Properties

Label 2070.4.a.bi.1.3
Level $2070$
Weight $4$
Character 2070.1
Self dual yes
Analytic conductor $122.134$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2070,4,Mod(1,2070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2070.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,20,0,26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.133953712\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-7.92791\) of defining polynomial
Character \(\chi\) \(=\) 2070.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +5.00000 q^{5} +23.5524 q^{7} -8.00000 q^{8} -10.0000 q^{10} -1.63537 q^{11} -88.6599 q^{13} -47.1048 q^{14} +16.0000 q^{16} +7.31435 q^{17} -6.53738 q^{19} +20.0000 q^{20} +3.27074 q^{22} -23.0000 q^{23} +25.0000 q^{25} +177.320 q^{26} +94.2096 q^{28} -119.240 q^{29} -156.456 q^{31} -32.0000 q^{32} -14.6287 q^{34} +117.762 q^{35} -293.173 q^{37} +13.0748 q^{38} -40.0000 q^{40} -74.3404 q^{41} +468.081 q^{43} -6.54148 q^{44} +46.0000 q^{46} +393.971 q^{47} +211.715 q^{49} -50.0000 q^{50} -354.639 q^{52} -233.171 q^{53} -8.17685 q^{55} -188.419 q^{56} +238.481 q^{58} +766.648 q^{59} +178.365 q^{61} +312.912 q^{62} +64.0000 q^{64} -443.299 q^{65} +246.904 q^{67} +29.2574 q^{68} -235.524 q^{70} +650.678 q^{71} +695.444 q^{73} +586.346 q^{74} -26.1495 q^{76} -38.5169 q^{77} +660.717 q^{79} +80.0000 q^{80} +148.681 q^{82} +1328.39 q^{83} +36.5718 q^{85} -936.163 q^{86} +13.0830 q^{88} +824.702 q^{89} -2088.15 q^{91} -92.0000 q^{92} -787.942 q^{94} -32.6869 q^{95} +383.833 q^{97} -423.430 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} + 20 q^{5} + 26 q^{7} - 32 q^{8} - 40 q^{10} - 93 q^{11} + 32 q^{13} - 52 q^{14} + 64 q^{16} - 108 q^{17} + 185 q^{19} + 80 q^{20} + 186 q^{22} - 92 q^{23} + 100 q^{25} - 64 q^{26}+ \cdots - 1200 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 23.5524 1.27171 0.635855 0.771809i \(-0.280648\pi\)
0.635855 + 0.771809i \(0.280648\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) −1.63537 −0.0448257 −0.0224129 0.999749i \(-0.507135\pi\)
−0.0224129 + 0.999749i \(0.507135\pi\)
\(12\) 0 0
\(13\) −88.6599 −1.89152 −0.945762 0.324860i \(-0.894683\pi\)
−0.945762 + 0.324860i \(0.894683\pi\)
\(14\) −47.1048 −0.899234
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 7.31435 0.104352 0.0521762 0.998638i \(-0.483384\pi\)
0.0521762 + 0.998638i \(0.483384\pi\)
\(18\) 0 0
\(19\) −6.53738 −0.0789357 −0.0394678 0.999221i \(-0.512566\pi\)
−0.0394678 + 0.999221i \(0.512566\pi\)
\(20\) 20.0000 0.223607
\(21\) 0 0
\(22\) 3.27074 0.0316966
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 177.320 1.33751
\(27\) 0 0
\(28\) 94.2096 0.635855
\(29\) −119.240 −0.763530 −0.381765 0.924259i \(-0.624684\pi\)
−0.381765 + 0.924259i \(0.624684\pi\)
\(30\) 0 0
\(31\) −156.456 −0.906462 −0.453231 0.891393i \(-0.649729\pi\)
−0.453231 + 0.891393i \(0.649729\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −14.6287 −0.0737883
\(35\) 117.762 0.568726
\(36\) 0 0
\(37\) −293.173 −1.30263 −0.651315 0.758807i \(-0.725782\pi\)
−0.651315 + 0.758807i \(0.725782\pi\)
\(38\) 13.0748 0.0558159
\(39\) 0 0
\(40\) −40.0000 −0.158114
\(41\) −74.3404 −0.283171 −0.141586 0.989926i \(-0.545220\pi\)
−0.141586 + 0.989926i \(0.545220\pi\)
\(42\) 0 0
\(43\) 468.081 1.66004 0.830020 0.557733i \(-0.188329\pi\)
0.830020 + 0.557733i \(0.188329\pi\)
\(44\) −6.54148 −0.0224129
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 393.971 1.22269 0.611346 0.791363i \(-0.290628\pi\)
0.611346 + 0.791363i \(0.290628\pi\)
\(48\) 0 0
\(49\) 211.715 0.617245
\(50\) −50.0000 −0.141421
\(51\) 0 0
\(52\) −354.639 −0.945762
\(53\) −233.171 −0.604311 −0.302155 0.953259i \(-0.597706\pi\)
−0.302155 + 0.953259i \(0.597706\pi\)
\(54\) 0 0
\(55\) −8.17685 −0.0200467
\(56\) −188.419 −0.449617
\(57\) 0 0
\(58\) 238.481 0.539897
\(59\) 766.648 1.69168 0.845840 0.533437i \(-0.179100\pi\)
0.845840 + 0.533437i \(0.179100\pi\)
\(60\) 0 0
\(61\) 178.365 0.374383 0.187191 0.982323i \(-0.440062\pi\)
0.187191 + 0.982323i \(0.440062\pi\)
\(62\) 312.912 0.640965
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −443.299 −0.845915
\(66\) 0 0
\(67\) 246.904 0.450211 0.225105 0.974334i \(-0.427727\pi\)
0.225105 + 0.974334i \(0.427727\pi\)
\(68\) 29.2574 0.0521762
\(69\) 0 0
\(70\) −235.524 −0.402150
\(71\) 650.678 1.08762 0.543812 0.839207i \(-0.316980\pi\)
0.543812 + 0.839207i \(0.316980\pi\)
\(72\) 0 0
\(73\) 695.444 1.11501 0.557504 0.830174i \(-0.311759\pi\)
0.557504 + 0.830174i \(0.311759\pi\)
\(74\) 586.346 0.921099
\(75\) 0 0
\(76\) −26.1495 −0.0394678
\(77\) −38.5169 −0.0570053
\(78\) 0 0
\(79\) 660.717 0.940967 0.470484 0.882409i \(-0.344079\pi\)
0.470484 + 0.882409i \(0.344079\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) 148.681 0.200232
\(83\) 1328.39 1.75674 0.878372 0.477977i \(-0.158630\pi\)
0.878372 + 0.477977i \(0.158630\pi\)
\(84\) 0 0
\(85\) 36.5718 0.0466678
\(86\) −936.163 −1.17383
\(87\) 0 0
\(88\) 13.0830 0.0158483
\(89\) 824.702 0.982227 0.491113 0.871096i \(-0.336590\pi\)
0.491113 + 0.871096i \(0.336590\pi\)
\(90\) 0 0
\(91\) −2088.15 −2.40547
\(92\) −92.0000 −0.104257
\(93\) 0 0
\(94\) −787.942 −0.864574
\(95\) −32.6869 −0.0353011
\(96\) 0 0
\(97\) 383.833 0.401776 0.200888 0.979614i \(-0.435617\pi\)
0.200888 + 0.979614i \(0.435617\pi\)
\(98\) −423.430 −0.436458
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 674.579 0.664586 0.332293 0.943176i \(-0.392178\pi\)
0.332293 + 0.943176i \(0.392178\pi\)
\(102\) 0 0
\(103\) 169.297 0.161955 0.0809773 0.996716i \(-0.474196\pi\)
0.0809773 + 0.996716i \(0.474196\pi\)
\(104\) 709.279 0.668755
\(105\) 0 0
\(106\) 466.342 0.427312
\(107\) 1533.31 1.38533 0.692665 0.721259i \(-0.256436\pi\)
0.692665 + 0.721259i \(0.256436\pi\)
\(108\) 0 0
\(109\) 1239.75 1.08941 0.544707 0.838626i \(-0.316641\pi\)
0.544707 + 0.838626i \(0.316641\pi\)
\(110\) 16.3537 0.0141751
\(111\) 0 0
\(112\) 376.838 0.317927
\(113\) −2299.49 −1.91432 −0.957159 0.289561i \(-0.906491\pi\)
−0.957159 + 0.289561i \(0.906491\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) −476.961 −0.381765
\(117\) 0 0
\(118\) −1533.30 −1.19620
\(119\) 172.270 0.132706
\(120\) 0 0
\(121\) −1328.33 −0.997991
\(122\) −356.731 −0.264729
\(123\) 0 0
\(124\) −625.824 −0.453231
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1177.82 −0.822948 −0.411474 0.911422i \(-0.634986\pi\)
−0.411474 + 0.911422i \(0.634986\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 886.599 0.598153
\(131\) −2385.56 −1.59105 −0.795525 0.605921i \(-0.792805\pi\)
−0.795525 + 0.605921i \(0.792805\pi\)
\(132\) 0 0
\(133\) −153.971 −0.100383
\(134\) −493.808 −0.318347
\(135\) 0 0
\(136\) −58.5148 −0.0368941
\(137\) −1123.22 −0.700460 −0.350230 0.936664i \(-0.613897\pi\)
−0.350230 + 0.936664i \(0.613897\pi\)
\(138\) 0 0
\(139\) −1801.75 −1.09944 −0.549721 0.835348i \(-0.685266\pi\)
−0.549721 + 0.835348i \(0.685266\pi\)
\(140\) 471.048 0.284363
\(141\) 0 0
\(142\) −1301.36 −0.769067
\(143\) 144.992 0.0847889
\(144\) 0 0
\(145\) −596.202 −0.341461
\(146\) −1390.89 −0.788429
\(147\) 0 0
\(148\) −1172.69 −0.651315
\(149\) −663.138 −0.364607 −0.182303 0.983242i \(-0.558355\pi\)
−0.182303 + 0.983242i \(0.558355\pi\)
\(150\) 0 0
\(151\) 1617.66 0.871808 0.435904 0.899993i \(-0.356429\pi\)
0.435904 + 0.899993i \(0.356429\pi\)
\(152\) 52.2990 0.0279080
\(153\) 0 0
\(154\) 77.0338 0.0403088
\(155\) −782.280 −0.405382
\(156\) 0 0
\(157\) 875.080 0.444834 0.222417 0.974952i \(-0.428605\pi\)
0.222417 + 0.974952i \(0.428605\pi\)
\(158\) −1321.43 −0.665364
\(159\) 0 0
\(160\) −160.000 −0.0790569
\(161\) −541.705 −0.265170
\(162\) 0 0
\(163\) 2532.39 1.21689 0.608443 0.793597i \(-0.291794\pi\)
0.608443 + 0.793597i \(0.291794\pi\)
\(164\) −297.361 −0.141586
\(165\) 0 0
\(166\) −2656.78 −1.24221
\(167\) 1131.65 0.524371 0.262186 0.965017i \(-0.415557\pi\)
0.262186 + 0.965017i \(0.415557\pi\)
\(168\) 0 0
\(169\) 5663.57 2.57786
\(170\) −73.1435 −0.0329991
\(171\) 0 0
\(172\) 1872.33 0.830020
\(173\) 3186.23 1.40026 0.700128 0.714017i \(-0.253126\pi\)
0.700128 + 0.714017i \(0.253126\pi\)
\(174\) 0 0
\(175\) 588.810 0.254342
\(176\) −26.1659 −0.0112064
\(177\) 0 0
\(178\) −1649.40 −0.694539
\(179\) −1663.48 −0.694606 −0.347303 0.937753i \(-0.612902\pi\)
−0.347303 + 0.937753i \(0.612902\pi\)
\(180\) 0 0
\(181\) −3747.35 −1.53889 −0.769443 0.638716i \(-0.779466\pi\)
−0.769443 + 0.638716i \(0.779466\pi\)
\(182\) 4176.30 1.70092
\(183\) 0 0
\(184\) 184.000 0.0737210
\(185\) −1465.86 −0.582554
\(186\) 0 0
\(187\) −11.9617 −0.00467767
\(188\) 1575.88 0.611346
\(189\) 0 0
\(190\) 65.3738 0.0249616
\(191\) −2262.97 −0.857291 −0.428645 0.903473i \(-0.641009\pi\)
−0.428645 + 0.903473i \(0.641009\pi\)
\(192\) 0 0
\(193\) −2001.25 −0.746390 −0.373195 0.927753i \(-0.621738\pi\)
−0.373195 + 0.927753i \(0.621738\pi\)
\(194\) −767.665 −0.284099
\(195\) 0 0
\(196\) 846.860 0.308622
\(197\) 4804.08 1.73744 0.868722 0.495300i \(-0.164942\pi\)
0.868722 + 0.495300i \(0.164942\pi\)
\(198\) 0 0
\(199\) 3885.03 1.38393 0.691967 0.721929i \(-0.256744\pi\)
0.691967 + 0.721929i \(0.256744\pi\)
\(200\) −200.000 −0.0707107
\(201\) 0 0
\(202\) −1349.16 −0.469933
\(203\) −2808.39 −0.970989
\(204\) 0 0
\(205\) −371.702 −0.126638
\(206\) −338.594 −0.114519
\(207\) 0 0
\(208\) −1418.56 −0.472881
\(209\) 10.6910 0.00353835
\(210\) 0 0
\(211\) 4568.39 1.49052 0.745262 0.666772i \(-0.232324\pi\)
0.745262 + 0.666772i \(0.232324\pi\)
\(212\) −932.683 −0.302155
\(213\) 0 0
\(214\) −3066.61 −0.979576
\(215\) 2340.41 0.742393
\(216\) 0 0
\(217\) −3684.91 −1.15276
\(218\) −2479.49 −0.770332
\(219\) 0 0
\(220\) −32.7074 −0.0100233
\(221\) −648.489 −0.197385
\(222\) 0 0
\(223\) 3081.07 0.925218 0.462609 0.886563i \(-0.346913\pi\)
0.462609 + 0.886563i \(0.346913\pi\)
\(224\) −753.676 −0.224809
\(225\) 0 0
\(226\) 4598.98 1.35363
\(227\) −678.971 −0.198524 −0.0992618 0.995061i \(-0.531648\pi\)
−0.0992618 + 0.995061i \(0.531648\pi\)
\(228\) 0 0
\(229\) 6399.27 1.84662 0.923310 0.384056i \(-0.125473\pi\)
0.923310 + 0.384056i \(0.125473\pi\)
\(230\) 230.000 0.0659380
\(231\) 0 0
\(232\) 953.923 0.269949
\(233\) −6083.30 −1.71043 −0.855215 0.518274i \(-0.826575\pi\)
−0.855215 + 0.518274i \(0.826575\pi\)
\(234\) 0 0
\(235\) 1969.85 0.546805
\(236\) 3066.59 0.845840
\(237\) 0 0
\(238\) −344.541 −0.0938372
\(239\) −438.313 −0.118628 −0.0593140 0.998239i \(-0.518891\pi\)
−0.0593140 + 0.998239i \(0.518891\pi\)
\(240\) 0 0
\(241\) 2854.41 0.762941 0.381471 0.924381i \(-0.375418\pi\)
0.381471 + 0.924381i \(0.375418\pi\)
\(242\) 2656.65 0.705686
\(243\) 0 0
\(244\) 713.462 0.187191
\(245\) 1058.57 0.276040
\(246\) 0 0
\(247\) 579.603 0.149309
\(248\) 1251.65 0.320483
\(249\) 0 0
\(250\) −250.000 −0.0632456
\(251\) 2292.93 0.576607 0.288303 0.957539i \(-0.406909\pi\)
0.288303 + 0.957539i \(0.406909\pi\)
\(252\) 0 0
\(253\) 37.6135 0.00934681
\(254\) 2355.63 0.581912
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3547.59 −0.861060 −0.430530 0.902576i \(-0.641673\pi\)
−0.430530 + 0.902576i \(0.641673\pi\)
\(258\) 0 0
\(259\) −6904.92 −1.65657
\(260\) −1773.20 −0.422958
\(261\) 0 0
\(262\) 4771.12 1.12504
\(263\) 2278.35 0.534178 0.267089 0.963672i \(-0.413938\pi\)
0.267089 + 0.963672i \(0.413938\pi\)
\(264\) 0 0
\(265\) −1165.85 −0.270256
\(266\) 307.942 0.0709817
\(267\) 0 0
\(268\) 987.616 0.225105
\(269\) −3915.36 −0.887450 −0.443725 0.896163i \(-0.646343\pi\)
−0.443725 + 0.896163i \(0.646343\pi\)
\(270\) 0 0
\(271\) 6252.71 1.40157 0.700784 0.713374i \(-0.252834\pi\)
0.700784 + 0.713374i \(0.252834\pi\)
\(272\) 117.030 0.0260881
\(273\) 0 0
\(274\) 2246.44 0.495300
\(275\) −40.8843 −0.00896514
\(276\) 0 0
\(277\) −4700.53 −1.01959 −0.509797 0.860295i \(-0.670279\pi\)
−0.509797 + 0.860295i \(0.670279\pi\)
\(278\) 3603.50 0.777423
\(279\) 0 0
\(280\) −942.096 −0.201075
\(281\) −5508.07 −1.16934 −0.584669 0.811272i \(-0.698776\pi\)
−0.584669 + 0.811272i \(0.698776\pi\)
\(282\) 0 0
\(283\) 6639.20 1.39456 0.697278 0.716801i \(-0.254394\pi\)
0.697278 + 0.716801i \(0.254394\pi\)
\(284\) 2602.71 0.543812
\(285\) 0 0
\(286\) −289.983 −0.0599548
\(287\) −1750.89 −0.360111
\(288\) 0 0
\(289\) −4859.50 −0.989111
\(290\) 1192.40 0.241449
\(291\) 0 0
\(292\) 2781.78 0.557504
\(293\) 2120.85 0.422872 0.211436 0.977392i \(-0.432186\pi\)
0.211436 + 0.977392i \(0.432186\pi\)
\(294\) 0 0
\(295\) 3833.24 0.756542
\(296\) 2345.38 0.460550
\(297\) 0 0
\(298\) 1326.28 0.257816
\(299\) 2039.18 0.394410
\(300\) 0 0
\(301\) 11024.4 2.11109
\(302\) −3235.31 −0.616461
\(303\) 0 0
\(304\) −104.598 −0.0197339
\(305\) 891.827 0.167429
\(306\) 0 0
\(307\) 7422.87 1.37995 0.689977 0.723832i \(-0.257621\pi\)
0.689977 + 0.723832i \(0.257621\pi\)
\(308\) −154.068 −0.0285026
\(309\) 0 0
\(310\) 1564.56 0.286648
\(311\) 2563.97 0.467490 0.233745 0.972298i \(-0.424902\pi\)
0.233745 + 0.972298i \(0.424902\pi\)
\(312\) 0 0
\(313\) 9403.53 1.69814 0.849072 0.528277i \(-0.177162\pi\)
0.849072 + 0.528277i \(0.177162\pi\)
\(314\) −1750.16 −0.314545
\(315\) 0 0
\(316\) 2642.87 0.470484
\(317\) −407.110 −0.0721312 −0.0360656 0.999349i \(-0.511483\pi\)
−0.0360656 + 0.999349i \(0.511483\pi\)
\(318\) 0 0
\(319\) 195.002 0.0342258
\(320\) 320.000 0.0559017
\(321\) 0 0
\(322\) 1083.41 0.187503
\(323\) −47.8167 −0.00823713
\(324\) 0 0
\(325\) −2216.50 −0.378305
\(326\) −5064.79 −0.860469
\(327\) 0 0
\(328\) 594.723 0.100116
\(329\) 9278.95 1.55491
\(330\) 0 0
\(331\) −7122.33 −1.18272 −0.591358 0.806409i \(-0.701408\pi\)
−0.591358 + 0.806409i \(0.701408\pi\)
\(332\) 5313.56 0.878372
\(333\) 0 0
\(334\) −2263.31 −0.370786
\(335\) 1234.52 0.201340
\(336\) 0 0
\(337\) −8267.78 −1.33642 −0.668212 0.743971i \(-0.732940\pi\)
−0.668212 + 0.743971i \(0.732940\pi\)
\(338\) −11327.1 −1.82283
\(339\) 0 0
\(340\) 146.287 0.0233339
\(341\) 255.864 0.0406328
\(342\) 0 0
\(343\) −3092.08 −0.486753
\(344\) −3744.65 −0.586913
\(345\) 0 0
\(346\) −6372.45 −0.990130
\(347\) −1048.83 −0.162260 −0.0811302 0.996704i \(-0.525853\pi\)
−0.0811302 + 0.996704i \(0.525853\pi\)
\(348\) 0 0
\(349\) −9135.87 −1.40124 −0.700619 0.713535i \(-0.747093\pi\)
−0.700619 + 0.713535i \(0.747093\pi\)
\(350\) −1177.62 −0.179847
\(351\) 0 0
\(352\) 52.3319 0.00792414
\(353\) −5253.06 −0.792046 −0.396023 0.918240i \(-0.629610\pi\)
−0.396023 + 0.918240i \(0.629610\pi\)
\(354\) 0 0
\(355\) 3253.39 0.486400
\(356\) 3298.81 0.491113
\(357\) 0 0
\(358\) 3326.96 0.491160
\(359\) 11269.7 1.65680 0.828400 0.560137i \(-0.189252\pi\)
0.828400 + 0.560137i \(0.189252\pi\)
\(360\) 0 0
\(361\) −6816.26 −0.993769
\(362\) 7494.70 1.08816
\(363\) 0 0
\(364\) −8352.60 −1.20273
\(365\) 3477.22 0.498646
\(366\) 0 0
\(367\) −5675.46 −0.807238 −0.403619 0.914927i \(-0.632248\pi\)
−0.403619 + 0.914927i \(0.632248\pi\)
\(368\) −368.000 −0.0521286
\(369\) 0 0
\(370\) 2931.73 0.411928
\(371\) −5491.73 −0.768508
\(372\) 0 0
\(373\) 3662.20 0.508369 0.254185 0.967156i \(-0.418193\pi\)
0.254185 + 0.967156i \(0.418193\pi\)
\(374\) 23.9233 0.00330761
\(375\) 0 0
\(376\) −3151.77 −0.432287
\(377\) 10571.8 1.44424
\(378\) 0 0
\(379\) 5520.89 0.748256 0.374128 0.927377i \(-0.377942\pi\)
0.374128 + 0.927377i \(0.377942\pi\)
\(380\) −130.748 −0.0176506
\(381\) 0 0
\(382\) 4525.93 0.606196
\(383\) 2309.13 0.308071 0.154036 0.988065i \(-0.450773\pi\)
0.154036 + 0.988065i \(0.450773\pi\)
\(384\) 0 0
\(385\) −192.584 −0.0254935
\(386\) 4002.50 0.527777
\(387\) 0 0
\(388\) 1535.33 0.200888
\(389\) 8194.51 1.06807 0.534034 0.845463i \(-0.320676\pi\)
0.534034 + 0.845463i \(0.320676\pi\)
\(390\) 0 0
\(391\) −168.230 −0.0217590
\(392\) −1693.72 −0.218229
\(393\) 0 0
\(394\) −9608.16 −1.22856
\(395\) 3303.58 0.420813
\(396\) 0 0
\(397\) 7273.90 0.919564 0.459782 0.888032i \(-0.347928\pi\)
0.459782 + 0.888032i \(0.347928\pi\)
\(398\) −7770.07 −0.978589
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 1835.81 0.228618 0.114309 0.993445i \(-0.463535\pi\)
0.114309 + 0.993445i \(0.463535\pi\)
\(402\) 0 0
\(403\) 13871.4 1.71460
\(404\) 2698.32 0.332293
\(405\) 0 0
\(406\) 5616.79 0.686593
\(407\) 479.446 0.0583914
\(408\) 0 0
\(409\) −2865.80 −0.346466 −0.173233 0.984881i \(-0.555421\pi\)
−0.173233 + 0.984881i \(0.555421\pi\)
\(410\) 743.404 0.0895466
\(411\) 0 0
\(412\) 677.187 0.0809773
\(413\) 18056.4 2.15132
\(414\) 0 0
\(415\) 6641.95 0.785640
\(416\) 2837.12 0.334377
\(417\) 0 0
\(418\) −21.3821 −0.00250199
\(419\) −11044.0 −1.28767 −0.643836 0.765164i \(-0.722658\pi\)
−0.643836 + 0.765164i \(0.722658\pi\)
\(420\) 0 0
\(421\) 6343.24 0.734324 0.367162 0.930157i \(-0.380329\pi\)
0.367162 + 0.930157i \(0.380329\pi\)
\(422\) −9136.77 −1.05396
\(423\) 0 0
\(424\) 1865.37 0.213656
\(425\) 182.859 0.0208705
\(426\) 0 0
\(427\) 4200.93 0.476106
\(428\) 6133.23 0.692665
\(429\) 0 0
\(430\) −4680.81 −0.524951
\(431\) 4117.01 0.460115 0.230058 0.973177i \(-0.426109\pi\)
0.230058 + 0.973177i \(0.426109\pi\)
\(432\) 0 0
\(433\) −758.791 −0.0842151 −0.0421076 0.999113i \(-0.513407\pi\)
−0.0421076 + 0.999113i \(0.513407\pi\)
\(434\) 7369.82 0.815122
\(435\) 0 0
\(436\) 4958.98 0.544707
\(437\) 150.360 0.0164592
\(438\) 0 0
\(439\) 4150.10 0.451193 0.225596 0.974221i \(-0.427567\pi\)
0.225596 + 0.974221i \(0.427567\pi\)
\(440\) 65.4148 0.00708757
\(441\) 0 0
\(442\) 1296.98 0.139572
\(443\) 4597.24 0.493051 0.246525 0.969136i \(-0.420711\pi\)
0.246525 + 0.969136i \(0.420711\pi\)
\(444\) 0 0
\(445\) 4123.51 0.439265
\(446\) −6162.13 −0.654228
\(447\) 0 0
\(448\) 1507.35 0.158964
\(449\) −6402.58 −0.672954 −0.336477 0.941692i \(-0.609235\pi\)
−0.336477 + 0.941692i \(0.609235\pi\)
\(450\) 0 0
\(451\) 121.574 0.0126933
\(452\) −9197.97 −0.957159
\(453\) 0 0
\(454\) 1357.94 0.140377
\(455\) −10440.8 −1.07576
\(456\) 0 0
\(457\) 551.499 0.0564508 0.0282254 0.999602i \(-0.491014\pi\)
0.0282254 + 0.999602i \(0.491014\pi\)
\(458\) −12798.5 −1.30576
\(459\) 0 0
\(460\) −460.000 −0.0466252
\(461\) 3901.96 0.394213 0.197107 0.980382i \(-0.436846\pi\)
0.197107 + 0.980382i \(0.436846\pi\)
\(462\) 0 0
\(463\) 4828.15 0.484628 0.242314 0.970198i \(-0.422094\pi\)
0.242314 + 0.970198i \(0.422094\pi\)
\(464\) −1907.85 −0.190883
\(465\) 0 0
\(466\) 12166.6 1.20946
\(467\) 14136.3 1.40075 0.700375 0.713775i \(-0.253016\pi\)
0.700375 + 0.713775i \(0.253016\pi\)
\(468\) 0 0
\(469\) 5815.18 0.572538
\(470\) −3939.71 −0.386649
\(471\) 0 0
\(472\) −6133.19 −0.598099
\(473\) −765.487 −0.0744125
\(474\) 0 0
\(475\) −163.434 −0.0157871
\(476\) 689.082 0.0663530
\(477\) 0 0
\(478\) 876.626 0.0838827
\(479\) −15246.1 −1.45430 −0.727152 0.686476i \(-0.759157\pi\)
−0.727152 + 0.686476i \(0.759157\pi\)
\(480\) 0 0
\(481\) 25992.7 2.46396
\(482\) −5708.83 −0.539481
\(483\) 0 0
\(484\) −5313.30 −0.498995
\(485\) 1919.16 0.179680
\(486\) 0 0
\(487\) 3876.39 0.360690 0.180345 0.983603i \(-0.442279\pi\)
0.180345 + 0.983603i \(0.442279\pi\)
\(488\) −1426.92 −0.132364
\(489\) 0 0
\(490\) −2117.15 −0.195190
\(491\) 5027.14 0.462061 0.231030 0.972947i \(-0.425790\pi\)
0.231030 + 0.972947i \(0.425790\pi\)
\(492\) 0 0
\(493\) −872.166 −0.0796762
\(494\) −1159.21 −0.105577
\(495\) 0 0
\(496\) −2503.30 −0.226616
\(497\) 15325.0 1.38314
\(498\) 0 0
\(499\) 7178.10 0.643960 0.321980 0.946747i \(-0.395652\pi\)
0.321980 + 0.946747i \(0.395652\pi\)
\(500\) 500.000 0.0447214
\(501\) 0 0
\(502\) −4585.86 −0.407723
\(503\) 18169.6 1.61063 0.805313 0.592850i \(-0.201997\pi\)
0.805313 + 0.592850i \(0.201997\pi\)
\(504\) 0 0
\(505\) 3372.90 0.297212
\(506\) −75.2271 −0.00660919
\(507\) 0 0
\(508\) −4711.27 −0.411474
\(509\) −2296.14 −0.199950 −0.0999750 0.994990i \(-0.531876\pi\)
−0.0999750 + 0.994990i \(0.531876\pi\)
\(510\) 0 0
\(511\) 16379.4 1.41797
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) 7095.18 0.608862
\(515\) 846.484 0.0724283
\(516\) 0 0
\(517\) −644.288 −0.0548081
\(518\) 13809.8 1.17137
\(519\) 0 0
\(520\) 3546.39 0.299076
\(521\) −12945.5 −1.08859 −0.544293 0.838895i \(-0.683202\pi\)
−0.544293 + 0.838895i \(0.683202\pi\)
\(522\) 0 0
\(523\) −16093.6 −1.34555 −0.672775 0.739847i \(-0.734898\pi\)
−0.672775 + 0.739847i \(0.734898\pi\)
\(524\) −9542.25 −0.795525
\(525\) 0 0
\(526\) −4556.69 −0.377721
\(527\) −1144.37 −0.0945915
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 2331.71 0.191100
\(531\) 0 0
\(532\) −615.884 −0.0501916
\(533\) 6591.01 0.535625
\(534\) 0 0
\(535\) 7666.53 0.619538
\(536\) −1975.23 −0.159174
\(537\) 0 0
\(538\) 7830.73 0.627522
\(539\) −346.232 −0.0276684
\(540\) 0 0
\(541\) −15424.7 −1.22580 −0.612900 0.790161i \(-0.709997\pi\)
−0.612900 + 0.790161i \(0.709997\pi\)
\(542\) −12505.4 −0.991058
\(543\) 0 0
\(544\) −234.059 −0.0184471
\(545\) 6198.73 0.487201
\(546\) 0 0
\(547\) 5307.37 0.414857 0.207428 0.978250i \(-0.433491\pi\)
0.207428 + 0.978250i \(0.433491\pi\)
\(548\) −4492.87 −0.350230
\(549\) 0 0
\(550\) 81.7685 0.00633931
\(551\) 779.519 0.0602698
\(552\) 0 0
\(553\) 15561.5 1.19664
\(554\) 9401.06 0.720961
\(555\) 0 0
\(556\) −7207.00 −0.549721
\(557\) 13530.9 1.02930 0.514651 0.857400i \(-0.327921\pi\)
0.514651 + 0.857400i \(0.327921\pi\)
\(558\) 0 0
\(559\) −41500.0 −3.14001
\(560\) 1884.19 0.142181
\(561\) 0 0
\(562\) 11016.1 0.826847
\(563\) 18109.0 1.35560 0.677799 0.735248i \(-0.262934\pi\)
0.677799 + 0.735248i \(0.262934\pi\)
\(564\) 0 0
\(565\) −11497.5 −0.856109
\(566\) −13278.4 −0.986100
\(567\) 0 0
\(568\) −5205.43 −0.384533
\(569\) 908.991 0.0669717 0.0334858 0.999439i \(-0.489339\pi\)
0.0334858 + 0.999439i \(0.489339\pi\)
\(570\) 0 0
\(571\) −8894.71 −0.651895 −0.325948 0.945388i \(-0.605683\pi\)
−0.325948 + 0.945388i \(0.605683\pi\)
\(572\) 579.967 0.0423945
\(573\) 0 0
\(574\) 3501.79 0.254637
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) −12947.3 −0.934148 −0.467074 0.884218i \(-0.654692\pi\)
−0.467074 + 0.884218i \(0.654692\pi\)
\(578\) 9719.00 0.699407
\(579\) 0 0
\(580\) −2384.81 −0.170731
\(581\) 31286.8 2.23407
\(582\) 0 0
\(583\) 381.321 0.0270887
\(584\) −5563.55 −0.394215
\(585\) 0 0
\(586\) −4241.71 −0.299016
\(587\) 19404.1 1.36438 0.682190 0.731175i \(-0.261028\pi\)
0.682190 + 0.731175i \(0.261028\pi\)
\(588\) 0 0
\(589\) 1022.81 0.0715522
\(590\) −7666.48 −0.534956
\(591\) 0 0
\(592\) −4690.77 −0.325658
\(593\) 13633.9 0.944141 0.472070 0.881561i \(-0.343507\pi\)
0.472070 + 0.881561i \(0.343507\pi\)
\(594\) 0 0
\(595\) 861.352 0.0593479
\(596\) −2652.55 −0.182303
\(597\) 0 0
\(598\) −4078.35 −0.278890
\(599\) −11276.5 −0.769191 −0.384595 0.923085i \(-0.625659\pi\)
−0.384595 + 0.923085i \(0.625659\pi\)
\(600\) 0 0
\(601\) −380.766 −0.0258432 −0.0129216 0.999917i \(-0.504113\pi\)
−0.0129216 + 0.999917i \(0.504113\pi\)
\(602\) −22048.9 −1.49277
\(603\) 0 0
\(604\) 6470.63 0.435904
\(605\) −6641.63 −0.446315
\(606\) 0 0
\(607\) −21669.2 −1.44897 −0.724485 0.689290i \(-0.757923\pi\)
−0.724485 + 0.689290i \(0.757923\pi\)
\(608\) 209.196 0.0139540
\(609\) 0 0
\(610\) −1783.65 −0.118390
\(611\) −34929.4 −2.31275
\(612\) 0 0
\(613\) −936.980 −0.0617362 −0.0308681 0.999523i \(-0.509827\pi\)
−0.0308681 + 0.999523i \(0.509827\pi\)
\(614\) −14845.7 −0.975774
\(615\) 0 0
\(616\) 308.135 0.0201544
\(617\) 17539.2 1.14441 0.572205 0.820111i \(-0.306088\pi\)
0.572205 + 0.820111i \(0.306088\pi\)
\(618\) 0 0
\(619\) −4740.20 −0.307794 −0.153897 0.988087i \(-0.549182\pi\)
−0.153897 + 0.988087i \(0.549182\pi\)
\(620\) −3129.12 −0.202691
\(621\) 0 0
\(622\) −5127.94 −0.330565
\(623\) 19423.7 1.24911
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −18807.1 −1.20077
\(627\) 0 0
\(628\) 3500.32 0.222417
\(629\) −2144.37 −0.135933
\(630\) 0 0
\(631\) −18505.6 −1.16751 −0.583754 0.811930i \(-0.698417\pi\)
−0.583754 + 0.811930i \(0.698417\pi\)
\(632\) −5285.73 −0.332682
\(633\) 0 0
\(634\) 814.221 0.0510045
\(635\) −5889.09 −0.368033
\(636\) 0 0
\(637\) −18770.6 −1.16753
\(638\) −390.004 −0.0242013
\(639\) 0 0
\(640\) −640.000 −0.0395285
\(641\) −10163.6 −0.626266 −0.313133 0.949709i \(-0.601379\pi\)
−0.313133 + 0.949709i \(0.601379\pi\)
\(642\) 0 0
\(643\) 7132.33 0.437436 0.218718 0.975788i \(-0.429812\pi\)
0.218718 + 0.975788i \(0.429812\pi\)
\(644\) −2166.82 −0.132585
\(645\) 0 0
\(646\) 95.6334 0.00582453
\(647\) −14536.9 −0.883315 −0.441657 0.897184i \(-0.645609\pi\)
−0.441657 + 0.897184i \(0.645609\pi\)
\(648\) 0 0
\(649\) −1253.75 −0.0758307
\(650\) 4432.99 0.267502
\(651\) 0 0
\(652\) 10129.6 0.608443
\(653\) −3318.33 −0.198861 −0.0994305 0.995045i \(-0.531702\pi\)
−0.0994305 + 0.995045i \(0.531702\pi\)
\(654\) 0 0
\(655\) −11927.8 −0.711539
\(656\) −1189.45 −0.0707928
\(657\) 0 0
\(658\) −18557.9 −1.09949
\(659\) −3088.17 −0.182546 −0.0912730 0.995826i \(-0.529094\pi\)
−0.0912730 + 0.995826i \(0.529094\pi\)
\(660\) 0 0
\(661\) 27602.0 1.62420 0.812098 0.583521i \(-0.198325\pi\)
0.812098 + 0.583521i \(0.198325\pi\)
\(662\) 14244.7 0.836306
\(663\) 0 0
\(664\) −10627.1 −0.621103
\(665\) −769.854 −0.0448927
\(666\) 0 0
\(667\) 2742.53 0.159207
\(668\) 4526.61 0.262186
\(669\) 0 0
\(670\) −2469.04 −0.142369
\(671\) −291.694 −0.0167820
\(672\) 0 0
\(673\) 8091.33 0.463444 0.231722 0.972782i \(-0.425564\pi\)
0.231722 + 0.972782i \(0.425564\pi\)
\(674\) 16535.6 0.944994
\(675\) 0 0
\(676\) 22654.3 1.28893
\(677\) 9515.37 0.540185 0.270093 0.962834i \(-0.412946\pi\)
0.270093 + 0.962834i \(0.412946\pi\)
\(678\) 0 0
\(679\) 9040.18 0.510943
\(680\) −292.574 −0.0164996
\(681\) 0 0
\(682\) −511.727 −0.0287317
\(683\) 630.346 0.0353141 0.0176570 0.999844i \(-0.494379\pi\)
0.0176570 + 0.999844i \(0.494379\pi\)
\(684\) 0 0
\(685\) −5616.09 −0.313255
\(686\) 6184.15 0.344187
\(687\) 0 0
\(688\) 7489.30 0.415010
\(689\) 20672.9 1.14307
\(690\) 0 0
\(691\) −6515.92 −0.358723 −0.179361 0.983783i \(-0.557403\pi\)
−0.179361 + 0.983783i \(0.557403\pi\)
\(692\) 12744.9 0.700128
\(693\) 0 0
\(694\) 2097.67 0.114735
\(695\) −9008.76 −0.491686
\(696\) 0 0
\(697\) −543.751 −0.0295496
\(698\) 18271.7 0.990825
\(699\) 0 0
\(700\) 2355.24 0.127171
\(701\) 32850.2 1.76995 0.884975 0.465638i \(-0.154175\pi\)
0.884975 + 0.465638i \(0.154175\pi\)
\(702\) 0 0
\(703\) 1916.58 0.102824
\(704\) −104.664 −0.00560321
\(705\) 0 0
\(706\) 10506.1 0.560061
\(707\) 15888.0 0.845160
\(708\) 0 0
\(709\) −21841.2 −1.15693 −0.578466 0.815707i \(-0.696348\pi\)
−0.578466 + 0.815707i \(0.696348\pi\)
\(710\) −6506.78 −0.343937
\(711\) 0 0
\(712\) −6597.61 −0.347270
\(713\) 3598.49 0.189010
\(714\) 0 0
\(715\) 724.959 0.0379188
\(716\) −6653.93 −0.347303
\(717\) 0 0
\(718\) −22539.4 −1.17153
\(719\) −25807.3 −1.33859 −0.669296 0.742996i \(-0.733404\pi\)
−0.669296 + 0.742996i \(0.733404\pi\)
\(720\) 0 0
\(721\) 3987.34 0.205959
\(722\) 13632.5 0.702701
\(723\) 0 0
\(724\) −14989.4 −0.769443
\(725\) −2981.01 −0.152706
\(726\) 0 0
\(727\) 14264.0 0.727679 0.363839 0.931462i \(-0.381466\pi\)
0.363839 + 0.931462i \(0.381466\pi\)
\(728\) 16705.2 0.850462
\(729\) 0 0
\(730\) −6954.44 −0.352596
\(731\) 3423.71 0.173229
\(732\) 0 0
\(733\) 811.706 0.0409018 0.0204509 0.999791i \(-0.493490\pi\)
0.0204509 + 0.999791i \(0.493490\pi\)
\(734\) 11350.9 0.570804
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −403.780 −0.0201810
\(738\) 0 0
\(739\) −30696.9 −1.52802 −0.764008 0.645207i \(-0.776771\pi\)
−0.764008 + 0.645207i \(0.776771\pi\)
\(740\) −5863.46 −0.291277
\(741\) 0 0
\(742\) 10983.5 0.543417
\(743\) 26935.6 1.32998 0.664988 0.746854i \(-0.268437\pi\)
0.664988 + 0.746854i \(0.268437\pi\)
\(744\) 0 0
\(745\) −3315.69 −0.163057
\(746\) −7324.40 −0.359471
\(747\) 0 0
\(748\) −47.8467 −0.00233883
\(749\) 36113.0 1.76174
\(750\) 0 0
\(751\) 22371.2 1.08700 0.543501 0.839409i \(-0.317098\pi\)
0.543501 + 0.839409i \(0.317098\pi\)
\(752\) 6303.53 0.305673
\(753\) 0 0
\(754\) −21143.7 −1.02123
\(755\) 8088.28 0.389884
\(756\) 0 0
\(757\) 697.182 0.0334736 0.0167368 0.999860i \(-0.494672\pi\)
0.0167368 + 0.999860i \(0.494672\pi\)
\(758\) −11041.8 −0.529097
\(759\) 0 0
\(760\) 261.495 0.0124808
\(761\) −39756.9 −1.89380 −0.946902 0.321522i \(-0.895806\pi\)
−0.946902 + 0.321522i \(0.895806\pi\)
\(762\) 0 0
\(763\) 29199.0 1.38542
\(764\) −9051.87 −0.428645
\(765\) 0 0
\(766\) −4618.27 −0.217839
\(767\) −67970.9 −3.19985
\(768\) 0 0
\(769\) −12574.8 −0.589673 −0.294836 0.955548i \(-0.595265\pi\)
−0.294836 + 0.955548i \(0.595265\pi\)
\(770\) 385.169 0.0180267
\(771\) 0 0
\(772\) −8005.00 −0.373195
\(773\) −2478.65 −0.115331 −0.0576654 0.998336i \(-0.518366\pi\)
−0.0576654 + 0.998336i \(0.518366\pi\)
\(774\) 0 0
\(775\) −3911.40 −0.181292
\(776\) −3070.66 −0.142049
\(777\) 0 0
\(778\) −16389.0 −0.755238
\(779\) 485.991 0.0223523
\(780\) 0 0
\(781\) −1064.10 −0.0487535
\(782\) 336.460 0.0153859
\(783\) 0 0
\(784\) 3387.44 0.154311
\(785\) 4375.40 0.198936
\(786\) 0 0
\(787\) −7716.40 −0.349504 −0.174752 0.984612i \(-0.555912\pi\)
−0.174752 + 0.984612i \(0.555912\pi\)
\(788\) 19216.3 0.868722
\(789\) 0 0
\(790\) −6607.17 −0.297560
\(791\) −54158.5 −2.43446
\(792\) 0 0
\(793\) −15813.9 −0.708154
\(794\) −14547.8 −0.650230
\(795\) 0 0
\(796\) 15540.1 0.691967
\(797\) 26798.1 1.19101 0.595507 0.803350i \(-0.296951\pi\)
0.595507 + 0.803350i \(0.296951\pi\)
\(798\) 0 0
\(799\) 2881.64 0.127591
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) −3671.61 −0.161657
\(803\) −1137.31 −0.0499810
\(804\) 0 0
\(805\) −2708.52 −0.118588
\(806\) −27742.7 −1.21240
\(807\) 0 0
\(808\) −5396.63 −0.234967
\(809\) −45278.0 −1.96772 −0.983862 0.178927i \(-0.942738\pi\)
−0.983862 + 0.178927i \(0.942738\pi\)
\(810\) 0 0
\(811\) −24889.6 −1.07767 −0.538836 0.842411i \(-0.681136\pi\)
−0.538836 + 0.842411i \(0.681136\pi\)
\(812\) −11233.6 −0.485494
\(813\) 0 0
\(814\) −958.893 −0.0412889
\(815\) 12662.0 0.544208
\(816\) 0 0
\(817\) −3060.03 −0.131036
\(818\) 5731.60 0.244989
\(819\) 0 0
\(820\) −1486.81 −0.0633190
\(821\) −19274.0 −0.819326 −0.409663 0.912237i \(-0.634354\pi\)
−0.409663 + 0.912237i \(0.634354\pi\)
\(822\) 0 0
\(823\) −21620.8 −0.915740 −0.457870 0.889019i \(-0.651387\pi\)
−0.457870 + 0.889019i \(0.651387\pi\)
\(824\) −1354.37 −0.0572596
\(825\) 0 0
\(826\) −36112.8 −1.52122
\(827\) 9012.81 0.378967 0.189484 0.981884i \(-0.439319\pi\)
0.189484 + 0.981884i \(0.439319\pi\)
\(828\) 0 0
\(829\) 26574.7 1.11336 0.556682 0.830726i \(-0.312074\pi\)
0.556682 + 0.830726i \(0.312074\pi\)
\(830\) −13283.9 −0.555531
\(831\) 0 0
\(832\) −5674.23 −0.236441
\(833\) 1548.56 0.0644110
\(834\) 0 0
\(835\) 5658.27 0.234506
\(836\) 42.7642 0.00176917
\(837\) 0 0
\(838\) 22088.0 0.910521
\(839\) 1261.30 0.0519009 0.0259504 0.999663i \(-0.491739\pi\)
0.0259504 + 0.999663i \(0.491739\pi\)
\(840\) 0 0
\(841\) −10170.7 −0.417022
\(842\) −12686.5 −0.519245
\(843\) 0 0
\(844\) 18273.5 0.745262
\(845\) 28317.8 1.15286
\(846\) 0 0
\(847\) −31285.2 −1.26915
\(848\) −3730.73 −0.151078
\(849\) 0 0
\(850\) −365.718 −0.0147577
\(851\) 6742.98 0.271617
\(852\) 0 0
\(853\) 32765.1 1.31519 0.657594 0.753373i \(-0.271574\pi\)
0.657594 + 0.753373i \(0.271574\pi\)
\(854\) −8401.86 −0.336658
\(855\) 0 0
\(856\) −12266.5 −0.489788
\(857\) −722.029 −0.0287795 −0.0143898 0.999896i \(-0.504581\pi\)
−0.0143898 + 0.999896i \(0.504581\pi\)
\(858\) 0 0
\(859\) −36626.9 −1.45482 −0.727411 0.686202i \(-0.759277\pi\)
−0.727411 + 0.686202i \(0.759277\pi\)
\(860\) 9361.63 0.371196
\(861\) 0 0
\(862\) −8234.03 −0.325351
\(863\) 33207.9 1.30986 0.654931 0.755688i \(-0.272698\pi\)
0.654931 + 0.755688i \(0.272698\pi\)
\(864\) 0 0
\(865\) 15931.1 0.626214
\(866\) 1517.58 0.0595491
\(867\) 0 0
\(868\) −14739.6 −0.576378
\(869\) −1080.52 −0.0421795
\(870\) 0 0
\(871\) −21890.5 −0.851585
\(872\) −9917.97 −0.385166
\(873\) 0 0
\(874\) −300.719 −0.0116384
\(875\) 2944.05 0.113745
\(876\) 0 0
\(877\) −39507.6 −1.52118 −0.760592 0.649230i \(-0.775091\pi\)
−0.760592 + 0.649230i \(0.775091\pi\)
\(878\) −8300.21 −0.319041
\(879\) 0 0
\(880\) −130.830 −0.00501167
\(881\) −47928.6 −1.83287 −0.916434 0.400187i \(-0.868945\pi\)
−0.916434 + 0.400187i \(0.868945\pi\)
\(882\) 0 0
\(883\) 48176.2 1.83608 0.918040 0.396488i \(-0.129771\pi\)
0.918040 + 0.396488i \(0.129771\pi\)
\(884\) −2593.96 −0.0986925
\(885\) 0 0
\(886\) −9194.48 −0.348640
\(887\) −31421.7 −1.18944 −0.594722 0.803932i \(-0.702738\pi\)
−0.594722 + 0.803932i \(0.702738\pi\)
\(888\) 0 0
\(889\) −27740.4 −1.04655
\(890\) −8247.02 −0.310607
\(891\) 0 0
\(892\) 12324.3 0.462609
\(893\) −2575.54 −0.0965141
\(894\) 0 0
\(895\) −8317.41 −0.310637
\(896\) −3014.71 −0.112404
\(897\) 0 0
\(898\) 12805.2 0.475851
\(899\) 18655.9 0.692111
\(900\) 0 0
\(901\) −1705.49 −0.0630613
\(902\) −243.148 −0.00897555
\(903\) 0 0
\(904\) 18395.9 0.676814
\(905\) −18736.7 −0.688211
\(906\) 0 0
\(907\) 27694.1 1.01385 0.506927 0.861989i \(-0.330781\pi\)
0.506927 + 0.861989i \(0.330781\pi\)
\(908\) −2715.88 −0.0992618
\(909\) 0 0
\(910\) 20881.5 0.760676
\(911\) 27325.1 0.993764 0.496882 0.867818i \(-0.334478\pi\)
0.496882 + 0.867818i \(0.334478\pi\)
\(912\) 0 0
\(913\) −2172.41 −0.0787473
\(914\) −1103.00 −0.0399168
\(915\) 0 0
\(916\) 25597.1 0.923310
\(917\) −56185.7 −2.02335
\(918\) 0 0
\(919\) 28135.6 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(920\) 920.000 0.0329690
\(921\) 0 0
\(922\) −7803.91 −0.278751
\(923\) −57689.1 −2.05727
\(924\) 0 0
\(925\) −7329.32 −0.260526
\(926\) −9656.29 −0.342684
\(927\) 0 0
\(928\) 3815.69 0.134974
\(929\) −32497.6 −1.14770 −0.573850 0.818961i \(-0.694551\pi\)
−0.573850 + 0.818961i \(0.694551\pi\)
\(930\) 0 0
\(931\) −1384.06 −0.0487226
\(932\) −24333.2 −0.855215
\(933\) 0 0
\(934\) −28272.6 −0.990479
\(935\) −59.8084 −0.00209192
\(936\) 0 0
\(937\) −12209.3 −0.425678 −0.212839 0.977087i \(-0.568271\pi\)
−0.212839 + 0.977087i \(0.568271\pi\)
\(938\) −11630.4 −0.404845
\(939\) 0 0
\(940\) 7879.42 0.273402
\(941\) 1317.78 0.0456518 0.0228259 0.999739i \(-0.492734\pi\)
0.0228259 + 0.999739i \(0.492734\pi\)
\(942\) 0 0
\(943\) 1709.83 0.0590453
\(944\) 12266.4 0.422920
\(945\) 0 0
\(946\) 1530.97 0.0526176
\(947\) 11954.8 0.410219 0.205110 0.978739i \(-0.434245\pi\)
0.205110 + 0.978739i \(0.434245\pi\)
\(948\) 0 0
\(949\) −61657.9 −2.10906
\(950\) 326.869 0.0111632
\(951\) 0 0
\(952\) −1378.16 −0.0469186
\(953\) 19658.8 0.668216 0.334108 0.942535i \(-0.391565\pi\)
0.334108 + 0.942535i \(0.391565\pi\)
\(954\) 0 0
\(955\) −11314.8 −0.383392
\(956\) −1753.25 −0.0593140
\(957\) 0 0
\(958\) 30492.2 1.02835
\(959\) −26454.5 −0.890782
\(960\) 0 0
\(961\) −5312.52 −0.178326
\(962\) −51985.3 −1.74228
\(963\) 0 0
\(964\) 11417.7 0.381471
\(965\) −10006.3 −0.333796
\(966\) 0 0
\(967\) −7604.58 −0.252892 −0.126446 0.991973i \(-0.540357\pi\)
−0.126446 + 0.991973i \(0.540357\pi\)
\(968\) 10626.6 0.352843
\(969\) 0 0
\(970\) −3838.33 −0.127053
\(971\) 14731.2 0.486866 0.243433 0.969918i \(-0.421726\pi\)
0.243433 + 0.969918i \(0.421726\pi\)
\(972\) 0 0
\(973\) −42435.5 −1.39817
\(974\) −7752.77 −0.255046
\(975\) 0 0
\(976\) 2853.85 0.0935957
\(977\) 50584.6 1.65644 0.828222 0.560400i \(-0.189353\pi\)
0.828222 + 0.560400i \(0.189353\pi\)
\(978\) 0 0
\(979\) −1348.69 −0.0440290
\(980\) 4234.30 0.138020
\(981\) 0 0
\(982\) −10054.3 −0.326726
\(983\) −15625.9 −0.507007 −0.253503 0.967334i \(-0.581583\pi\)
−0.253503 + 0.967334i \(0.581583\pi\)
\(984\) 0 0
\(985\) 24020.4 0.777009
\(986\) 1744.33 0.0563396
\(987\) 0 0
\(988\) 2318.41 0.0746544
\(989\) −10765.9 −0.346142
\(990\) 0 0
\(991\) 18267.8 0.585567 0.292783 0.956179i \(-0.405419\pi\)
0.292783 + 0.956179i \(0.405419\pi\)
\(992\) 5006.59 0.160241
\(993\) 0 0
\(994\) −30650.1 −0.978029
\(995\) 19425.2 0.618914
\(996\) 0 0
\(997\) 21580.5 0.685519 0.342760 0.939423i \(-0.388638\pi\)
0.342760 + 0.939423i \(0.388638\pi\)
\(998\) −14356.2 −0.455348
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.4.a.bi.1.3 4
3.2 odd 2 230.4.a.i.1.4 4
12.11 even 2 1840.4.a.l.1.1 4
15.2 even 4 1150.4.b.m.599.5 8
15.8 even 4 1150.4.b.m.599.4 8
15.14 odd 2 1150.4.a.o.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.4 4 3.2 odd 2
1150.4.a.o.1.1 4 15.14 odd 2
1150.4.b.m.599.4 8 15.8 even 4
1150.4.b.m.599.5 8 15.2 even 4
1840.4.a.l.1.1 4 12.11 even 2
2070.4.a.bi.1.3 4 1.1 even 1 trivial