Properties

Label 2070.4.a.bg.1.4
Level $2070$
Weight $4$
Character 2070.1
Self dual yes
Analytic conductor $122.134$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2070,4,Mod(1,2070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2070.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,0,16,-20,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(122.133953712\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 60x^{2} - 45x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.92711\) of defining polynomial
Character \(\chi\) \(=\) 2070.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} -5.00000 q^{5} +24.6272 q^{7} -8.00000 q^{8} +10.0000 q^{10} +24.6573 q^{11} +15.2681 q^{13} -49.2544 q^{14} +16.0000 q^{16} +78.7383 q^{17} -16.3731 q^{19} -20.0000 q^{20} -49.3146 q^{22} +23.0000 q^{23} +25.0000 q^{25} -30.5362 q^{26} +98.5088 q^{28} -36.5449 q^{29} +186.438 q^{31} -32.0000 q^{32} -157.477 q^{34} -123.136 q^{35} +327.841 q^{37} +32.7462 q^{38} +40.0000 q^{40} +313.067 q^{41} -394.105 q^{43} +98.6293 q^{44} -46.0000 q^{46} +252.906 q^{47} +263.499 q^{49} -50.0000 q^{50} +61.0723 q^{52} +8.12126 q^{53} -123.287 q^{55} -197.018 q^{56} +73.0898 q^{58} -173.659 q^{59} +420.666 q^{61} -372.875 q^{62} +64.0000 q^{64} -76.3404 q^{65} +142.945 q^{67} +314.953 q^{68} +246.272 q^{70} -658.533 q^{71} -144.794 q^{73} -655.683 q^{74} -65.4924 q^{76} +607.241 q^{77} -521.592 q^{79} -80.0000 q^{80} -626.134 q^{82} +987.368 q^{83} -393.691 q^{85} +788.210 q^{86} -197.259 q^{88} -176.234 q^{89} +376.010 q^{91} +92.0000 q^{92} -505.813 q^{94} +81.8655 q^{95} +769.092 q^{97} -526.998 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 16 q^{4} - 20 q^{5} + 8 q^{7} - 32 q^{8} + 40 q^{10} - 21 q^{11} + 70 q^{13} - 16 q^{14} + 64 q^{16} - 56 q^{17} + 173 q^{19} - 80 q^{20} + 42 q^{22} + 92 q^{23} + 100 q^{25} - 140 q^{26}+ \cdots + 248 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 24.6272 1.32974 0.664872 0.746957i \(-0.268486\pi\)
0.664872 + 0.746957i \(0.268486\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0 0
\(10\) 10.0000 0.316228
\(11\) 24.6573 0.675860 0.337930 0.941171i \(-0.390273\pi\)
0.337930 + 0.941171i \(0.390273\pi\)
\(12\) 0 0
\(13\) 15.2681 0.325739 0.162869 0.986648i \(-0.447925\pi\)
0.162869 + 0.986648i \(0.447925\pi\)
\(14\) −49.2544 −0.940271
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 78.7383 1.12334 0.561672 0.827360i \(-0.310158\pi\)
0.561672 + 0.827360i \(0.310158\pi\)
\(18\) 0 0
\(19\) −16.3731 −0.197697 −0.0988486 0.995102i \(-0.531516\pi\)
−0.0988486 + 0.995102i \(0.531516\pi\)
\(20\) −20.0000 −0.223607
\(21\) 0 0
\(22\) −49.3146 −0.477905
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −30.5362 −0.230332
\(27\) 0 0
\(28\) 98.5088 0.664872
\(29\) −36.5449 −0.234008 −0.117004 0.993131i \(-0.537329\pi\)
−0.117004 + 0.993131i \(0.537329\pi\)
\(30\) 0 0
\(31\) 186.438 1.08017 0.540083 0.841612i \(-0.318393\pi\)
0.540083 + 0.841612i \(0.318393\pi\)
\(32\) −32.0000 −0.176777
\(33\) 0 0
\(34\) −157.477 −0.794324
\(35\) −123.136 −0.594680
\(36\) 0 0
\(37\) 327.841 1.45667 0.728335 0.685221i \(-0.240294\pi\)
0.728335 + 0.685221i \(0.240294\pi\)
\(38\) 32.7462 0.139793
\(39\) 0 0
\(40\) 40.0000 0.158114
\(41\) 313.067 1.19251 0.596254 0.802796i \(-0.296655\pi\)
0.596254 + 0.802796i \(0.296655\pi\)
\(42\) 0 0
\(43\) −394.105 −1.39768 −0.698842 0.715276i \(-0.746301\pi\)
−0.698842 + 0.715276i \(0.746301\pi\)
\(44\) 98.6293 0.337930
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 252.906 0.784897 0.392449 0.919774i \(-0.371628\pi\)
0.392449 + 0.919774i \(0.371628\pi\)
\(48\) 0 0
\(49\) 263.499 0.768219
\(50\) −50.0000 −0.141421
\(51\) 0 0
\(52\) 61.0723 0.162869
\(53\) 8.12126 0.0210480 0.0105240 0.999945i \(-0.496650\pi\)
0.0105240 + 0.999945i \(0.496650\pi\)
\(54\) 0 0
\(55\) −123.287 −0.302254
\(56\) −197.018 −0.470135
\(57\) 0 0
\(58\) 73.0898 0.165468
\(59\) −173.659 −0.383193 −0.191597 0.981474i \(-0.561367\pi\)
−0.191597 + 0.981474i \(0.561367\pi\)
\(60\) 0 0
\(61\) 420.666 0.882964 0.441482 0.897270i \(-0.354453\pi\)
0.441482 + 0.897270i \(0.354453\pi\)
\(62\) −372.875 −0.763793
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −76.3404 −0.145675
\(66\) 0 0
\(67\) 142.945 0.260649 0.130324 0.991471i \(-0.458398\pi\)
0.130324 + 0.991471i \(0.458398\pi\)
\(68\) 314.953 0.561672
\(69\) 0 0
\(70\) 246.272 0.420502
\(71\) −658.533 −1.10075 −0.550376 0.834917i \(-0.685516\pi\)
−0.550376 + 0.834917i \(0.685516\pi\)
\(72\) 0 0
\(73\) −144.794 −0.232149 −0.116075 0.993241i \(-0.537031\pi\)
−0.116075 + 0.993241i \(0.537031\pi\)
\(74\) −655.683 −1.03002
\(75\) 0 0
\(76\) −65.4924 −0.0988486
\(77\) 607.241 0.898721
\(78\) 0 0
\(79\) −521.592 −0.742831 −0.371415 0.928467i \(-0.621127\pi\)
−0.371415 + 0.928467i \(0.621127\pi\)
\(80\) −80.0000 −0.111803
\(81\) 0 0
\(82\) −626.134 −0.843230
\(83\) 987.368 1.30576 0.652878 0.757463i \(-0.273562\pi\)
0.652878 + 0.757463i \(0.273562\pi\)
\(84\) 0 0
\(85\) −393.691 −0.502375
\(86\) 788.210 0.988312
\(87\) 0 0
\(88\) −197.259 −0.238953
\(89\) −176.234 −0.209896 −0.104948 0.994478i \(-0.533468\pi\)
−0.104948 + 0.994478i \(0.533468\pi\)
\(90\) 0 0
\(91\) 376.010 0.433149
\(92\) 92.0000 0.104257
\(93\) 0 0
\(94\) −505.813 −0.555006
\(95\) 81.8655 0.0884129
\(96\) 0 0
\(97\) 769.092 0.805046 0.402523 0.915410i \(-0.368133\pi\)
0.402523 + 0.915410i \(0.368133\pi\)
\(98\) −526.998 −0.543213
\(99\) 0 0
\(100\) 100.000 0.100000
\(101\) 33.6036 0.0331058 0.0165529 0.999863i \(-0.494731\pi\)
0.0165529 + 0.999863i \(0.494731\pi\)
\(102\) 0 0
\(103\) −1868.28 −1.78725 −0.893626 0.448813i \(-0.851847\pi\)
−0.893626 + 0.448813i \(0.851847\pi\)
\(104\) −122.145 −0.115166
\(105\) 0 0
\(106\) −16.2425 −0.0148832
\(107\) 1438.84 1.29998 0.649992 0.759941i \(-0.274772\pi\)
0.649992 + 0.759941i \(0.274772\pi\)
\(108\) 0 0
\(109\) −1864.49 −1.63840 −0.819202 0.573504i \(-0.805584\pi\)
−0.819202 + 0.573504i \(0.805584\pi\)
\(110\) 246.573 0.213726
\(111\) 0 0
\(112\) 394.035 0.332436
\(113\) 397.768 0.331141 0.165570 0.986198i \(-0.447053\pi\)
0.165570 + 0.986198i \(0.447053\pi\)
\(114\) 0 0
\(115\) −115.000 −0.0932505
\(116\) −146.180 −0.117004
\(117\) 0 0
\(118\) 347.317 0.270959
\(119\) 1939.10 1.49376
\(120\) 0 0
\(121\) −723.016 −0.543213
\(122\) −841.332 −0.624350
\(123\) 0 0
\(124\) 745.750 0.540083
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1370.48 0.957564 0.478782 0.877934i \(-0.341078\pi\)
0.478782 + 0.877934i \(0.341078\pi\)
\(128\) −128.000 −0.0883883
\(129\) 0 0
\(130\) 152.681 0.103008
\(131\) −1891.14 −1.26130 −0.630649 0.776068i \(-0.717211\pi\)
−0.630649 + 0.776068i \(0.717211\pi\)
\(132\) 0 0
\(133\) −403.224 −0.262887
\(134\) −285.889 −0.184307
\(135\) 0 0
\(136\) −629.906 −0.397162
\(137\) −2226.21 −1.38831 −0.694155 0.719826i \(-0.744222\pi\)
−0.694155 + 0.719826i \(0.744222\pi\)
\(138\) 0 0
\(139\) −699.554 −0.426873 −0.213437 0.976957i \(-0.568466\pi\)
−0.213437 + 0.976957i \(0.568466\pi\)
\(140\) −492.544 −0.297340
\(141\) 0 0
\(142\) 1317.07 0.778350
\(143\) 376.470 0.220154
\(144\) 0 0
\(145\) 182.725 0.104651
\(146\) 289.589 0.164154
\(147\) 0 0
\(148\) 1311.37 0.728335
\(149\) 1174.11 0.645549 0.322775 0.946476i \(-0.395384\pi\)
0.322775 + 0.946476i \(0.395384\pi\)
\(150\) 0 0
\(151\) 2733.01 1.47291 0.736455 0.676487i \(-0.236498\pi\)
0.736455 + 0.676487i \(0.236498\pi\)
\(152\) 130.985 0.0698965
\(153\) 0 0
\(154\) −1214.48 −0.635492
\(155\) −932.188 −0.483065
\(156\) 0 0
\(157\) −4.77232 −0.00242594 −0.00121297 0.999999i \(-0.500386\pi\)
−0.00121297 + 0.999999i \(0.500386\pi\)
\(158\) 1043.18 0.525261
\(159\) 0 0
\(160\) 160.000 0.0790569
\(161\) 566.426 0.277271
\(162\) 0 0
\(163\) 1523.51 0.732090 0.366045 0.930597i \(-0.380712\pi\)
0.366045 + 0.930597i \(0.380712\pi\)
\(164\) 1252.27 0.596254
\(165\) 0 0
\(166\) −1974.74 −0.923308
\(167\) −3603.81 −1.66989 −0.834944 0.550335i \(-0.814500\pi\)
−0.834944 + 0.550335i \(0.814500\pi\)
\(168\) 0 0
\(169\) −1963.89 −0.893894
\(170\) 787.383 0.355232
\(171\) 0 0
\(172\) −1576.42 −0.698842
\(173\) −349.993 −0.153812 −0.0769061 0.997038i \(-0.524504\pi\)
−0.0769061 + 0.997038i \(0.524504\pi\)
\(174\) 0 0
\(175\) 615.680 0.265949
\(176\) 394.517 0.168965
\(177\) 0 0
\(178\) 352.467 0.148419
\(179\) 1283.17 0.535804 0.267902 0.963446i \(-0.413670\pi\)
0.267902 + 0.963446i \(0.413670\pi\)
\(180\) 0 0
\(181\) 3076.40 1.26336 0.631678 0.775231i \(-0.282367\pi\)
0.631678 + 0.775231i \(0.282367\pi\)
\(182\) −752.020 −0.306283
\(183\) 0 0
\(184\) −184.000 −0.0737210
\(185\) −1639.21 −0.651443
\(186\) 0 0
\(187\) 1941.48 0.759223
\(188\) 1011.63 0.392449
\(189\) 0 0
\(190\) −163.731 −0.0625174
\(191\) 1787.86 0.677306 0.338653 0.940911i \(-0.390029\pi\)
0.338653 + 0.940911i \(0.390029\pi\)
\(192\) 0 0
\(193\) −881.506 −0.328768 −0.164384 0.986396i \(-0.552564\pi\)
−0.164384 + 0.986396i \(0.552564\pi\)
\(194\) −1538.18 −0.569253
\(195\) 0 0
\(196\) 1054.00 0.384109
\(197\) −2217.28 −0.801904 −0.400952 0.916099i \(-0.631321\pi\)
−0.400952 + 0.916099i \(0.631321\pi\)
\(198\) 0 0
\(199\) −211.313 −0.0752742 −0.0376371 0.999291i \(-0.511983\pi\)
−0.0376371 + 0.999291i \(0.511983\pi\)
\(200\) −200.000 −0.0707107
\(201\) 0 0
\(202\) −67.2072 −0.0234093
\(203\) −899.999 −0.311170
\(204\) 0 0
\(205\) −1565.33 −0.533306
\(206\) 3736.56 1.26378
\(207\) 0 0
\(208\) 244.289 0.0814347
\(209\) −403.717 −0.133616
\(210\) 0 0
\(211\) 3939.97 1.28549 0.642745 0.766080i \(-0.277795\pi\)
0.642745 + 0.766080i \(0.277795\pi\)
\(212\) 32.4851 0.0105240
\(213\) 0 0
\(214\) −2877.69 −0.919227
\(215\) 1970.52 0.625063
\(216\) 0 0
\(217\) 4591.43 1.43635
\(218\) 3728.99 1.15853
\(219\) 0 0
\(220\) −493.146 −0.151127
\(221\) 1202.18 0.365916
\(222\) 0 0
\(223\) 4154.48 1.24755 0.623777 0.781603i \(-0.285597\pi\)
0.623777 + 0.781603i \(0.285597\pi\)
\(224\) −788.070 −0.235068
\(225\) 0 0
\(226\) −795.537 −0.234152
\(227\) −6133.31 −1.79331 −0.896656 0.442727i \(-0.854011\pi\)
−0.896656 + 0.442727i \(0.854011\pi\)
\(228\) 0 0
\(229\) 2244.20 0.647603 0.323802 0.946125i \(-0.395039\pi\)
0.323802 + 0.946125i \(0.395039\pi\)
\(230\) 230.000 0.0659380
\(231\) 0 0
\(232\) 292.359 0.0827342
\(233\) −2161.23 −0.607670 −0.303835 0.952725i \(-0.598267\pi\)
−0.303835 + 0.952725i \(0.598267\pi\)
\(234\) 0 0
\(235\) −1264.53 −0.351017
\(236\) −694.634 −0.191597
\(237\) 0 0
\(238\) −3878.21 −1.05625
\(239\) −3448.18 −0.933240 −0.466620 0.884458i \(-0.654528\pi\)
−0.466620 + 0.884458i \(0.654528\pi\)
\(240\) 0 0
\(241\) 1654.43 0.442204 0.221102 0.975251i \(-0.429035\pi\)
0.221102 + 0.975251i \(0.429035\pi\)
\(242\) 1446.03 0.384110
\(243\) 0 0
\(244\) 1682.66 0.441482
\(245\) −1317.50 −0.343558
\(246\) 0 0
\(247\) −249.986 −0.0643976
\(248\) −1491.50 −0.381897
\(249\) 0 0
\(250\) 250.000 0.0632456
\(251\) 6157.96 1.54855 0.774277 0.632846i \(-0.218113\pi\)
0.774277 + 0.632846i \(0.218113\pi\)
\(252\) 0 0
\(253\) 567.118 0.140927
\(254\) −2740.96 −0.677100
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 448.443 0.108845 0.0544224 0.998518i \(-0.482668\pi\)
0.0544224 + 0.998518i \(0.482668\pi\)
\(258\) 0 0
\(259\) 8073.82 1.93700
\(260\) −305.362 −0.0728374
\(261\) 0 0
\(262\) 3782.29 0.891873
\(263\) −6298.76 −1.47680 −0.738399 0.674364i \(-0.764418\pi\)
−0.738399 + 0.674364i \(0.764418\pi\)
\(264\) 0 0
\(265\) −40.6063 −0.00941293
\(266\) 806.447 0.185889
\(267\) 0 0
\(268\) 571.779 0.130324
\(269\) 2106.69 0.477500 0.238750 0.971081i \(-0.423262\pi\)
0.238750 + 0.971081i \(0.423262\pi\)
\(270\) 0 0
\(271\) −3116.92 −0.698668 −0.349334 0.936998i \(-0.613592\pi\)
−0.349334 + 0.936998i \(0.613592\pi\)
\(272\) 1259.81 0.280836
\(273\) 0 0
\(274\) 4452.43 0.981683
\(275\) 616.433 0.135172
\(276\) 0 0
\(277\) 1177.86 0.255490 0.127745 0.991807i \(-0.459226\pi\)
0.127745 + 0.991807i \(0.459226\pi\)
\(278\) 1399.11 0.301845
\(279\) 0 0
\(280\) 985.088 0.210251
\(281\) 5240.30 1.11249 0.556246 0.831018i \(-0.312241\pi\)
0.556246 + 0.831018i \(0.312241\pi\)
\(282\) 0 0
\(283\) 7162.44 1.50446 0.752232 0.658899i \(-0.228978\pi\)
0.752232 + 0.658899i \(0.228978\pi\)
\(284\) −2634.13 −0.550376
\(285\) 0 0
\(286\) −752.940 −0.155672
\(287\) 7709.96 1.58573
\(288\) 0 0
\(289\) 1286.72 0.261901
\(290\) −365.449 −0.0739997
\(291\) 0 0
\(292\) −579.177 −0.116075
\(293\) 7564.70 1.50831 0.754154 0.656698i \(-0.228047\pi\)
0.754154 + 0.656698i \(0.228047\pi\)
\(294\) 0 0
\(295\) 868.293 0.171369
\(296\) −2622.73 −0.515011
\(297\) 0 0
\(298\) −2348.22 −0.456472
\(299\) 351.166 0.0679212
\(300\) 0 0
\(301\) −9705.70 −1.85856
\(302\) −5466.02 −1.04150
\(303\) 0 0
\(304\) −261.970 −0.0494243
\(305\) −2103.33 −0.394873
\(306\) 0 0
\(307\) 5675.81 1.05516 0.527582 0.849504i \(-0.323099\pi\)
0.527582 + 0.849504i \(0.323099\pi\)
\(308\) 2428.96 0.449361
\(309\) 0 0
\(310\) 1864.38 0.341579
\(311\) −4934.29 −0.899671 −0.449835 0.893111i \(-0.648517\pi\)
−0.449835 + 0.893111i \(0.648517\pi\)
\(312\) 0 0
\(313\) −4458.67 −0.805173 −0.402587 0.915382i \(-0.631889\pi\)
−0.402587 + 0.915382i \(0.631889\pi\)
\(314\) 9.54464 0.00171540
\(315\) 0 0
\(316\) −2086.37 −0.371415
\(317\) −4132.87 −0.732256 −0.366128 0.930564i \(-0.619317\pi\)
−0.366128 + 0.930564i \(0.619317\pi\)
\(318\) 0 0
\(319\) −901.100 −0.158156
\(320\) −320.000 −0.0559017
\(321\) 0 0
\(322\) −1132.85 −0.196060
\(323\) −1289.19 −0.222082
\(324\) 0 0
\(325\) 381.702 0.0651477
\(326\) −3047.02 −0.517665
\(327\) 0 0
\(328\) −2504.53 −0.421615
\(329\) 6228.37 1.04371
\(330\) 0 0
\(331\) 10319.9 1.71370 0.856849 0.515567i \(-0.172419\pi\)
0.856849 + 0.515567i \(0.172419\pi\)
\(332\) 3949.47 0.652878
\(333\) 0 0
\(334\) 7207.62 1.18079
\(335\) −714.723 −0.116566
\(336\) 0 0
\(337\) −9817.59 −1.58694 −0.793469 0.608611i \(-0.791727\pi\)
−0.793469 + 0.608611i \(0.791727\pi\)
\(338\) 3927.77 0.632079
\(339\) 0 0
\(340\) −1574.77 −0.251187
\(341\) 4597.05 0.730042
\(342\) 0 0
\(343\) −1957.89 −0.308210
\(344\) 3152.84 0.494156
\(345\) 0 0
\(346\) 699.987 0.108762
\(347\) 5827.53 0.901552 0.450776 0.892637i \(-0.351147\pi\)
0.450776 + 0.892637i \(0.351147\pi\)
\(348\) 0 0
\(349\) 6483.51 0.994426 0.497213 0.867629i \(-0.334357\pi\)
0.497213 + 0.867629i \(0.334357\pi\)
\(350\) −1231.36 −0.188054
\(351\) 0 0
\(352\) −789.034 −0.119476
\(353\) 11535.2 1.73925 0.869627 0.493709i \(-0.164359\pi\)
0.869627 + 0.493709i \(0.164359\pi\)
\(354\) 0 0
\(355\) 3292.66 0.492272
\(356\) −704.934 −0.104948
\(357\) 0 0
\(358\) −2566.35 −0.378870
\(359\) −5922.53 −0.870695 −0.435347 0.900263i \(-0.643374\pi\)
−0.435347 + 0.900263i \(0.643374\pi\)
\(360\) 0 0
\(361\) −6590.92 −0.960916
\(362\) −6152.81 −0.893327
\(363\) 0 0
\(364\) 1504.04 0.216575
\(365\) 723.971 0.103820
\(366\) 0 0
\(367\) −4042.72 −0.575009 −0.287504 0.957779i \(-0.592826\pi\)
−0.287504 + 0.957779i \(0.592826\pi\)
\(368\) 368.000 0.0521286
\(369\) 0 0
\(370\) 3278.41 0.460639
\(371\) 200.004 0.0279884
\(372\) 0 0
\(373\) −9078.68 −1.26026 −0.630129 0.776491i \(-0.716998\pi\)
−0.630129 + 0.776491i \(0.716998\pi\)
\(374\) −3882.95 −0.536852
\(375\) 0 0
\(376\) −2023.25 −0.277503
\(377\) −557.971 −0.0762253
\(378\) 0 0
\(379\) 6561.42 0.889280 0.444640 0.895709i \(-0.353332\pi\)
0.444640 + 0.895709i \(0.353332\pi\)
\(380\) 327.462 0.0442064
\(381\) 0 0
\(382\) −3575.73 −0.478927
\(383\) −587.548 −0.0783872 −0.0391936 0.999232i \(-0.512479\pi\)
−0.0391936 + 0.999232i \(0.512479\pi\)
\(384\) 0 0
\(385\) −3036.20 −0.401920
\(386\) 1763.01 0.232474
\(387\) 0 0
\(388\) 3076.37 0.402523
\(389\) 6470.36 0.843343 0.421672 0.906749i \(-0.361444\pi\)
0.421672 + 0.906749i \(0.361444\pi\)
\(390\) 0 0
\(391\) 1810.98 0.234233
\(392\) −2107.99 −0.271606
\(393\) 0 0
\(394\) 4434.57 0.567031
\(395\) 2607.96 0.332204
\(396\) 0 0
\(397\) 9118.76 1.15279 0.576395 0.817171i \(-0.304459\pi\)
0.576395 + 0.817171i \(0.304459\pi\)
\(398\) 422.626 0.0532269
\(399\) 0 0
\(400\) 400.000 0.0500000
\(401\) 3199.75 0.398474 0.199237 0.979951i \(-0.436154\pi\)
0.199237 + 0.979951i \(0.436154\pi\)
\(402\) 0 0
\(403\) 2846.54 0.351852
\(404\) 134.414 0.0165529
\(405\) 0 0
\(406\) 1800.00 0.220031
\(407\) 8083.69 0.984505
\(408\) 0 0
\(409\) 6146.22 0.743059 0.371529 0.928421i \(-0.378833\pi\)
0.371529 + 0.928421i \(0.378833\pi\)
\(410\) 3130.67 0.377104
\(411\) 0 0
\(412\) −7473.11 −0.893626
\(413\) −4276.72 −0.509549
\(414\) 0 0
\(415\) −4936.84 −0.583951
\(416\) −488.578 −0.0575830
\(417\) 0 0
\(418\) 807.434 0.0944806
\(419\) 9933.76 1.15822 0.579112 0.815248i \(-0.303399\pi\)
0.579112 + 0.815248i \(0.303399\pi\)
\(420\) 0 0
\(421\) 3653.89 0.422993 0.211496 0.977379i \(-0.432166\pi\)
0.211496 + 0.977379i \(0.432166\pi\)
\(422\) −7879.93 −0.908979
\(423\) 0 0
\(424\) −64.9701 −0.00744158
\(425\) 1968.46 0.224669
\(426\) 0 0
\(427\) 10359.8 1.17412
\(428\) 5755.37 0.649992
\(429\) 0 0
\(430\) −3941.05 −0.441987
\(431\) 3056.87 0.341634 0.170817 0.985303i \(-0.445359\pi\)
0.170817 + 0.985303i \(0.445359\pi\)
\(432\) 0 0
\(433\) 1703.05 0.189014 0.0945072 0.995524i \(-0.469872\pi\)
0.0945072 + 0.995524i \(0.469872\pi\)
\(434\) −9182.87 −1.01565
\(435\) 0 0
\(436\) −7457.98 −0.819202
\(437\) −376.581 −0.0412227
\(438\) 0 0
\(439\) −758.630 −0.0824771 −0.0412386 0.999149i \(-0.513130\pi\)
−0.0412386 + 0.999149i \(0.513130\pi\)
\(440\) 986.293 0.106863
\(441\) 0 0
\(442\) −2404.36 −0.258742
\(443\) −5971.42 −0.640430 −0.320215 0.947345i \(-0.603755\pi\)
−0.320215 + 0.947345i \(0.603755\pi\)
\(444\) 0 0
\(445\) 881.168 0.0938682
\(446\) −8308.95 −0.882153
\(447\) 0 0
\(448\) 1576.14 0.166218
\(449\) 3515.62 0.369515 0.184757 0.982784i \(-0.440850\pi\)
0.184757 + 0.982784i \(0.440850\pi\)
\(450\) 0 0
\(451\) 7719.39 0.805969
\(452\) 1591.07 0.165570
\(453\) 0 0
\(454\) 12266.6 1.26806
\(455\) −1880.05 −0.193710
\(456\) 0 0
\(457\) 12155.6 1.24423 0.622117 0.782925i \(-0.286273\pi\)
0.622117 + 0.782925i \(0.286273\pi\)
\(458\) −4488.41 −0.457925
\(459\) 0 0
\(460\) −460.000 −0.0466252
\(461\) 8854.82 0.894599 0.447299 0.894384i \(-0.352386\pi\)
0.447299 + 0.894384i \(0.352386\pi\)
\(462\) 0 0
\(463\) 17908.6 1.79759 0.898793 0.438374i \(-0.144445\pi\)
0.898793 + 0.438374i \(0.144445\pi\)
\(464\) −584.719 −0.0585019
\(465\) 0 0
\(466\) 4322.46 0.429687
\(467\) −8596.74 −0.851841 −0.425920 0.904761i \(-0.640050\pi\)
−0.425920 + 0.904761i \(0.640050\pi\)
\(468\) 0 0
\(469\) 3520.33 0.346596
\(470\) 2529.06 0.248206
\(471\) 0 0
\(472\) 1389.27 0.135479
\(473\) −9717.57 −0.944639
\(474\) 0 0
\(475\) −409.328 −0.0395394
\(476\) 7756.42 0.746880
\(477\) 0 0
\(478\) 6896.37 0.659901
\(479\) 12385.2 1.18140 0.590702 0.806890i \(-0.298851\pi\)
0.590702 + 0.806890i \(0.298851\pi\)
\(480\) 0 0
\(481\) 5005.51 0.474494
\(482\) −3308.86 −0.312685
\(483\) 0 0
\(484\) −2892.07 −0.271606
\(485\) −3845.46 −0.360027
\(486\) 0 0
\(487\) 4331.97 0.403081 0.201541 0.979480i \(-0.435405\pi\)
0.201541 + 0.979480i \(0.435405\pi\)
\(488\) −3365.33 −0.312175
\(489\) 0 0
\(490\) 2634.99 0.242932
\(491\) 11366.0 1.04468 0.522341 0.852737i \(-0.325059\pi\)
0.522341 + 0.852737i \(0.325059\pi\)
\(492\) 0 0
\(493\) −2877.48 −0.262871
\(494\) 499.972 0.0455360
\(495\) 0 0
\(496\) 2983.00 0.270042
\(497\) −16217.8 −1.46372
\(498\) 0 0
\(499\) 12620.5 1.13221 0.566105 0.824333i \(-0.308450\pi\)
0.566105 + 0.824333i \(0.308450\pi\)
\(500\) −500.000 −0.0447214
\(501\) 0 0
\(502\) −12315.9 −1.09499
\(503\) 11183.5 0.991348 0.495674 0.868509i \(-0.334921\pi\)
0.495674 + 0.868509i \(0.334921\pi\)
\(504\) 0 0
\(505\) −168.018 −0.0148054
\(506\) −1134.24 −0.0996502
\(507\) 0 0
\(508\) 5481.93 0.478782
\(509\) 5066.54 0.441199 0.220599 0.975364i \(-0.429199\pi\)
0.220599 + 0.975364i \(0.429199\pi\)
\(510\) 0 0
\(511\) −3565.88 −0.308699
\(512\) −512.000 −0.0441942
\(513\) 0 0
\(514\) −896.886 −0.0769649
\(515\) 9341.39 0.799283
\(516\) 0 0
\(517\) 6235.99 0.530481
\(518\) −16147.6 −1.36966
\(519\) 0 0
\(520\) 610.723 0.0515038
\(521\) −20873.3 −1.75523 −0.877616 0.479364i \(-0.840867\pi\)
−0.877616 + 0.479364i \(0.840867\pi\)
\(522\) 0 0
\(523\) 8937.71 0.747264 0.373632 0.927577i \(-0.378112\pi\)
0.373632 + 0.927577i \(0.378112\pi\)
\(524\) −7564.58 −0.630649
\(525\) 0 0
\(526\) 12597.5 1.04425
\(527\) 14679.8 1.21340
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 81.2126 0.00665595
\(531\) 0 0
\(532\) −1612.89 −0.131443
\(533\) 4779.93 0.388446
\(534\) 0 0
\(535\) −7194.22 −0.581370
\(536\) −1143.56 −0.0921533
\(537\) 0 0
\(538\) −4213.39 −0.337643
\(539\) 6497.18 0.519209
\(540\) 0 0
\(541\) −14320.8 −1.13808 −0.569038 0.822311i \(-0.692684\pi\)
−0.569038 + 0.822311i \(0.692684\pi\)
\(542\) 6233.83 0.494033
\(543\) 0 0
\(544\) −2519.63 −0.198581
\(545\) 9322.47 0.732717
\(546\) 0 0
\(547\) −17084.3 −1.33541 −0.667706 0.744425i \(-0.732724\pi\)
−0.667706 + 0.744425i \(0.732724\pi\)
\(548\) −8904.86 −0.694155
\(549\) 0 0
\(550\) −1232.87 −0.0955811
\(551\) 598.354 0.0462627
\(552\) 0 0
\(553\) −12845.3 −0.987775
\(554\) −2355.72 −0.180659
\(555\) 0 0
\(556\) −2798.22 −0.213437
\(557\) 21376.9 1.62616 0.813079 0.582153i \(-0.197789\pi\)
0.813079 + 0.582153i \(0.197789\pi\)
\(558\) 0 0
\(559\) −6017.22 −0.455280
\(560\) −1970.18 −0.148670
\(561\) 0 0
\(562\) −10480.6 −0.786651
\(563\) −1867.78 −0.139818 −0.0699091 0.997553i \(-0.522271\pi\)
−0.0699091 + 0.997553i \(0.522271\pi\)
\(564\) 0 0
\(565\) −1988.84 −0.148091
\(566\) −14324.9 −1.06382
\(567\) 0 0
\(568\) 5268.26 0.389175
\(569\) −9340.49 −0.688179 −0.344089 0.938937i \(-0.611812\pi\)
−0.344089 + 0.938937i \(0.611812\pi\)
\(570\) 0 0
\(571\) −5452.88 −0.399643 −0.199821 0.979832i \(-0.564036\pi\)
−0.199821 + 0.979832i \(0.564036\pi\)
\(572\) 1505.88 0.110077
\(573\) 0 0
\(574\) −15419.9 −1.12128
\(575\) 575.000 0.0417029
\(576\) 0 0
\(577\) 3343.59 0.241240 0.120620 0.992699i \(-0.461512\pi\)
0.120620 + 0.992699i \(0.461512\pi\)
\(578\) −2573.44 −0.185192
\(579\) 0 0
\(580\) 730.898 0.0523257
\(581\) 24316.1 1.73632
\(582\) 0 0
\(583\) 200.249 0.0142255
\(584\) 1158.35 0.0820771
\(585\) 0 0
\(586\) −15129.4 −1.06653
\(587\) 19990.7 1.40563 0.702813 0.711375i \(-0.251927\pi\)
0.702813 + 0.711375i \(0.251927\pi\)
\(588\) 0 0
\(589\) −3052.56 −0.213546
\(590\) −1736.59 −0.121176
\(591\) 0 0
\(592\) 5245.46 0.364167
\(593\) −15181.6 −1.05132 −0.525662 0.850694i \(-0.676182\pi\)
−0.525662 + 0.850694i \(0.676182\pi\)
\(594\) 0 0
\(595\) −9695.52 −0.668030
\(596\) 4696.44 0.322775
\(597\) 0 0
\(598\) −702.332 −0.0480275
\(599\) 5524.97 0.376869 0.188434 0.982086i \(-0.439659\pi\)
0.188434 + 0.982086i \(0.439659\pi\)
\(600\) 0 0
\(601\) 22916.0 1.55535 0.777673 0.628669i \(-0.216400\pi\)
0.777673 + 0.628669i \(0.216400\pi\)
\(602\) 19411.4 1.31420
\(603\) 0 0
\(604\) 10932.0 0.736455
\(605\) 3615.08 0.242932
\(606\) 0 0
\(607\) −10630.6 −0.710844 −0.355422 0.934706i \(-0.615663\pi\)
−0.355422 + 0.934706i \(0.615663\pi\)
\(608\) 523.939 0.0349483
\(609\) 0 0
\(610\) 4206.66 0.279218
\(611\) 3861.39 0.255671
\(612\) 0 0
\(613\) −25267.8 −1.66486 −0.832429 0.554132i \(-0.813050\pi\)
−0.832429 + 0.554132i \(0.813050\pi\)
\(614\) −11351.6 −0.746114
\(615\) 0 0
\(616\) −4857.93 −0.317746
\(617\) −21199.3 −1.38323 −0.691615 0.722266i \(-0.743101\pi\)
−0.691615 + 0.722266i \(0.743101\pi\)
\(618\) 0 0
\(619\) −8059.26 −0.523310 −0.261655 0.965161i \(-0.584268\pi\)
−0.261655 + 0.965161i \(0.584268\pi\)
\(620\) −3728.75 −0.241533
\(621\) 0 0
\(622\) 9868.57 0.636163
\(623\) −4340.14 −0.279107
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 8917.35 0.569343
\(627\) 0 0
\(628\) −19.0893 −0.00121297
\(629\) 25813.7 1.63634
\(630\) 0 0
\(631\) 10528.9 0.664262 0.332131 0.943233i \(-0.392232\pi\)
0.332131 + 0.943233i \(0.392232\pi\)
\(632\) 4172.73 0.262630
\(633\) 0 0
\(634\) 8265.75 0.517783
\(635\) −6852.41 −0.428236
\(636\) 0 0
\(637\) 4023.12 0.250239
\(638\) 1802.20 0.111834
\(639\) 0 0
\(640\) 640.000 0.0395285
\(641\) 13680.3 0.842961 0.421481 0.906837i \(-0.361511\pi\)
0.421481 + 0.906837i \(0.361511\pi\)
\(642\) 0 0
\(643\) −8361.27 −0.512809 −0.256405 0.966570i \(-0.582538\pi\)
−0.256405 + 0.966570i \(0.582538\pi\)
\(644\) 2265.70 0.138635
\(645\) 0 0
\(646\) 2578.38 0.157036
\(647\) 31252.2 1.89900 0.949499 0.313769i \(-0.101592\pi\)
0.949499 + 0.313769i \(0.101592\pi\)
\(648\) 0 0
\(649\) −4281.95 −0.258985
\(650\) −763.404 −0.0460664
\(651\) 0 0
\(652\) 6094.04 0.366045
\(653\) −22983.2 −1.37734 −0.688670 0.725075i \(-0.741805\pi\)
−0.688670 + 0.725075i \(0.741805\pi\)
\(654\) 0 0
\(655\) 9455.72 0.564070
\(656\) 5009.07 0.298127
\(657\) 0 0
\(658\) −12456.7 −0.738016
\(659\) −5781.74 −0.341767 −0.170884 0.985291i \(-0.554662\pi\)
−0.170884 + 0.985291i \(0.554662\pi\)
\(660\) 0 0
\(661\) 18973.9 1.11649 0.558244 0.829677i \(-0.311475\pi\)
0.558244 + 0.829677i \(0.311475\pi\)
\(662\) −20639.8 −1.21177
\(663\) 0 0
\(664\) −7898.94 −0.461654
\(665\) 2016.12 0.117567
\(666\) 0 0
\(667\) −840.533 −0.0487940
\(668\) −14415.2 −0.834944
\(669\) 0 0
\(670\) 1429.45 0.0824244
\(671\) 10372.5 0.596760
\(672\) 0 0
\(673\) 13833.4 0.792328 0.396164 0.918180i \(-0.370341\pi\)
0.396164 + 0.918180i \(0.370341\pi\)
\(674\) 19635.2 1.12213
\(675\) 0 0
\(676\) −7855.54 −0.446947
\(677\) 3041.39 0.172659 0.0863295 0.996267i \(-0.472486\pi\)
0.0863295 + 0.996267i \(0.472486\pi\)
\(678\) 0 0
\(679\) 18940.6 1.07050
\(680\) 3149.53 0.177616
\(681\) 0 0
\(682\) −9194.10 −0.516218
\(683\) −3325.43 −0.186302 −0.0931509 0.995652i \(-0.529694\pi\)
−0.0931509 + 0.995652i \(0.529694\pi\)
\(684\) 0 0
\(685\) 11131.1 0.620871
\(686\) 3915.77 0.217937
\(687\) 0 0
\(688\) −6305.68 −0.349421
\(689\) 123.996 0.00685613
\(690\) 0 0
\(691\) −29403.7 −1.61877 −0.809384 0.587280i \(-0.800199\pi\)
−0.809384 + 0.587280i \(0.800199\pi\)
\(692\) −1399.97 −0.0769061
\(693\) 0 0
\(694\) −11655.1 −0.637493
\(695\) 3497.77 0.190904
\(696\) 0 0
\(697\) 24650.3 1.33960
\(698\) −12967.0 −0.703165
\(699\) 0 0
\(700\) 2462.72 0.132974
\(701\) −19653.5 −1.05892 −0.529461 0.848334i \(-0.677606\pi\)
−0.529461 + 0.848334i \(0.677606\pi\)
\(702\) 0 0
\(703\) −5367.78 −0.287980
\(704\) 1578.07 0.0844825
\(705\) 0 0
\(706\) −23070.4 −1.22984
\(707\) 827.563 0.0440222
\(708\) 0 0
\(709\) 36228.5 1.91903 0.959515 0.281659i \(-0.0908846\pi\)
0.959515 + 0.281659i \(0.0908846\pi\)
\(710\) −6585.33 −0.348089
\(711\) 0 0
\(712\) 1409.87 0.0742093
\(713\) 4288.06 0.225230
\(714\) 0 0
\(715\) −1882.35 −0.0984558
\(716\) 5132.69 0.267902
\(717\) 0 0
\(718\) 11845.1 0.615674
\(719\) 3129.71 0.162334 0.0811672 0.996700i \(-0.474135\pi\)
0.0811672 + 0.996700i \(0.474135\pi\)
\(720\) 0 0
\(721\) −46010.5 −2.37659
\(722\) 13181.8 0.679470
\(723\) 0 0
\(724\) 12305.6 0.631678
\(725\) −913.623 −0.0468015
\(726\) 0 0
\(727\) 7184.40 0.366513 0.183256 0.983065i \(-0.441336\pi\)
0.183256 + 0.983065i \(0.441336\pi\)
\(728\) −3008.08 −0.153141
\(729\) 0 0
\(730\) −1447.94 −0.0734120
\(731\) −31031.1 −1.57008
\(732\) 0 0
\(733\) −37118.8 −1.87042 −0.935208 0.354099i \(-0.884788\pi\)
−0.935208 + 0.354099i \(0.884788\pi\)
\(734\) 8085.44 0.406593
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 3524.63 0.176162
\(738\) 0 0
\(739\) −6407.47 −0.318948 −0.159474 0.987202i \(-0.550980\pi\)
−0.159474 + 0.987202i \(0.550980\pi\)
\(740\) −6556.83 −0.325721
\(741\) 0 0
\(742\) −400.008 −0.0197908
\(743\) −23437.3 −1.15724 −0.578620 0.815597i \(-0.696409\pi\)
−0.578620 + 0.815597i \(0.696409\pi\)
\(744\) 0 0
\(745\) −5870.55 −0.288698
\(746\) 18157.4 0.891137
\(747\) 0 0
\(748\) 7765.90 0.379612
\(749\) 35434.7 1.72865
\(750\) 0 0
\(751\) −10463.7 −0.508423 −0.254211 0.967149i \(-0.581816\pi\)
−0.254211 + 0.967149i \(0.581816\pi\)
\(752\) 4046.50 0.196224
\(753\) 0 0
\(754\) 1115.94 0.0538994
\(755\) −13665.1 −0.658705
\(756\) 0 0
\(757\) −27823.5 −1.33588 −0.667941 0.744214i \(-0.732824\pi\)
−0.667941 + 0.744214i \(0.732824\pi\)
\(758\) −13122.8 −0.628816
\(759\) 0 0
\(760\) −654.924 −0.0312587
\(761\) 30228.5 1.43992 0.719962 0.694013i \(-0.244159\pi\)
0.719962 + 0.694013i \(0.244159\pi\)
\(762\) 0 0
\(763\) −45917.3 −2.17866
\(764\) 7151.46 0.338653
\(765\) 0 0
\(766\) 1175.10 0.0554281
\(767\) −2651.43 −0.124821
\(768\) 0 0
\(769\) 3522.42 0.165178 0.0825889 0.996584i \(-0.473681\pi\)
0.0825889 + 0.996584i \(0.473681\pi\)
\(770\) 6072.41 0.284201
\(771\) 0 0
\(772\) −3526.02 −0.164384
\(773\) 508.724 0.0236708 0.0118354 0.999930i \(-0.496233\pi\)
0.0118354 + 0.999930i \(0.496233\pi\)
\(774\) 0 0
\(775\) 4660.94 0.216033
\(776\) −6152.74 −0.284627
\(777\) 0 0
\(778\) −12940.7 −0.596334
\(779\) −5125.87 −0.235755
\(780\) 0 0
\(781\) −16237.7 −0.743955
\(782\) −3621.96 −0.165628
\(783\) 0 0
\(784\) 4215.98 0.192055
\(785\) 23.8616 0.00108491
\(786\) 0 0
\(787\) 30797.9 1.39495 0.697476 0.716608i \(-0.254306\pi\)
0.697476 + 0.716608i \(0.254306\pi\)
\(788\) −8869.14 −0.400952
\(789\) 0 0
\(790\) −5215.92 −0.234904
\(791\) 9795.92 0.440332
\(792\) 0 0
\(793\) 6422.76 0.287615
\(794\) −18237.5 −0.815145
\(795\) 0 0
\(796\) −845.251 −0.0376371
\(797\) −11682.3 −0.519209 −0.259604 0.965715i \(-0.583592\pi\)
−0.259604 + 0.965715i \(0.583592\pi\)
\(798\) 0 0
\(799\) 19913.4 0.881709
\(800\) −800.000 −0.0353553
\(801\) 0 0
\(802\) −6399.51 −0.281764
\(803\) −3570.24 −0.156900
\(804\) 0 0
\(805\) −2832.13 −0.123999
\(806\) −5693.09 −0.248797
\(807\) 0 0
\(808\) −268.829 −0.0117047
\(809\) 6661.27 0.289490 0.144745 0.989469i \(-0.453764\pi\)
0.144745 + 0.989469i \(0.453764\pi\)
\(810\) 0 0
\(811\) −19875.6 −0.860574 −0.430287 0.902692i \(-0.641588\pi\)
−0.430287 + 0.902692i \(0.641588\pi\)
\(812\) −3600.00 −0.155585
\(813\) 0 0
\(814\) −16167.4 −0.696150
\(815\) −7617.56 −0.327400
\(816\) 0 0
\(817\) 6452.72 0.276318
\(818\) −12292.4 −0.525422
\(819\) 0 0
\(820\) −6261.34 −0.266653
\(821\) 17128.2 0.728111 0.364055 0.931377i \(-0.381392\pi\)
0.364055 + 0.931377i \(0.381392\pi\)
\(822\) 0 0
\(823\) −8.41573 −0.000356445 0 −0.000178222 1.00000i \(-0.500057\pi\)
−0.000178222 1.00000i \(0.500057\pi\)
\(824\) 14946.2 0.631889
\(825\) 0 0
\(826\) 8553.45 0.360306
\(827\) −30880.0 −1.29843 −0.649215 0.760605i \(-0.724902\pi\)
−0.649215 + 0.760605i \(0.724902\pi\)
\(828\) 0 0
\(829\) −10566.0 −0.442668 −0.221334 0.975198i \(-0.571041\pi\)
−0.221334 + 0.975198i \(0.571041\pi\)
\(830\) 9873.68 0.412916
\(831\) 0 0
\(832\) 977.157 0.0407173
\(833\) 20747.5 0.862974
\(834\) 0 0
\(835\) 18019.1 0.746797
\(836\) −1614.87 −0.0668079
\(837\) 0 0
\(838\) −19867.5 −0.818988
\(839\) −32747.3 −1.34751 −0.673755 0.738955i \(-0.735320\pi\)
−0.673755 + 0.738955i \(0.735320\pi\)
\(840\) 0 0
\(841\) −23053.5 −0.945240
\(842\) −7307.79 −0.299101
\(843\) 0 0
\(844\) 15759.9 0.642745
\(845\) 9819.43 0.399762
\(846\) 0 0
\(847\) −17805.9 −0.722334
\(848\) 129.940 0.00526199
\(849\) 0 0
\(850\) −3936.91 −0.158865
\(851\) 7540.35 0.303737
\(852\) 0 0
\(853\) −37669.3 −1.51204 −0.756021 0.654547i \(-0.772859\pi\)
−0.756021 + 0.654547i \(0.772859\pi\)
\(854\) −20719.7 −0.830225
\(855\) 0 0
\(856\) −11510.7 −0.459614
\(857\) −18749.5 −0.747340 −0.373670 0.927562i \(-0.621901\pi\)
−0.373670 + 0.927562i \(0.621901\pi\)
\(858\) 0 0
\(859\) −41715.6 −1.65695 −0.828475 0.560026i \(-0.810791\pi\)
−0.828475 + 0.560026i \(0.810791\pi\)
\(860\) 7882.10 0.312532
\(861\) 0 0
\(862\) −6113.75 −0.241572
\(863\) −46493.1 −1.83389 −0.916943 0.399018i \(-0.869351\pi\)
−0.916943 + 0.399018i \(0.869351\pi\)
\(864\) 0 0
\(865\) 1749.97 0.0687869
\(866\) −3406.09 −0.133653
\(867\) 0 0
\(868\) 18365.7 0.718173
\(869\) −12861.1 −0.502050
\(870\) 0 0
\(871\) 2182.49 0.0849034
\(872\) 14916.0 0.579264
\(873\) 0 0
\(874\) 753.163 0.0291489
\(875\) −3078.40 −0.118936
\(876\) 0 0
\(877\) 48214.7 1.85644 0.928218 0.372038i \(-0.121341\pi\)
0.928218 + 0.372038i \(0.121341\pi\)
\(878\) 1517.26 0.0583201
\(879\) 0 0
\(880\) −1972.59 −0.0755635
\(881\) −8809.87 −0.336903 −0.168452 0.985710i \(-0.553877\pi\)
−0.168452 + 0.985710i \(0.553877\pi\)
\(882\) 0 0
\(883\) −50886.4 −1.93937 −0.969684 0.244362i \(-0.921422\pi\)
−0.969684 + 0.244362i \(0.921422\pi\)
\(884\) 4808.73 0.182958
\(885\) 0 0
\(886\) 11942.8 0.452853
\(887\) −42296.0 −1.60108 −0.800542 0.599277i \(-0.795455\pi\)
−0.800542 + 0.599277i \(0.795455\pi\)
\(888\) 0 0
\(889\) 33751.1 1.27332
\(890\) −1762.34 −0.0663748
\(891\) 0 0
\(892\) 16617.9 0.623777
\(893\) −4140.86 −0.155172
\(894\) 0 0
\(895\) −6415.87 −0.239619
\(896\) −3152.28 −0.117534
\(897\) 0 0
\(898\) −7031.23 −0.261287
\(899\) −6813.34 −0.252767
\(900\) 0 0
\(901\) 639.455 0.0236441
\(902\) −15438.8 −0.569906
\(903\) 0 0
\(904\) −3182.15 −0.117076
\(905\) −15382.0 −0.564990
\(906\) 0 0
\(907\) −37554.9 −1.37485 −0.687426 0.726254i \(-0.741260\pi\)
−0.687426 + 0.726254i \(0.741260\pi\)
\(908\) −24533.2 −0.896656
\(909\) 0 0
\(910\) 3760.10 0.136974
\(911\) −23951.7 −0.871080 −0.435540 0.900169i \(-0.643442\pi\)
−0.435540 + 0.900169i \(0.643442\pi\)
\(912\) 0 0
\(913\) 24345.8 0.882508
\(914\) −24311.2 −0.879806
\(915\) 0 0
\(916\) 8976.81 0.323802
\(917\) −46573.6 −1.67720
\(918\) 0 0
\(919\) −8909.66 −0.319807 −0.159904 0.987133i \(-0.551118\pi\)
−0.159904 + 0.987133i \(0.551118\pi\)
\(920\) 920.000 0.0329690
\(921\) 0 0
\(922\) −17709.6 −0.632577
\(923\) −10054.5 −0.358558
\(924\) 0 0
\(925\) 8196.03 0.291334
\(926\) −35817.1 −1.27108
\(927\) 0 0
\(928\) 1169.44 0.0413671
\(929\) 25002.6 0.883003 0.441501 0.897261i \(-0.354446\pi\)
0.441501 + 0.897261i \(0.354446\pi\)
\(930\) 0 0
\(931\) −4314.30 −0.151875
\(932\) −8644.93 −0.303835
\(933\) 0 0
\(934\) 17193.5 0.602342
\(935\) −9707.38 −0.339535
\(936\) 0 0
\(937\) −18592.9 −0.648244 −0.324122 0.946015i \(-0.605069\pi\)
−0.324122 + 0.946015i \(0.605069\pi\)
\(938\) −7040.65 −0.245080
\(939\) 0 0
\(940\) −5058.13 −0.175508
\(941\) 21625.8 0.749183 0.374591 0.927190i \(-0.377783\pi\)
0.374591 + 0.927190i \(0.377783\pi\)
\(942\) 0 0
\(943\) 7200.54 0.248655
\(944\) −2778.54 −0.0957984
\(945\) 0 0
\(946\) 19435.1 0.667961
\(947\) −4477.58 −0.153645 −0.0768224 0.997045i \(-0.524477\pi\)
−0.0768224 + 0.997045i \(0.524477\pi\)
\(948\) 0 0
\(949\) −2210.73 −0.0756200
\(950\) 818.655 0.0279586
\(951\) 0 0
\(952\) −15512.8 −0.528124
\(953\) −54260.8 −1.84436 −0.922182 0.386755i \(-0.873596\pi\)
−0.922182 + 0.386755i \(0.873596\pi\)
\(954\) 0 0
\(955\) −8939.32 −0.302900
\(956\) −13792.7 −0.466620
\(957\) 0 0
\(958\) −24770.3 −0.835379
\(959\) −54825.4 −1.84610
\(960\) 0 0
\(961\) 4967.95 0.166760
\(962\) −10011.0 −0.335518
\(963\) 0 0
\(964\) 6617.72 0.221102
\(965\) 4407.53 0.147029
\(966\) 0 0
\(967\) −26295.4 −0.874462 −0.437231 0.899349i \(-0.644041\pi\)
−0.437231 + 0.899349i \(0.644041\pi\)
\(968\) 5784.13 0.192055
\(969\) 0 0
\(970\) 7690.92 0.254578
\(971\) −21209.6 −0.700978 −0.350489 0.936567i \(-0.613985\pi\)
−0.350489 + 0.936567i \(0.613985\pi\)
\(972\) 0 0
\(973\) −17228.1 −0.567632
\(974\) −8663.95 −0.285021
\(975\) 0 0
\(976\) 6730.66 0.220741
\(977\) 607.767 0.0199019 0.00995097 0.999950i \(-0.496832\pi\)
0.00995097 + 0.999950i \(0.496832\pi\)
\(978\) 0 0
\(979\) −4345.45 −0.141860
\(980\) −5269.98 −0.171779
\(981\) 0 0
\(982\) −22731.9 −0.738702
\(983\) −47859.5 −1.55288 −0.776440 0.630192i \(-0.782976\pi\)
−0.776440 + 0.630192i \(0.782976\pi\)
\(984\) 0 0
\(985\) 11086.4 0.358622
\(986\) 5754.97 0.185878
\(987\) 0 0
\(988\) −999.943 −0.0321988
\(989\) −9064.41 −0.291437
\(990\) 0 0
\(991\) 34510.6 1.10622 0.553111 0.833108i \(-0.313441\pi\)
0.553111 + 0.833108i \(0.313441\pi\)
\(992\) −5966.00 −0.190948
\(993\) 0 0
\(994\) 32435.6 1.03501
\(995\) 1056.56 0.0336637
\(996\) 0 0
\(997\) 21519.8 0.683590 0.341795 0.939775i \(-0.388965\pi\)
0.341795 + 0.939775i \(0.388965\pi\)
\(998\) −25241.1 −0.800593
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.4.a.bg.1.4 4
3.2 odd 2 230.4.a.j.1.3 4
12.11 even 2 1840.4.a.k.1.2 4
15.2 even 4 1150.4.b.o.599.6 8
15.8 even 4 1150.4.b.o.599.3 8
15.14 odd 2 1150.4.a.n.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.j.1.3 4 3.2 odd 2
1150.4.a.n.1.2 4 15.14 odd 2
1150.4.b.o.599.3 8 15.8 even 4
1150.4.b.o.599.6 8 15.2 even 4
1840.4.a.k.1.2 4 12.11 even 2
2070.4.a.bg.1.4 4 1.1 even 1 trivial