Properties

Label 2070.2.a.s
Level $2070$
Weight $2$
Character orbit 2070.a
Self dual yes
Analytic conductor $16.529$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(16.5290332184\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{5} + 4q^{7} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + q^{5} + 4q^{7} + q^{8} + q^{10} + 2q^{11} + 4q^{14} + q^{16} - 2q^{17} + q^{20} + 2q^{22} - q^{23} + q^{25} + 4q^{28} + 4q^{29} + q^{32} - 2q^{34} + 4q^{35} + 10q^{37} + q^{40} - 6q^{41} + 2q^{43} + 2q^{44} - q^{46} - 12q^{47} + 9q^{49} + q^{50} - 6q^{53} + 2q^{55} + 4q^{56} + 4q^{58} - 12q^{59} - 14q^{61} + q^{64} + 2q^{67} - 2q^{68} + 4q^{70} + 2q^{71} + 6q^{73} + 10q^{74} + 8q^{77} + 8q^{79} + q^{80} - 6q^{82} - 8q^{83} - 2q^{85} + 2q^{86} + 2q^{88} + 8q^{89} - q^{92} - 12q^{94} + 9q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 1.00000 0 4.00000 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2070.2.a.s 1
3.b odd 2 1 690.2.a.b 1
12.b even 2 1 5520.2.a.r 1
15.d odd 2 1 3450.2.a.t 1
15.e even 4 2 3450.2.d.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
690.2.a.b 1 3.b odd 2 1
2070.2.a.s 1 1.a even 1 1 trivial
3450.2.a.t 1 15.d odd 2 1
3450.2.d.n 2 15.e even 4 2
5520.2.a.r 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2070))\):

\( T_{7} - 4 \)
\( T_{11} - 2 \)
\( T_{13} \)
\( T_{17} + 2 \)
\( T_{29} - 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( -4 + T \)
$11$ \( -2 + T \)
$13$ \( T \)
$17$ \( 2 + T \)
$19$ \( T \)
$23$ \( 1 + T \)
$29$ \( -4 + T \)
$31$ \( T \)
$37$ \( -10 + T \)
$41$ \( 6 + T \)
$43$ \( -2 + T \)
$47$ \( 12 + T \)
$53$ \( 6 + T \)
$59$ \( 12 + T \)
$61$ \( 14 + T \)
$67$ \( -2 + T \)
$71$ \( -2 + T \)
$73$ \( -6 + T \)
$79$ \( -8 + T \)
$83$ \( 8 + T \)
$89$ \( -8 + T \)
$97$ \( T \)
show more
show less