 0
\(307\) −1501.03 −0.279050 −0.139525 0.990219i \(-0.544557\pi\)
−0.139525 + 0.990219i \(0.544557\pi\)
\(308\) 1202.64 0.222490
\(309\) 0 0
\(310\) −1653.19 −0.302887
\(311\) 7440.48 1.35663 0.678313 0.734773i \(-0.262711\pi\)
0.678313 + 0.734773i \(0.262711\pi\)
\(312\) 0 0
\(313\) −2528.63 −0.456634 −0.228317 0.973587i \(-0.573322\pi\)
−0.228317 + 0.973587i \(0.573322\pi\)
\(314\) 5514.61 0.991107
\(315\) 0 0
\(316\) 4493.38 0.799912
\(317\) 9636.72 1.70742 0.853710 0.520749i \(-0.174347\pi\)
0.853710 + 0.520749i \(0.174347\pi\)
\(318\) 0 0
\(319\) −2536.86 −0.445257
\(320\) 320.000 0.0559017
\(321\) 0 0
\(322\) 1278.44 0.221256
\(323\) 2300.45 0.396286
\(324\) 0 0
\(325\) 924.208 0.157741
\(326\) −2526.58 −0.429247
\(327\) 0 0
\(328\) −2366.77 −0.398424
\(329\) 3064.88 0.513593
\(330\) 0 0
\(331\) 2875.82 0.477551 0.238776 0.971075i \(-0.423254\pi\)
0.238776 + 0.971075i \(0.423254\pi\)
\(332\) 3298.40 0.545251
\(333\) 0 0
\(334\) −699.291 −0.114561
\(335\) −3216.45 −0.524578
\(336\) 0 0
\(337\) 9911.19 1.60207 0.801034 0.598619i \(-0.204283\pi\)
0.801034 + 0.598619i \(0.204283\pi\)
\(338\) 1660.69 0.267247
\(339\) 0 0
\(340\) −2379.92 −0.379616
\(341\) 1788.46 0.284019
\(342\) 0 0
\(343\) 2401.24 0.378003
\(344\) 527.377 0.0826578
\(345\) 0 0
\(346\) 4627.67 0.719031
\(347\) −4497.70 −0.695820 −0.347910 0.937528i \(-0.613108\pi\)
−0.347910 + 0.937528i \(0.613108\pi\)
\(348\) 0 0
\(349\) 888.112 0.136216 0.0681082 0.997678i \(-0.478304\pi\)
0.0681082 + 0.997678i \(0.478304\pi\)
\(350\) −1389.60 −0.212221
\(351\) 0 0
\(352\) −346.183 −0.0524194
\(353\) 11722.2 1.76745 0.883727 0.468002i \(-0.155026\pi\)
0.883727 + 0.468002i \(0.155026\pi\)
\(354\) 0 0
\(355\) −716.081 −0.107058
\(356\) 3518.69 0.523849
\(357\) 0 0
\(358\) −4695.39 −0.693181
\(359\) 1257.49 0.184869 0.0924343 0.995719i \(-0.470535\pi\)
0.0924343 + 0.995719i \(0.470535\pi\)
\(360\) 0 0
\(361\) −6485.27 −0.945512
\(362\) −8792.63 −1.27660
\(363\) 0 0
\(364\) 4109.71 0.591778
\(365\) −791.067 −0.113442
\(366\) 0 0
\(367\) 10122.2 1.43972 0.719859 0.694120i \(-0.244206\pi\)
0.719859 + 0.694120i \(0.244206\pi\)
\(368\) −368.000 −0.0521286
\(369\) 0 0
\(370\) −2023.01 −0.284246
\(371\) 19124.7 2.67629
\(372\) 0 0
\(373\) 6530.08 0.906473 0.453237 0.891390i \(-0.350269\pi\)
0.453237 + 0.891390i \(0.350269\pi\)
\(374\) 2574.65 0.355968
\(375\) 0 0
\(376\) −882.230 −0.121004
\(377\) −8669.03 −1.18429
\(378\) 0 0
\(379\) 277.850 0.0376575 0.0188288 0.999823i \(-0.494006\pi\)
0.0188288 + 0.999823i \(0.494006\pi\)
\(380\) −386.643 −0.0521957
\(381\) 0 0
\(382\) 8306.28 1.11253
\(383\) 10679.6 1.42482 0.712408 0.701766i \(-0.247605\pi\)
0.712408 + 0.701766i \(0.247605\pi\)
\(384\) 0 0
\(385\) 1503.31 0.199001
\(386\) 2041.05 0.269136
\(387\) 0 0
\(388\) −3753.75 −0.491154
\(389\) −1546.05 −0.201511 −0.100756 0.994911i \(-0.532126\pi\)
−0.100756 + 0.994911i \(0.532126\pi\)
\(390\) 0 0
\(391\) 2736.91 0.353994
\(392\) −3435.20 −0.442612
\(393\) 0 0
\(394\) −797.285 −0.101946
\(395\) 5616.72 0.715463
\(396\) 0 0
\(397\) −12901.8 −1.63103 −0.815517 0.578733i \(-0.803547\pi\)
−0.815517 + 0.578733i \(0.803547\pi\)
\(398\) −8262.80 −1.04064
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 8534.31 1.06280 0.531400 0.847121i \(-0.321666\pi\)
0.531400 + 0.847121i \(0.321666\pi\)
\(402\) 0 0
\(403\) 6111.57 0.755432
\(404\) 2753.71 0.339114
\(405\) 0 0
\(406\) 13034.4 1.59332
\(407\) 2188.53 0.266539
\(408\) 0 0
\(409\) 650.968 0.0787000 0.0393500 0.999225i \(-0.487471\pi\)
0.0393500 + 0.999225i \(0.487471\pi\)
\(410\) −2958.46 −0.356361
\(411\) 0 0
\(412\) 8166.20 0.976504
\(413\) −294.171 −0.0350489
\(414\) 0 0
\(415\) 4123.00 0.487687
\(416\) −1182.99 −0.139425
\(417\) 0 0
\(418\) 418.279 0.0489442
\(419\) −13266.2 −1.54677 −0.773384 0.633938i \(-0.781437\pi\)
−0.773384 + 0.633938i \(0.781437\pi\)
\(420\) 0 0
\(421\) −8274.69 −0.957918 −0.478959 0.877837i \(-0.658986\pi\)
−0.478959 + 0.877837i \(0.658986\pi\)
\(422\) −1652.63 −0.190637
\(423\) 0 0
\(424\) −5505.08 −0.630543
\(425\) −2974.90 −0.339539
\(426\) 0 0
\(427\) 3073.21 0.348298
\(428\) −1149.68 −0.129841
\(429\) 0 0
\(430\) 659.221 0.0739314
\(431\) −724.084 −0.0809232 −0.0404616 0.999181i \(-0.512883\pi\)
−0.0404616 + 0.999181i \(0.512883\pi\)
\(432\) 0 0
\(433\) −11996.5 −1.33145 −0.665724 0.746198i \(-0.731877\pi\)
−0.665724 + 0.746198i \(0.731877\pi\)
\(434\) −9189.14 −1.01634
\(435\) 0 0
\(436\) −4845.16 −0.532204
\(437\) 444.639 0.0486727
\(438\) 0 0
\(439\) −7765.40 −0.844242 −0.422121 0.906539i \(-0.638714\pi\)
−0.422121 + 0.906539i \(0.638714\pi\)
\(440\) −432.729 −0.0468853
\(441\) 0 0
\(442\) 8798.17 0.946801
\(443\) 9061.54 0.971844 0.485922 0.874002i \(-0.338484\pi\)
0.485922 + 0.874002i \(0.338484\pi\)
\(444\) 0 0
\(445\) 4398.36 0.468544
\(446\) −2220.19 −0.235715
\(447\) 0 0
\(448\) 1778.69 0.187579
\(449\) 10944.3 1.15032 0.575159 0.818041i \(-0.304940\pi\)
0.575159 + 0.818041i \(0.304940\pi\)
\(450\) 0 0
\(451\) 3200.53 0.334162
\(452\) −2965.26 −0.308571
\(453\) 0 0
\(454\) −9835.81 −1.01678
\(455\) 5137.13 0.529302
\(456\) 0 0
\(457\) 10934.9 1.11928 0.559641 0.828735i \(-0.310939\pi\)
0.559641 + 0.828735i \(0.310939\pi\)
\(458\) 2781.25 0.283754
\(459\) 0 0
\(460\) −460.000 −0.0466252
\(461\) −2652.25 −0.267956 −0.133978 0.990984i \(-0.542775\pi\)
−0.133978 + 0.990984i \(0.542775\pi\)
\(462\) 0 0
\(463\) 707.699 0.0710358 0.0355179 0.999369i \(-0.488692\pi\)
0.0355179 + 0.999369i \(0.488692\pi\)
\(464\) −3751.98 −0.375391
\(465\) 0 0
\(466\) −6819.18 −0.677880
\(467\) 10671.1 1.05738 0.528691 0.848814i \(-0.322683\pi\)
0.528691 + 0.848814i \(0.322683\pi\)
\(468\) 0 0
\(469\) −17878.4 −1.76023
\(470\) −1102.79 −0.108229
\(471\) 0 0
\(472\) 84.6776 0.00825763
\(473\) −713.161 −0.0693259
\(474\) 0 0
\(475\) −483.303 −0.0466852
\(476\) −13228.6 −1.27381
\(477\) 0 0
\(478\) 4112.69 0.393536
\(479\) −1951.17 −0.186119 −0.0930597 0.995661i \(-0.529665\pi\)
−0.0930597 + 0.995661i \(0.529665\pi\)
\(480\) 0 0
\(481\) 7478.71 0.708939
\(482\) 3914.06 0.369877
\(483\) 0 0
\(484\) −4855.86 −0.456035
\(485\) −4692.18 −0.439301
\(486\) 0 0
\(487\) 17071.2 1.58844 0.794220 0.607630i \(-0.207880\pi\)
0.794220 + 0.607630i \(0.207880\pi\)
\(488\) −884.629 −0.0820600
\(489\) 0 0
\(490\) −4294.00 −0.395884
\(491\) −16979.9 −1.56067 −0.780337 0.625359i \(-0.784953\pi\)
−0.780337 + 0.625359i \(0.784953\pi\)
\(492\) 0 0
\(493\) 27904.5 2.54920
\(494\) 1429.35 0.130181
\(495\) 0 0
\(496\) 2645.11 0.239453
\(497\) −3980.28 −0.359235
\(498\) 0 0
\(499\) −2788.83 −0.250191 −0.125095 0.992145i \(-0.539924\pi\)
−0.125095 + 0.992145i \(0.539924\pi\)
\(500\) 500.000 0.0447214
\(501\) 0 0
\(502\) −3908.27 −0.347479
\(503\) 15525.1 1.37620 0.688102 0.725614i \(-0.258444\pi\)
0.688102 + 0.725614i \(0.258444\pi\)
\(504\) 0 0
\(505\) 3442.14 0.303313
\(506\) 497.638 0.0437208
\(507\) 0 0
\(508\) 6319.98 0.551976
\(509\) −9039.20 −0.787143 −0.393571 0.919294i \(-0.628761\pi\)
−0.393571 + 0.919294i \(0.628761\pi\)
\(510\) 0 0
\(511\) −4397.08 −0.380657
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 3916.81 0.336115
\(515\) 10207.7 0.873412
\(516\) 0 0
\(517\) 1193.02 0.101487
\(518\) −11244.7 −0.953792
\(519\) 0 0
\(520\) −1478.73 −0.124705
\(521\) −1093.03 −0.0919128 −0.0459564 0.998943i \(-0.514634\pi\)
−0.0459564 + 0.998943i \(0.514634\pi\)
\(522\) 0 0
\(523\) −4660.98 −0.389695 −0.194848 0.980834i \(-0.562421\pi\)
−0.194848 + 0.980834i \(0.562421\pi\)
\(524\) 9395.44 0.783285
\(525\) 0 0
\(526\) 14410.5 1.19454
\(527\) −19672.4 −1.62607
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −6881.35 −0.563975
\(531\) 0 0
\(532\) −2149.12 −0.175143
\(533\) 10936.9 0.888801
\(534\) 0 0
\(535\) −1437.10 −0.116133
\(536\) 5146.32 0.414715
\(537\) 0 0
\(538\) −7528.60 −0.603311
\(539\) 4645.35 0.371223
\(540\) 0 0
\(541\) −8072.40 −0.641515 −0.320757 0.947161i \(-0.603937\pi\)
−0.320757 + 0.947161i \(0.603937\pi\)
\(542\) 10417.8 0.825611
\(543\) 0 0
\(544\) 3807.88 0.300113
\(545\) −6056.45 −0.476018
\(546\) 0 0
\(547\) −2877.27 −0.224905 −0.112452 0.993657i \(-0.535871\pi\)
−0.112452 + 0.993657i \(0.535871\pi\)
\(548\) 2470.27 0.192563
\(549\) 0 0
\(550\) −540.911 −0.0419355
\(551\) 4533.36 0.350504
\(552\) 0 0
\(553\) 31220.1 2.40075
\(554\) −3100.42 −0.237769
\(555\) 0 0
\(556\) 6038.99 0.460630
\(557\) −15928.7 −1.21171 −0.605855 0.795575i \(-0.707169\pi\)
−0.605855 + 0.795575i \(0.707169\pi\)
\(558\) 0 0
\(559\) −2437.03 −0.184392
\(560\) 2223.37 0.167776
\(561\) 0 0
\(562\) 15995.1 1.20055
\(563\) −7988.51 −0.598003 −0.299001 0.954253i \(-0.596654\pi\)
−0.299001 + 0.954253i \(0.596654\pi\)
\(564\) 0 0
\(565\) −3706.58 −0.275995
\(566\) 11616.8 0.862706
\(567\) 0 0
\(568\) 1145.73 0.0846368
\(569\) 6429.49 0.473705 0.236853 0.971546i \(-0.423884\pi\)
0.236853 + 0.971546i \(0.423884\pi\)
\(570\) 0 0
\(571\) 2886.51 0.211553 0.105776 0.994390i \(-0.466267\pi\)
0.105776 + 0.994390i \(0.466267\pi\)
\(572\) 1599.73 0.116937
\(573\) 0 0
\(574\) −16444.4 −1.19577
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) −9966.59 −0.719089 −0.359545 0.933128i \(-0.617068\pi\)
−0.359545 + 0.933128i \(0.617068\pi\)
\(578\) −18494.2 −1.33089
\(579\) 0 0
\(580\) −4689.98 −0.335760
\(581\) 22917.4 1.63644
\(582\) 0 0
\(583\) 7444.40 0.528843
\(584\) 1265.71 0.0896838
\(585\) 0 0
\(586\) −17709.3 −1.24841
\(587\) 3522.91 0.247710 0.123855 0.992300i \(-0.460474\pi\)
0.123855 + 0.992300i \(0.460474\pi\)
\(588\) 0 0
\(589\) −3195.97 −0.223579
\(590\) 105.847 0.00738585
\(591\) 0 0
\(592\) 3236.81 0.224716
\(593\) 28713.0 1.98837 0.994184 0.107695i \(-0.0343469\pi\)
0.994184 + 0.107695i \(0.0343469\pi\)
\(594\) 0 0
\(595\) −16535.8 −1.13933
\(596\) −4101.84 −0.281909
\(597\) 0 0
\(598\) 1700.54 0.116288
\(599\) −7736.44 −0.527717 −0.263858 0.964561i \(-0.584995\pi\)
−0.263858 + 0.964561i \(0.584995\pi\)
\(600\) 0 0
\(601\) −3863.89 −0.262249 −0.131124 0.991366i \(-0.541859\pi\)
−0.131124 + 0.991366i \(0.541859\pi\)
\(602\) 3664.23 0.248078
\(603\) 0 0
\(604\) −6066.68 −0.408692
\(605\) −6069.83 −0.407890
\(606\) 0 0
\(607\) 24954.6 1.66866 0.834330 0.551265i \(-0.185855\pi\)
0.834330 + 0.551265i \(0.185855\pi\)
\(608\) 618.628 0.0412643
\(609\) 0 0
\(610\) −1105.79 −0.0733967
\(611\) 4076.82 0.269935
\(612\) 0 0
\(613\) 12712.0 0.837574 0.418787 0.908085i \(-0.362455\pi\)
0.418787 + 0.908085i \(0.362455\pi\)
\(614\) 3002.06 0.197318
\(615\) 0 0
\(616\) −2405.29 −0.157324
\(617\) −11017.6 −0.718884 −0.359442 0.933167i \(-0.617033\pi\)
−0.359442 + 0.933167i \(0.617033\pi\)
\(618\) 0 0
\(619\) 6859.65 0.445416 0.222708 0.974885i \(-0.428510\pi\)
0.222708 + 0.974885i \(0.428510\pi\)
\(620\) 3306.39 0.214174
\(621\) 0 0
\(622\) −14881.0 −0.959280
\(623\) 24447.9 1.57221
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 5057.25 0.322889
\(627\) 0 0
\(628\) −11029.2 −0.700819
\(629\) −24073.0 −1.52600
\(630\) 0 0
\(631\) −14104.0 −0.889815 −0.444907 0.895577i \(-0.646763\pi\)
−0.444907 + 0.895577i \(0.646763\pi\)
\(632\) −8986.75 −0.565623
\(633\) 0 0
\(634\) −19273.4 −1.20733
\(635\) 7899.97 0.493702
\(636\) 0 0
\(637\) 15874.2 0.987376
\(638\) 5073.73 0.314844
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) 144.931 0.00893047 0.00446524 0.999990i \(-0.498579\pi\)
0.00446524 + 0.999990i \(0.498579\pi\)
\(642\) 0 0
\(643\) 30891.4 1.89461 0.947307 0.320328i \(-0.103793\pi\)
0.947307 + 0.320328i \(0.103793\pi\)
\(644\) −2556.87 −0.156452
\(645\) 0 0
\(646\) −4600.90 −0.280217
\(647\) −22784.1 −1.38444 −0.692222 0.721684i \(-0.743368\pi\)
−0.692222 + 0.721684i \(0.743368\pi\)
\(648\) 0 0
\(649\) −114.508 −0.00692576
\(650\) −1848.42 −0.111540
\(651\) 0 0
\(652\) 5053.17 0.303524
\(653\) 32125.7 1.92523 0.962617 0.270868i \(-0.0873106\pi\)
0.962617 + 0.270868i \(0.0873106\pi\)
\(654\) 0 0
\(655\) 11744.3 0.700592
\(656\) 4733.54 0.281728
\(657\) 0 0
\(658\) −6129.75 −0.363165
\(659\) −15521.7 −0.917508 −0.458754 0.888563i \(-0.651704\pi\)
−0.458754 + 0.888563i \(0.651704\pi\)
\(660\) 0 0
\(661\) 19428.4 1.14323 0.571617 0.820521i \(-0.306316\pi\)
0.571617 + 0.820521i \(0.306316\pi\)
\(662\) −5751.64 −0.337680
\(663\) 0 0
\(664\) −6596.80 −0.385550
\(665\) −2686.40 −0.156653
\(666\) 0 0
\(667\) 5393.48 0.313098
\(668\) 1398.58 0.0810072
\(669\) 0 0
\(670\) 6432.90 0.370932
\(671\) 1196.27 0.0688246
\(672\) 0 0
\(673\) 18992.7 1.08784 0.543919 0.839138i \(-0.316940\pi\)
0.543919 + 0.839138i \(0.316940\pi\)
\(674\) −19822.4 −1.13283
\(675\) 0 0
\(676\) −3321.38 −0.188972
\(677\) −19104.3 −1.08455 −0.542273 0.840202i \(-0.682436\pi\)
−0.542273 + 0.840202i \(0.682436\pi\)
\(678\) 0 0
\(679\) −26081.1 −1.47408
\(680\) 4759.84 0.268429
\(681\) 0 0
\(682\) −3576.92 −0.200832
\(683\) 24737.2 1.38586 0.692931 0.721004i \(-0.256319\pi\)
0.692931 + 0.721004i \(0.256319\pi\)
\(684\) 0 0
\(685\) 3087.84 0.172234
\(686\) −4802.49 −0.267288
\(687\) 0 0
\(688\) −1054.75 −0.0584479
\(689\) 25439.2 1.40661
\(690\) 0 0
\(691\) 12957.9 0.713373 0.356687 0.934224i \(-0.383906\pi\)
0.356687 + 0.934224i \(0.383906\pi\)
\(692\) −9255.33 −0.508432
\(693\) 0 0
\(694\) 8995.41 0.492019
\(695\) 7548.74 0.412000
\(696\) 0 0
\(697\) −35204.5 −1.91315
\(698\) −1776.22 −0.0963195
\(699\) 0 0
\(700\) 2779.21 0.150063
\(701\) −20730.7 −1.11696 −0.558478 0.829519i \(-0.688615\pi\)
−0.558478 + 0.829519i \(0.688615\pi\)
\(702\) 0 0
\(703\) −3910.90 −0.209819
\(704\) 692.367 0.0370661
\(705\) 0 0
\(706\) −23444.5 −1.24978
\(707\) 19132.8 1.01777
\(708\) 0 0
\(709\) −22191.2 −1.17547 −0.587735 0.809053i \(-0.699980\pi\)
−0.587735 + 0.809053i \(0.699980\pi\)
\(710\) 1432.16 0.0757015
\(711\) 0 0
\(712\) −7037.38 −0.370417
\(713\) −3802.34 −0.199718
\(714\) 0 0
\(715\) 1999.66 0.104592
\(716\) 9390.77 0.490153
\(717\) 0 0
\(718\) −2514.98 −0.130722
\(719\) 773.962 0.0401445 0.0200723 0.999799i \(-0.493610\pi\)
0.0200723 + 0.999799i \(0.493610\pi\)
\(720\) 0 0
\(721\) 56738.9 2.93075
\(722\) 12970.5 0.668578
\(723\) 0 0
\(724\) 17585.3 0.902695
\(725\) −5862.47 −0.300313
\(726\) 0 0
\(727\) −32484.7 −1.65721 −0.828604 0.559835i \(-0.810864\pi\)
−0.828604 + 0.559835i \(0.810864\pi\)
\(728\) −8219.41 −0.418450
\(729\) 0 0
\(730\) 1582.13 0.0802157
\(731\) 7844.48 0.396906
\(732\) 0 0
\(733\) −13701.5 −0.690416 −0.345208 0.938526i \(-0.612192\pi\)
−0.345208 + 0.938526i \(0.612192\pi\)
\(734\) −20244.5 −1.01803
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −6959.26 −0.347826
\(738\) 0 0
\(739\) −31474.2 −1.56671 −0.783354 0.621576i \(-0.786493\pi\)
−0.783354 + 0.621576i \(0.786493\pi\)
\(740\) 4046.01 0.200992
\(741\) 0 0
\(742\) −38249.4 −1.89243
\(743\) −28664.2 −1.41533 −0.707664 0.706549i \(-0.750251\pi\)
−0.707664 + 0.706549i \(0.750251\pi\)
\(744\) 0 0
\(745\) −5127.30 −0.252147
\(746\) −13060.2 −0.640974
\(747\) 0 0
\(748\) −5149.31 −0.251708
\(749\) −7988.00 −0.389687
\(750\) 0 0
\(751\) −25904.0 −1.25866 −0.629328 0.777140i \(-0.716670\pi\)
−0.629328 + 0.777140i \(0.716670\pi\)
\(752\) 1764.46 0.0855628
\(753\) 0 0
\(754\) 17338.1 0.837420
\(755\) −7583.35 −0.365545
\(756\) 0 0
\(757\) 2569.70 0.123378 0.0616892 0.998095i \(-0.480351\pi\)
0.0616892 + 0.998095i \(0.480351\pi\)
\(758\) −555.700 −0.0266279
\(759\) 0 0
\(760\) 773.285 0.0369079
\(761\) 23219.4 1.10605 0.553024 0.833165i \(-0.313474\pi\)
0.553024 + 0.833165i \(0.313474\pi\)
\(762\) 0 0
\(763\) −33664.3 −1.59728
\(764\) −16612.6 −0.786677
\(765\) 0 0
\(766\) −21359.3 −1.00750
\(767\) −391.298 −0.0184211
\(768\) 0 0
\(769\) 34771.1 1.63053 0.815265 0.579088i \(-0.196591\pi\)
0.815265 + 0.579088i \(0.196591\pi\)
\(770\) −3006.61 −0.140715
\(771\) 0 0
\(772\) −4082.10 −0.190308
\(773\) 36377.2 1.69262 0.846312 0.532687i \(-0.178818\pi\)
0.846312 + 0.532687i \(0.178818\pi\)
\(774\) 0 0
\(775\) 4132.98 0.191563
\(776\) 7507.50 0.347298
\(777\) 0 0
\(778\) 3092.10 0.142490
\(779\) −5719.34 −0.263051
\(780\) 0 0
\(781\) −1549.34 −0.0709858
\(782\) −5473.82 −0.250311
\(783\) 0 0
\(784\) 6870.40 0.312974
\(785\) −13786.5 −0.626831
\(786\) 0 0
\(787\) −1814.43 −0.0821824 −0.0410912 0.999155i \(-0.513083\pi\)
−0.0410912 + 0.999155i \(0.513083\pi\)
\(788\) 1594.57 0.0720866
\(789\) 0 0
\(790\) −11233.4 −0.505909
\(791\) −20602.7 −0.926104
\(792\) 0 0
\(793\) 4087.91 0.183059
\(794\) 25803.5 1.15332
\(795\) 0 0
\(796\) 16525.6 0.735847
\(797\) 7958.23 0.353695 0.176848 0.984238i \(-0.443410\pi\)
0.176848 + 0.984238i \(0.443410\pi\)
\(798\) 0 0
\(799\) −13122.7 −0.581038
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) −17068.6 −0.751513
\(803\) −1711.59 −0.0752188
\(804\) 0 0
\(805\) −3196.09 −0.139935
\(806\) −12223.1 −0.534171
\(807\) 0 0
\(808\) −5507.42 −0.239790
\(809\) −20506.9 −0.891203 −0.445601 0.895232i \(-0.647010\pi\)
−0.445601 + 0.895232i \(0.647010\pi\)
\(810\) 0 0
\(811\) 1962.00 0.0849506 0.0424753 0.999098i \(-0.486476\pi\)
0.0424753 + 0.999098i \(0.486476\pi\)
\(812\) −26068.9 −1.12665
\(813\) 0 0
\(814\) −4377.07 −0.188472
\(815\) 6316.46 0.271480
\(816\) 0 0
\(817\) 1274.42 0.0545730
\(818\) −1301.94 −0.0556493
\(819\) 0 0
\(820\) 5916.92 0.251985
\(821\) −25168.1 −1.06988 −0.534941 0.844889i \(-0.679666\pi\)
−0.534941 + 0.844889i \(0.679666\pi\)
\(822\) 0 0
\(823\) 3337.33 0.141351 0.0706756 0.997499i \(-0.477484\pi\)
0.0706756 + 0.997499i \(0.477484\pi\)
\(824\) −16332.4 −0.690492
\(825\) 0 0
\(826\) 588.342 0.0247833
\(827\) 13087.4 0.550294 0.275147 0.961402i \(-0.411273\pi\)
0.275147 + 0.961402i \(0.411273\pi\)
\(828\) 0 0
\(829\) −38486.8 −1.61243 −0.806213 0.591626i \(-0.798486\pi\)
−0.806213 + 0.591626i \(0.798486\pi\)
\(830\) −8246.00 −0.344847
\(831\) 0 0
\(832\) 2365.97 0.0985881
\(833\) −51097.0 −2.12534
\(834\) 0 0
\(835\) 1748.23 0.0724550
\(836\) −836.558 −0.0346088
\(837\) 0 0
\(838\) 26532.4 1.09373
\(839\) −8192.40 −0.337107 −0.168554 0.985692i \(-0.553910\pi\)
−0.168554 + 0.985692i \(0.553910\pi\)
\(840\) 0 0
\(841\) 30600.7 1.25469
\(842\) 16549.4 0.677350
\(843\) 0 0
\(844\) 3305.26 0.134801
\(845\) −4151.72 −0.169022
\(846\) 0 0
\(847\) −33738.7 −1.36868
\(848\) 11010.2 0.445861
\(849\) 0 0
\(850\) 5949.81 0.240090
\(851\) −4652.91 −0.187426
\(852\) 0 0
\(853\) −6774.83 −0.271941 −0.135971 0.990713i \(-0.543415\pi\)
−0.135971 + 0.990713i \(0.543415\pi\)
\(854\) −6146.42 −0.246284
\(855\) 0 0
\(856\) 2299.36 0.0918113
\(857\) −19272.3 −0.768177 −0.384089 0.923296i \(-0.625484\pi\)
−0.384089 + 0.923296i \(0.625484\pi\)
\(858\) 0 0
\(859\) −5991.11 −0.237968 −0.118984 0.992896i \(-0.537964\pi\)
−0.118984 + 0.992896i \(0.537964\pi\)
\(860\) −1318.44 −0.0522774
\(861\) 0 0
\(862\) 1448.17 0.0572214
\(863\) −20711.4 −0.816945 −0.408472 0.912771i \(-0.633938\pi\)
−0.408472 + 0.912771i \(0.633938\pi\)
\(864\) 0 0
\(865\) −11569.2 −0.454755
\(866\) 23993.1 0.941476
\(867\) 0 0
\(868\) 18378.3 0.718663
\(869\) 12152.6 0.474394
\(870\) 0 0
\(871\) −23781.4 −0.925144
\(872\) 9690.31 0.376325
\(873\) 0 0
\(874\) −889.278 −0.0344168
\(875\) 3474.01 0.134221
\(876\) 0 0
\(877\) −45757.4 −1.76182 −0.880912 0.473281i \(-0.843070\pi\)
−0.880912 + 0.473281i \(0.843070\pi\)
\(878\) 15530.8 0.596969
\(879\) 0 0
\(880\) 865.458 0.0331529
\(881\) −37019.6 −1.41569 −0.707845 0.706367i \(-0.750333\pi\)
−0.707845 + 0.706367i \(0.750333\pi\)
\(882\) 0 0
\(883\) −9311.25 −0.354868 −0.177434 0.984133i \(-0.556780\pi\)
−0.177434 + 0.984133i \(0.556780\pi\)
\(884\) −17596.3 −0.669490
\(885\) 0 0
\(886\) −18123.1 −0.687197
\(887\) −33041.8 −1.25077 −0.625387 0.780315i \(-0.715059\pi\)
−0.625387 + 0.780315i \(0.715059\pi\)
\(888\) 0 0
\(889\) 43911.4 1.65662
\(890\) −8796.72 −0.331311
\(891\) 0 0
\(892\) 4440.37 0.166676
\(893\) −2131.92 −0.0798903
\(894\) 0 0
\(895\) 11738.5 0.438406
\(896\) −3557.39 −0.132638
\(897\) 0 0
\(898\) −21888.6 −0.813398
\(899\) −38767.2 −1.43822
\(900\) 0 0
\(901\) −81885.4 −3.02774
\(902\) −6401.06 −0.236288
\(903\) 0 0
\(904\) 5930.53 0.218193
\(905\) 21981.6 0.807395
\(906\) 0 0
\(907\) −41359.1 −1.51412 −0.757060 0.653346i \(-0.773365\pi\)
−0.757060 + 0.653346i \(0.773365\pi\)
\(908\) 19671.6 0.718971
\(909\) 0 0
\(910\) −10274.3 −0.374273
\(911\) 16960.3 0.616818 0.308409 0.951254i \(-0.400203\pi\)
0.308409 + 0.951254i \(0.400203\pi\)
\(912\) 0 0
\(913\) 8920.71 0.323365
\(914\) −21869.8 −0.791452
\(915\) 0 0
\(916\) −5562.50 −0.200644
\(917\) 65279.7 2.35085
\(918\) 0 0
\(919\) 3085.38 0.110748 0.0553739 0.998466i \(-0.482365\pi\)
0.0553739 + 0.998466i \(0.482365\pi\)
\(920\) 920.000 0.0329690
\(921\) 0 0
\(922\) 5304.51 0.189474
\(923\) −5294.46 −0.188807
\(924\) 0 0
\(925\) 5057.51 0.179773
\(926\) −1415.40 −0.0502299
\(927\) 0 0
\(928\) 7503.97 0.265442
\(929\) 42292.0 1.49360 0.746801 0.665048i \(-0.231589\pi\)
0.746801 + 0.665048i \(0.231589\pi\)
\(930\) 0 0
\(931\) −8301.22 −0.292225
\(932\) 13638.4 0.479334
\(933\) 0 0
\(934\) −21342.1 −0.747682
\(935\) −6436.64 −0.225134
\(936\) 0 0
\(937\) 15746.4 0.549000 0.274500 0.961587i \(-0.411488\pi\)
0.274500 + 0.961587i \(0.411488\pi\)
\(938\) 35756.8 1.24467
\(939\) 0 0
\(940\) 2205.57 0.0765297
\(941\) −52033.4 −1.80259 −0.901296 0.433204i \(-0.857383\pi\)
−0.901296 + 0.433204i \(0.857383\pi\)
\(942\) 0 0
\(943\) −6804.46 −0.234977
\(944\) −169.355 −0.00583903
\(945\) 0 0
\(946\) 1426.32 0.0490208
\(947\) 17293.2 0.593405 0.296702 0.954970i \(-0.404113\pi\)
0.296702 + 0.954970i \(0.404113\pi\)
\(948\) 0 0
\(949\) −5848.88 −0.200066
\(950\) 966.607 0.0330114
\(951\) 0 0
\(952\) 26457.2 0.900717
\(953\) −8989.54 −0.305561 −0.152781 0.988260i \(-0.548823\pi\)
−0.152781 + 0.988260i \(0.548823\pi\)
\(954\) 0 0
\(955\) −20765.7 −0.703625
\(956\) −8225.39 −0.278272
\(957\) 0 0
\(958\) 3902.34 0.131606
\(959\) 17163.5 0.577933
\(960\) 0 0
\(961\) −2460.53 −0.0825931
\(962\) −14957.4 −0.501296
\(963\) 0 0
\(964\) −7828.13 −0.261543
\(965\) −5102.62 −0.170217
\(966\) 0 0
\(967\) 23285.3 0.774358 0.387179 0.922005i \(-0.373450\pi\)
0.387179 + 0.922005i \(0.373450\pi\)
\(968\) 9711.73 0.322466
\(969\) 0 0
\(970\) 9384.37 0.310633
\(971\) −44316.5 −1.46466 −0.732330 0.680950i \(-0.761567\pi\)
−0.732330 + 0.680950i \(0.761567\pi\)
\(972\) 0 0
\(973\) 41959.1 1.38247
\(974\) −34142.4 −1.12320
\(975\) 0 0
\(976\) 1769.26 0.0580252
\(977\) −761.665 −0.0249415 −0.0124707 0.999922i \(-0.503970\pi\)
−0.0124707 + 0.999922i \(0.503970\pi\)
\(978\) 0 0
\(979\) 9516.49 0.310673
\(980\) 8588.01 0.279932
\(981\) 0 0
\(982\) 33959.8 1.10356
\(983\) 17423.3 0.565328 0.282664 0.959219i \(-0.408782\pi\)
0.282664 + 0.959219i \(0.408782\pi\)
\(984\) 0 0
\(985\) 1993.21 0.0644762
\(986\) −55808.9 −1.80255
\(987\) 0 0
\(988\) −2858.70 −0.0920521
\(989\) 1516.21 0.0487489
\(990\) 0 0
\(991\) −33873.1 −1.08579 −0.542894 0.839801i \(-0.682671\pi\)
−0.542894 + 0.839801i \(0.682671\pi\)
\(992\) −5290.22 −0.169319
\(993\) 0 0
\(994\) 7960.55 0.254017
\(995\) 20657.0 0.658162
\(996\) 0 0
\(997\) −31163.3 −0.989921 −0.494960 0.868915i \(-0.664817\pi\)
−0.494960 + 0.868915i \(0.664817\pi\)
\(998\) 5577.66 0.176912
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.4.a.bi.1.4 4
3.2 odd 2 230.4.a.i.1.2 4
12.11 even 2 1840.4.a.l.1.3 4
15.2 even 4 1150.4.b.m.599.7 8
15.8 even 4 1150.4.b.m.599.2 8
15.14 odd 2 1150.4.a.o.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.2 4 3.2 odd 2
1150.4.a.o.1.3 4 15.14 odd 2
1150.4.b.m.599.2 8 15.8 even 4
1150.4.b.m.599.7 8 15.2 even 4
1840.4.a.l.1.3 4 12.11 even 2
2070.4.a.bi.1.4 4 1.1 even 1 trivial