Properties

Label 2070.2.a.h
Level $2070$
Weight $2$
Character orbit 2070.a
Self dual yes
Analytic conductor $16.529$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(16.5290332184\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + q^{5} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} + 6q^{13} + q^{16} - 2q^{17} + q^{20} + q^{23} + q^{25} - 6q^{26} - 6q^{29} + 8q^{31} - q^{32} + 2q^{34} + 10q^{37} - q^{40} + 6q^{41} - 8q^{43} - q^{46} - 8q^{47} - 7q^{49} - q^{50} + 6q^{52} + 6q^{53} + 6q^{58} + 4q^{59} - 6q^{61} - 8q^{62} + q^{64} + 6q^{65} + 8q^{67} - 2q^{68} + 8q^{71} + 10q^{73} - 10q^{74} - 8q^{79} + q^{80} - 6q^{82} + 8q^{83} - 2q^{85} + 8q^{86} + 6q^{89} + q^{92} + 8q^{94} + 18q^{97} + 7q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 1.00000 0 0 −1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2070.2.a.h 1
3.b odd 2 1 690.2.a.h 1
12.b even 2 1 5520.2.a.x 1
15.d odd 2 1 3450.2.a.j 1
15.e even 4 2 3450.2.d.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
690.2.a.h 1 3.b odd 2 1
2070.2.a.h 1 1.a even 1 1 trivial
3450.2.a.j 1 15.d odd 2 1
3450.2.d.e 2 15.e even 4 2
5520.2.a.x 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2070))\):

\( T_{7} \)
\( T_{11} \)
\( T_{13} - 6 \)
\( T_{17} + 2 \)
\( T_{29} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( T \)
$11$ \( T \)
$13$ \( -6 + T \)
$17$ \( 2 + T \)
$19$ \( T \)
$23$ \( -1 + T \)
$29$ \( 6 + T \)
$31$ \( -8 + T \)
$37$ \( -10 + T \)
$41$ \( -6 + T \)
$43$ \( 8 + T \)
$47$ \( 8 + T \)
$53$ \( -6 + T \)
$59$ \( -4 + T \)
$61$ \( 6 + T \)
$67$ \( -8 + T \)
$71$ \( -8 + T \)
$73$ \( -10 + T \)
$79$ \( 8 + T \)
$83$ \( -8 + T \)
$89$ \( -6 + T \)
$97$ \( -18 + T \)
show more
show less