Properties

Label 2070.2.a.k.1.1
Level $2070$
Weight $2$
Character 2070.1
Self dual yes
Analytic conductor $16.529$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(16.5290332184\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2070.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} -2.00000 q^{7} +1.00000 q^{8} -1.00000 q^{10} -2.00000 q^{11} -2.00000 q^{13} -2.00000 q^{14} +1.00000 q^{16} +8.00000 q^{19} -1.00000 q^{20} -2.00000 q^{22} +1.00000 q^{23} +1.00000 q^{25} -2.00000 q^{26} -2.00000 q^{28} +10.0000 q^{29} +8.00000 q^{31} +1.00000 q^{32} +2.00000 q^{35} +8.00000 q^{37} +8.00000 q^{38} -1.00000 q^{40} +6.00000 q^{41} +12.0000 q^{43} -2.00000 q^{44} +1.00000 q^{46} -8.00000 q^{47} -3.00000 q^{49} +1.00000 q^{50} -2.00000 q^{52} -10.0000 q^{53} +2.00000 q^{55} -2.00000 q^{56} +10.0000 q^{58} -4.00000 q^{59} +12.0000 q^{61} +8.00000 q^{62} +1.00000 q^{64} +2.00000 q^{65} -4.00000 q^{67} +2.00000 q^{70} -16.0000 q^{71} -10.0000 q^{73} +8.00000 q^{74} +8.00000 q^{76} +4.00000 q^{77} +10.0000 q^{79} -1.00000 q^{80} +6.00000 q^{82} +10.0000 q^{83} +12.0000 q^{86} -2.00000 q^{88} +4.00000 q^{91} +1.00000 q^{92} -8.00000 q^{94} -8.00000 q^{95} +10.0000 q^{97} -3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 8.00000 1.29777
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) 10.0000 1.31306
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 12.0000 1.53644 0.768221 0.640184i \(-0.221142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.00000 0.248069
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 2.00000 0.239046
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) −1.00000 −0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 10.0000 1.09764 0.548821 0.835940i \(-0.315077\pi\)
0.548821 + 0.835940i \(0.315077\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 12.0000 1.29399
\(87\) 0 0
\(88\) −2.00000 −0.213201
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 1.00000 0.104257
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) −2.00000 −0.197066 −0.0985329 0.995134i \(-0.531415\pi\)
−0.0985329 + 0.995134i \(0.531415\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 10.0000 0.928477
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 12.0000 1.08643
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 2.00000 0.175412
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) −16.0000 −1.38738
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 2.00000 0.169031
\(141\) 0 0
\(142\) −16.0000 −1.34269
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) −10.0000 −0.830455
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 8.00000 0.648886
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −8.00000 −0.638470 −0.319235 0.947676i \(-0.603426\pi\)
−0.319235 + 0.947676i \(0.603426\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 10.0000 0.776151
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 12.0000 0.914991
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 1.00000 0.0737210
\(185\) −8.00000 −0.588172
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −8.00000 −0.580381
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −26.0000 −1.85242 −0.926212 0.377004i \(-0.876954\pi\)
−0.926212 + 0.377004i \(0.876954\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) −10.0000 −0.703598
\(203\) −20.0000 −1.40372
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) −2.00000 −0.139347
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −10.0000 −0.686803
\(213\) 0 0
\(214\) 10.0000 0.683586
\(215\) −12.0000 −0.818393
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) −8.00000 −0.541828
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) 0 0
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −8.00000 −0.532152
\(227\) −14.0000 −0.929213 −0.464606 0.885517i \(-0.653804\pi\)
−0.464606 + 0.885517i \(0.653804\pi\)
\(228\) 0 0
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) −1.00000 −0.0659380
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) −4.00000 −0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) 12.0000 0.768221
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) −16.0000 −1.01806
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 14.0000 0.883672 0.441836 0.897096i \(-0.354327\pi\)
0.441836 + 0.897096i \(0.354327\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 8.00000 0.494242
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) −16.0000 −0.981023
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 28.0000 1.70088 0.850439 0.526073i \(-0.176336\pi\)
0.850439 + 0.526073i \(0.176336\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) −6.00000 −0.360505 −0.180253 0.983620i \(-0.557691\pi\)
−0.180253 + 0.983620i \(0.557691\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) 2.00000 0.119523
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) −16.0000 −0.949425
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −10.0000 −0.587220
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 8.00000 0.464991
\(297\) 0 0
\(298\) 10.0000 0.579284
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) 20.0000 1.15087
\(303\) 0 0
\(304\) 8.00000 0.458831
\(305\) −12.0000 −0.687118
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 4.00000 0.227921
\(309\) 0 0
\(310\) −8.00000 −0.454369
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) −8.00000 −0.451466
\(315\) 0 0
\(316\) 10.0000 0.562544
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −20.0000 −1.11979
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) −2.00000 −0.111456
\(323\) 0 0
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 10.0000 0.548821
\(333\) 0 0
\(334\) 8.00000 0.437741
\(335\) 4.00000 0.218543
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) −2.00000 −0.106600
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 0 0
\(357\) 0 0
\(358\) 16.0000 0.845626
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 16.0000 0.840941
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) 10.0000 0.523424
\(366\) 0 0
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) 1.00000 0.0521286
\(369\) 0 0
\(370\) −8.00000 −0.415900
\(371\) 20.0000 1.03835
\(372\) 0 0
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −20.0000 −1.03005
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) −8.00000 −0.410391
\(381\) 0 0
\(382\) 16.0000 0.818631
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) −4.00000 −0.203859
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) 10.0000 0.507673
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −3.00000 −0.151523
\(393\) 0 0
\(394\) −26.0000 −1.30986
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) −14.0000 −0.701757
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 16.0000 0.799002 0.399501 0.916733i \(-0.369183\pi\)
0.399501 + 0.916733i \(0.369183\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) −20.0000 −0.992583
\(407\) −16.0000 −0.793091
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) −6.00000 −0.296319
\(411\) 0 0
\(412\) −2.00000 −0.0985329
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) −10.0000 −0.490881
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) −16.0000 −0.782586
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) −36.0000 −1.75453 −0.877266 0.480004i \(-0.840635\pi\)
−0.877266 + 0.480004i \(0.840635\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) −10.0000 −0.485643
\(425\) 0 0
\(426\) 0 0
\(427\) −24.0000 −1.16144
\(428\) 10.0000 0.483368
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) −16.0000 −0.768025
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) 28.0000 1.33032 0.665160 0.746701i \(-0.268363\pi\)
0.665160 + 0.746701i \(0.268363\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −4.00000 −0.189405
\(447\) 0 0
\(448\) −2.00000 −0.0944911
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −12.0000 −0.565058
\(452\) −8.00000 −0.376288
\(453\) 0 0
\(454\) −14.0000 −0.657053
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) −16.0000 −0.747631
\(459\) 0 0
\(460\) −1.00000 −0.0466252
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 10.0000 0.464238
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 8.00000 0.369012
\(471\) 0 0
\(472\) −4.00000 −0.184115
\(473\) −24.0000 −1.10352
\(474\) 0 0
\(475\) 8.00000 0.367065
\(476\) 0 0
\(477\) 0 0
\(478\) 16.0000 0.731823
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −16.0000 −0.729537
\(482\) 10.0000 0.455488
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) −40.0000 −1.81257 −0.906287 0.422664i \(-0.861095\pi\)
−0.906287 + 0.422664i \(0.861095\pi\)
\(488\) 12.0000 0.543214
\(489\) 0 0
\(490\) 3.00000 0.135526
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 32.0000 1.43540
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 14.0000 0.624851
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 10.0000 0.444994
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 20.0000 0.884748
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) 2.00000 0.0881305
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) −16.0000 −0.703000
\(519\) 0 0
\(520\) 2.00000 0.0877058
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 8.00000 0.349482
\(525\) 0 0
\(526\) −4.00000 −0.174408
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 10.0000 0.434372
\(531\) 0 0
\(532\) −16.0000 −0.693688
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) −10.0000 −0.432338
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −38.0000 −1.63375 −0.816874 0.576816i \(-0.804295\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 28.0000 1.20270
\(543\) 0 0
\(544\) 0 0
\(545\) 8.00000 0.342682
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 12.0000 0.512615
\(549\) 0 0
\(550\) −2.00000 −0.0852803
\(551\) 80.0000 3.40811
\(552\) 0 0
\(553\) −20.0000 −0.850487
\(554\) −6.00000 −0.254916
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 16.0000 0.674919
\(563\) −6.00000 −0.252870 −0.126435 0.991975i \(-0.540353\pi\)
−0.126435 + 0.991975i \(0.540353\pi\)
\(564\) 0 0
\(565\) 8.00000 0.336563
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) −16.0000 −0.671345
\(569\) 32.0000 1.34151 0.670755 0.741679i \(-0.265970\pi\)
0.670755 + 0.741679i \(0.265970\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 4.00000 0.167248
\(573\) 0 0
\(574\) −12.0000 −0.500870
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −17.0000 −0.707107
\(579\) 0 0
\(580\) −10.0000 −0.415227
\(581\) −20.0000 −0.829740
\(582\) 0 0
\(583\) 20.0000 0.828315
\(584\) −10.0000 −0.413803
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 64.0000 2.63707
\(590\) 4.00000 0.164677
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) −2.00000 −0.0817861
\(599\) −32.0000 −1.30748 −0.653742 0.756717i \(-0.726802\pi\)
−0.653742 + 0.756717i \(0.726802\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) −24.0000 −0.978167
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 12.0000 0.487065 0.243532 0.969893i \(-0.421694\pi\)
0.243532 + 0.969893i \(0.421694\pi\)
\(608\) 8.00000 0.324443
\(609\) 0 0
\(610\) −12.0000 −0.485866
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −44.0000 −1.77714 −0.888572 0.458738i \(-0.848302\pi\)
−0.888572 + 0.458738i \(0.848302\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) −48.0000 −1.93241 −0.966204 0.257780i \(-0.917009\pi\)
−0.966204 + 0.257780i \(0.917009\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) −8.00000 −0.321288
\(621\) 0 0
\(622\) −16.0000 −0.641542
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −10.0000 −0.399680
\(627\) 0 0
\(628\) −8.00000 −0.319235
\(629\) 0 0
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) −6.00000 −0.238290
\(635\) 4.00000 0.158735
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) −20.0000 −0.791808
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) −2.00000 −0.0788110
\(645\) 0 0
\(646\) 0 0
\(647\) 40.0000 1.57256 0.786281 0.617869i \(-0.212004\pi\)
0.786281 + 0.617869i \(0.212004\pi\)
\(648\) 0 0
\(649\) 8.00000 0.314027
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 4.00000 0.156652
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 0 0
\(655\) −8.00000 −0.312586
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 16.0000 0.623745
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) −12.0000 −0.466393
\(663\) 0 0
\(664\) 10.0000 0.388075
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 10.0000 0.387202
\(668\) 8.00000 0.309529
\(669\) 0 0
\(670\) 4.00000 0.154533
\(671\) −24.0000 −0.926510
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −46.0000 −1.76792 −0.883962 0.467559i \(-0.845134\pi\)
−0.883962 + 0.467559i \(0.845134\pi\)
\(678\) 0 0
\(679\) −20.0000 −0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) −16.0000 −0.612672
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 12.0000 0.457496
\(689\) 20.0000 0.761939
\(690\) 0 0
\(691\) −52.0000 −1.97817 −0.989087 0.147335i \(-0.952930\pi\)
−0.989087 + 0.147335i \(0.952930\pi\)
\(692\) 2.00000 0.0760286
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 20.0000 0.758643
\(696\) 0 0
\(697\) 0 0
\(698\) −6.00000 −0.227103
\(699\) 0 0
\(700\) −2.00000 −0.0755929
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 64.0000 2.41381
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 20.0000 0.752177
\(708\) 0 0
\(709\) 28.0000 1.05156 0.525781 0.850620i \(-0.323773\pi\)
0.525781 + 0.850620i \(0.323773\pi\)
\(710\) 16.0000 0.600469
\(711\) 0 0
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) −4.00000 −0.149592
\(716\) 16.0000 0.597948
\(717\) 0 0
\(718\) −8.00000 −0.298557
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 4.00000 0.148968
\(722\) 45.0000 1.67473
\(723\) 0 0
\(724\) 16.0000 0.594635
\(725\) 10.0000 0.371391
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 4.00000 0.148250
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) 0 0
\(732\) 0 0
\(733\) −52.0000 −1.92066 −0.960332 0.278859i \(-0.910044\pi\)
−0.960332 + 0.278859i \(0.910044\pi\)
\(734\) 18.0000 0.664392
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) −8.00000 −0.294086
\(741\) 0 0
\(742\) 20.0000 0.734223
\(743\) 28.0000 1.02722 0.513610 0.858024i \(-0.328308\pi\)
0.513610 + 0.858024i \(0.328308\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) −24.0000 −0.878702
\(747\) 0 0
\(748\) 0 0
\(749\) −20.0000 −0.730784
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) −8.00000 −0.291730
\(753\) 0 0
\(754\) −20.0000 −0.728357
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 8.00000 0.290573
\(759\) 0 0
\(760\) −8.00000 −0.290191
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 16.0000 0.579239
\(764\) 16.0000 0.578860
\(765\) 0 0
\(766\) −36.0000 −1.30073
\(767\) 8.00000 0.288863
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) −4.00000 −0.144150
\(771\) 0 0
\(772\) 14.0000 0.503871
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 10.0000 0.358979
\(777\) 0 0
\(778\) 2.00000 0.0717035
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 8.00000 0.285532
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) −26.0000 −0.926212
\(789\) 0 0
\(790\) −10.0000 −0.355784
\(791\) 16.0000 0.568895
\(792\) 0 0
\(793\) −24.0000 −0.852265
\(794\) −10.0000 −0.354887
\(795\) 0 0
\(796\) −14.0000 −0.496217
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 16.0000 0.564980
\(803\) 20.0000 0.705785
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) −16.0000 −0.563576
\(807\) 0 0
\(808\) −10.0000 −0.351799
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) −20.0000 −0.701862
\(813\) 0 0
\(814\) −16.0000 −0.560800
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) 96.0000 3.35861
\(818\) −10.0000 −0.349642
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) −42.0000 −1.46581 −0.732905 0.680331i \(-0.761836\pi\)
−0.732905 + 0.680331i \(0.761836\pi\)
\(822\) 0 0
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) −2.00000 −0.0696733
\(825\) 0 0
\(826\) 8.00000 0.278356
\(827\) 6.00000 0.208640 0.104320 0.994544i \(-0.466733\pi\)
0.104320 + 0.994544i \(0.466733\pi\)
\(828\) 0 0
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) −10.0000 −0.347105
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) −30.0000 −1.03633
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −36.0000 −1.24064
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) −10.0000 −0.343401
\(849\) 0 0
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) −24.0000 −0.821263
\(855\) 0 0
\(856\) 10.0000 0.341793
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) −12.0000 −0.409197
\(861\) 0 0
\(862\) 28.0000 0.953684
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 14.0000 0.475739
\(867\) 0 0
\(868\) −16.0000 −0.543075
\(869\) −20.0000 −0.678454
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) −8.00000 −0.270914
\(873\) 0 0
\(874\) 8.00000 0.270604
\(875\) 2.00000 0.0676123
\(876\) 0 0
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 16.0000 0.539974
\(879\) 0 0
\(880\) 2.00000 0.0674200
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 28.0000 0.940678
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) −64.0000 −2.14168
\(894\) 0 0
\(895\) −16.0000 −0.534821
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) −18.0000 −0.600668
\(899\) 80.0000 2.66815
\(900\) 0 0
\(901\) 0 0
\(902\) −12.0000 −0.399556
\(903\) 0 0
\(904\) −8.00000 −0.266076
\(905\) −16.0000 −0.531858
\(906\) 0 0
\(907\) 40.0000 1.32818 0.664089 0.747653i \(-0.268820\pi\)
0.664089 + 0.747653i \(0.268820\pi\)
\(908\) −14.0000 −0.464606
\(909\) 0 0
\(910\) −4.00000 −0.132599
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) −20.0000 −0.661903
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) −16.0000 −0.528655
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) 26.0000 0.857661 0.428830 0.903385i \(-0.358926\pi\)
0.428830 + 0.903385i \(0.358926\pi\)
\(920\) −1.00000 −0.0329690
\(921\) 0 0
\(922\) 30.0000 0.987997
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 8.00000 0.262896
\(927\) 0 0
\(928\) 10.0000 0.328266
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) −24.0000 −0.786568
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) 6.00000 0.196326
\(935\) 0 0
\(936\) 0 0
\(937\) −30.0000 −0.980057 −0.490029 0.871706i \(-0.663014\pi\)
−0.490029 + 0.871706i \(0.663014\pi\)
\(938\) 8.00000 0.261209
\(939\) 0 0
\(940\) 8.00000 0.260931
\(941\) 34.0000 1.10837 0.554184 0.832394i \(-0.313030\pi\)
0.554184 + 0.832394i \(0.313030\pi\)
\(942\) 0 0
\(943\) 6.00000 0.195387
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) −24.0000 −0.780307
\(947\) 8.00000 0.259965 0.129983 0.991516i \(-0.458508\pi\)
0.129983 + 0.991516i \(0.458508\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 8.00000 0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) −8.00000 −0.259145 −0.129573 0.991570i \(-0.541361\pi\)
−0.129573 + 0.991570i \(0.541361\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) −24.0000 −0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) −16.0000 −0.515861
\(963\) 0 0
\(964\) 10.0000 0.322078
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) −56.0000 −1.80084 −0.900419 0.435023i \(-0.856740\pi\)
−0.900419 + 0.435023i \(0.856740\pi\)
\(968\) −7.00000 −0.224989
\(969\) 0 0
\(970\) −10.0000 −0.321081
\(971\) −30.0000 −0.962746 −0.481373 0.876516i \(-0.659862\pi\)
−0.481373 + 0.876516i \(0.659862\pi\)
\(972\) 0 0
\(973\) 40.0000 1.28234
\(974\) −40.0000 −1.28168
\(975\) 0 0
\(976\) 12.0000 0.384111
\(977\) 20.0000 0.639857 0.319928 0.947442i \(-0.396341\pi\)
0.319928 + 0.947442i \(0.396341\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 3.00000 0.0958315
\(981\) 0 0
\(982\) 0 0
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) 26.0000 0.828429
\(986\) 0 0
\(987\) 0 0
\(988\) −16.0000 −0.509028
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) 32.0000 1.01498
\(995\) 14.0000 0.443830
\(996\) 0 0
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) −4.00000 −0.126618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.2.a.k.1.1 1
3.2 odd 2 690.2.a.c.1.1 1
12.11 even 2 5520.2.a.bg.1.1 1
15.2 even 4 3450.2.d.q.2899.1 2
15.8 even 4 3450.2.d.q.2899.2 2
15.14 odd 2 3450.2.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
690.2.a.c.1.1 1 3.2 odd 2
2070.2.a.k.1.1 1 1.1 even 1 trivial
3450.2.a.z.1.1 1 15.14 odd 2
3450.2.d.q.2899.1 2 15.2 even 4
3450.2.d.q.2899.2 2 15.8 even 4
5520.2.a.bg.1.1 1 12.11 even 2