Properties

Label 2070.2.a.g.1.1
Level $2070$
Weight $2$
Character 2070.1
Self dual yes
Analytic conductor $16.529$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(16.5290332184\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 690)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2070.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} -1.00000 q^{8} -1.00000 q^{10} -2.00000 q^{11} +1.00000 q^{16} -6.00000 q^{17} +4.00000 q^{19} +1.00000 q^{20} +2.00000 q^{22} -1.00000 q^{23} +1.00000 q^{25} -8.00000 q^{31} -1.00000 q^{32} +6.00000 q^{34} -6.00000 q^{37} -4.00000 q^{38} -1.00000 q^{40} +2.00000 q^{41} -2.00000 q^{43} -2.00000 q^{44} +1.00000 q^{46} -4.00000 q^{47} -7.00000 q^{49} -1.00000 q^{50} +2.00000 q^{53} -2.00000 q^{55} -2.00000 q^{61} +8.00000 q^{62} +1.00000 q^{64} -2.00000 q^{67} -6.00000 q^{68} +10.0000 q^{71} -10.0000 q^{73} +6.00000 q^{74} +4.00000 q^{76} +1.00000 q^{80} -2.00000 q^{82} +4.00000 q^{83} -6.00000 q^{85} +2.00000 q^{86} +2.00000 q^{88} -4.00000 q^{89} -1.00000 q^{92} +4.00000 q^{94} +4.00000 q^{95} +16.0000 q^{97} +7.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −4.00000 −0.648886
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 8.00000 1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0000 1.18678 0.593391 0.804914i \(-0.297789\pi\)
0.593391 + 0.804914i \(0.297789\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −6.00000 −0.650791
\(86\) 2.00000 0.215666
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.00000 −0.104257
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 7.00000 0.707107
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) −8.00000 −0.718421
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 0.172774
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −10.0000 −0.839181
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) −6.00000 −0.493197
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) 0 0
\(162\) 0 0
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 4.00000 0.299813
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000 0.0737210
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) −4.00000 −0.291730
\(189\) 0 0
\(190\) −4.00000 −0.290191
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −14.0000 −1.00774 −0.503871 0.863779i \(-0.668091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) −16.0000 −1.14873
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 16.0000 1.11477
\(207\) 0 0
\(208\) 0 0
\(209\) −8.00000 −0.553372
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 2.00000 0.137361
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 0 0
\(218\) −2.00000 −0.135457
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) 0 0
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.0000 0.665190
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 1.00000 0.0659380
\(231\) 0 0
\(232\) 0 0
\(233\) −22.0000 −1.44127 −0.720634 0.693316i \(-0.756149\pi\)
−0.720634 + 0.693316i \(0.756149\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) 0 0
\(248\) 8.00000 0.508001
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) −6.00000 −0.376473
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −4.00000 −0.247121
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 0 0
\(265\) 2.00000 0.122859
\(266\) 0 0
\(267\) 0 0
\(268\) −2.00000 −0.122169
\(269\) −28.0000 −1.70719 −0.853595 0.520937i \(-0.825583\pi\)
−0.853595 + 0.520937i \(0.825583\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) 2.00000 0.120824
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 24.0000 1.44202 0.721010 0.692925i \(-0.243678\pi\)
0.721010 + 0.692925i \(0.243678\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 10.0000 0.594438 0.297219 0.954809i \(-0.403941\pi\)
0.297219 + 0.954809i \(0.403941\pi\)
\(284\) 10.0000 0.593391
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) −10.0000 −0.585206
\(293\) −22.0000 −1.28525 −0.642627 0.766179i \(-0.722155\pi\)
−0.642627 + 0.766179i \(0.722155\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 10.0000 0.579284
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 20.0000 1.15087
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.00000 0.454369
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) −20.0000 −1.13047 −0.565233 0.824931i \(-0.691214\pi\)
−0.565233 + 0.824931i \(0.691214\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 0 0
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 0 0
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −2.00000 −0.110432
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000 0.219860 0.109930 0.993939i \(-0.464937\pi\)
0.109930 + 0.993939i \(0.464937\pi\)
\(332\) 4.00000 0.219529
\(333\) 0 0
\(334\) 8.00000 0.437741
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 28.0000 1.52526 0.762629 0.646837i \(-0.223908\pi\)
0.762629 + 0.646837i \(0.223908\pi\)
\(338\) 13.0000 0.707107
\(339\) 0 0
\(340\) −6.00000 −0.325396
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 0 0
\(344\) 2.00000 0.107833
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 10.0000 0.530745
\(356\) −4.00000 −0.212000
\(357\) 0 0
\(358\) −24.0000 −1.26844
\(359\) 32.0000 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −6.00000 −0.315353
\(363\) 0 0
\(364\) 0 0
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 0 0
\(370\) 6.00000 0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) −12.0000 −0.620505
\(375\) 0 0
\(376\) 4.00000 0.206284
\(377\) 0 0
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 4.00000 0.205196
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) 0 0
\(388\) 16.0000 0.812277
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 7.00000 0.353553
\(393\) 0 0
\(394\) 14.0000 0.705310
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) −24.0000 −1.20301
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) 0 0
\(409\) 22.0000 1.08783 0.543915 0.839140i \(-0.316941\pi\)
0.543915 + 0.839140i \(0.316941\pi\)
\(410\) −2.00000 −0.0987730
\(411\) 0 0
\(412\) −16.0000 −0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 0 0
\(418\) 8.00000 0.391293
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) −2.00000 −0.0971286
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 2.00000 0.0964486
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.00000 0.0957826
\(437\) −4.00000 −0.191346
\(438\) 0 0
\(439\) −12.0000 −0.572729 −0.286364 0.958121i \(-0.592447\pi\)
−0.286364 + 0.958121i \(0.592447\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) 0 0
\(443\) −36.0000 −1.71041 −0.855206 0.518289i \(-0.826569\pi\)
−0.855206 + 0.518289i \(0.826569\pi\)
\(444\) 0 0
\(445\) −4.00000 −0.189618
\(446\) 14.0000 0.662919
\(447\) 0 0
\(448\) 0 0
\(449\) 2.00000 0.0943858 0.0471929 0.998886i \(-0.484972\pi\)
0.0471929 + 0.998886i \(0.484972\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) −10.0000 −0.470360
\(453\) 0 0
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) 0 0
\(457\) −8.00000 −0.374224 −0.187112 0.982339i \(-0.559913\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) −1.00000 −0.0466252
\(461\) −32.0000 −1.49039 −0.745194 0.666847i \(-0.767643\pi\)
−0.745194 + 0.666847i \(0.767643\pi\)
\(462\) 0 0
\(463\) 34.0000 1.58011 0.790057 0.613033i \(-0.210051\pi\)
0.790057 + 0.613033i \(0.210051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 22.0000 1.01913
\(467\) 4.00000 0.185098 0.0925490 0.995708i \(-0.470499\pi\)
0.0925490 + 0.995708i \(0.470499\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.00000 0.184506
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) −26.0000 −1.18921
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −2.00000 −0.0910975
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) 16.0000 0.726523
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 2.00000 0.0905357
\(489\) 0 0
\(490\) 7.00000 0.316228
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) −36.0000 −1.61158 −0.805791 0.592200i \(-0.798259\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) −18.0000 −0.803379
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.00000 −0.0889108
\(507\) 0 0
\(508\) 6.00000 0.266207
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 6.00000 0.264649
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −36.0000 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(522\) 0 0
\(523\) 34.0000 1.48672 0.743358 0.668894i \(-0.233232\pi\)
0.743358 + 0.668894i \(0.233232\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) 48.0000 2.09091
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −2.00000 −0.0868744
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 2.00000 0.0863868
\(537\) 0 0
\(538\) 28.0000 1.20717
\(539\) 14.0000 0.603023
\(540\) 0 0
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) 6.00000 0.257248
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) −2.00000 −0.0854358
\(549\) 0 0
\(550\) 2.00000 0.0852803
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −24.0000 −1.01966
\(555\) 0 0
\(556\) 12.0000 0.508913
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 12.0000 0.506189
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) 0 0
\(565\) −10.0000 −0.420703
\(566\) −10.0000 −0.420331
\(567\) 0 0
\(568\) −10.0000 −0.419591
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −19.0000 −0.790296
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −4.00000 −0.165663
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) 22.0000 0.908812
\(587\) 28.0000 1.15568 0.577842 0.816149i \(-0.303895\pi\)
0.577842 + 0.816149i \(0.303895\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) 0 0
\(592\) −6.00000 −0.246598
\(593\) 42.0000 1.72473 0.862367 0.506284i \(-0.168981\pi\)
0.862367 + 0.506284i \(0.168981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) 0 0
\(599\) −26.0000 −1.06233 −0.531166 0.847268i \(-0.678246\pi\)
−0.531166 + 0.847268i \(0.678246\pi\)
\(600\) 0 0
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 2.00000 0.0809776
\(611\) 0 0
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) −8.00000 −0.321288
\(621\) 0 0
\(622\) −2.00000 −0.0801927
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 20.0000 0.799361
\(627\) 0 0
\(628\) −6.00000 −0.239426
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −6.00000 −0.238290
\(635\) 6.00000 0.238103
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −4.00000 −0.157991 −0.0789953 0.996875i \(-0.525171\pi\)
−0.0789953 + 0.996875i \(0.525171\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.0000 0.944267
\(647\) 36.0000 1.41531 0.707653 0.706560i \(-0.249754\pi\)
0.707653 + 0.706560i \(0.249754\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −8.00000 −0.313304
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 0 0
\(655\) 4.00000 0.156293
\(656\) 2.00000 0.0780869
\(657\) 0 0
\(658\) 0 0
\(659\) −18.0000 −0.701180 −0.350590 0.936529i \(-0.614019\pi\)
−0.350590 + 0.936529i \(0.614019\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) −4.00000 −0.155464
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −8.00000 −0.309529
\(669\) 0 0
\(670\) 2.00000 0.0772667
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) −28.0000 −1.07852
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) −16.0000 −0.612672
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) 0 0
\(685\) −2.00000 −0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) −2.00000 −0.0762493
\(689\) 0 0
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) −26.0000 −0.984115
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −24.0000 −0.905177
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) 0 0
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) −10.0000 −0.375293
\(711\) 0 0
\(712\) 4.00000 0.149906
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 0 0
\(718\) −32.0000 −1.19423
\(719\) 22.0000 0.820462 0.410231 0.911982i \(-0.365448\pi\)
0.410231 + 0.911982i \(0.365448\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 0 0
\(724\) 6.00000 0.222988
\(725\) 0 0
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) −16.0000 −0.590571
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 6.00000 0.219676
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) 0 0
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) −4.00000 −0.145865
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 8.00000 0.290573
\(759\) 0 0
\(760\) −4.00000 −0.145095
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 0 0
\(768\) 0 0
\(769\) −42.0000 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14.0000 −0.503871
\(773\) −38.0000 −1.36677 −0.683383 0.730061i \(-0.739492\pi\)
−0.683383 + 0.730061i \(0.739492\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) −16.0000 −0.574367
\(777\) 0 0
\(778\) −18.0000 −0.645331
\(779\) 8.00000 0.286630
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) −6.00000 −0.214560
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) −6.00000 −0.214149
\(786\) 0 0
\(787\) 18.0000 0.641631 0.320815 0.947142i \(-0.396043\pi\)
0.320815 + 0.947142i \(0.396043\pi\)
\(788\) −14.0000 −0.498729
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −8.00000 −0.283909
\(795\) 0 0
\(796\) 24.0000 0.850657
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 0 0
\(803\) 20.0000 0.705785
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −12.0000 −0.420600
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) −22.0000 −0.769212
\(819\) 0 0
\(820\) 2.00000 0.0698430
\(821\) −44.0000 −1.53561 −0.767805 0.640683i \(-0.778651\pi\)
−0.767805 + 0.640683i \(0.778651\pi\)
\(822\) 0 0
\(823\) −10.0000 −0.348578 −0.174289 0.984695i \(-0.555763\pi\)
−0.174289 + 0.984695i \(0.555763\pi\)
\(824\) 16.0000 0.557386
\(825\) 0 0
\(826\) 0 0
\(827\) 32.0000 1.11275 0.556375 0.830932i \(-0.312192\pi\)
0.556375 + 0.830932i \(0.312192\pi\)
\(828\) 0 0
\(829\) −6.00000 −0.208389 −0.104194 0.994557i \(-0.533226\pi\)
−0.104194 + 0.994557i \(0.533226\pi\)
\(830\) −4.00000 −0.138842
\(831\) 0 0
\(832\) 0 0
\(833\) 42.0000 1.45521
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) −8.00000 −0.276686
\(837\) 0 0
\(838\) −6.00000 −0.207267
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −22.0000 −0.758170
\(843\) 0 0
\(844\) −20.0000 −0.688428
\(845\) −13.0000 −0.447214
\(846\) 0 0
\(847\) 0 0
\(848\) 2.00000 0.0686803
\(849\) 0 0
\(850\) 6.00000 0.205798
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) −2.00000 −0.0681994
\(861\) 0 0
\(862\) −40.0000 −1.36241
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) −32.0000 −1.08740
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −2.00000 −0.0677285
\(873\) 0 0
\(874\) 4.00000 0.135302
\(875\) 0 0
\(876\) 0 0
\(877\) 32.0000 1.08056 0.540282 0.841484i \(-0.318318\pi\)
0.540282 + 0.841484i \(0.318318\pi\)
\(878\) 12.0000 0.404980
\(879\) 0 0
\(880\) −2.00000 −0.0674200
\(881\) −36.0000 −1.21287 −0.606435 0.795133i \(-0.707401\pi\)
−0.606435 + 0.795133i \(0.707401\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) 28.0000 0.940148 0.470074 0.882627i \(-0.344227\pi\)
0.470074 + 0.882627i \(0.344227\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 4.00000 0.134080
\(891\) 0 0
\(892\) −14.0000 −0.468755
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) −2.00000 −0.0667409
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 4.00000 0.133185
\(903\) 0 0
\(904\) 10.0000 0.332595
\(905\) 6.00000 0.199447
\(906\) 0 0
\(907\) 38.0000 1.26177 0.630885 0.775877i \(-0.282692\pi\)
0.630885 + 0.775877i \(0.282692\pi\)
\(908\) −8.00000 −0.265489
\(909\) 0 0
\(910\) 0 0
\(911\) −20.0000 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 8.00000 0.264616
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) 48.0000 1.58337 0.791687 0.610927i \(-0.209203\pi\)
0.791687 + 0.610927i \(0.209203\pi\)
\(920\) 1.00000 0.0329690
\(921\) 0 0
\(922\) 32.0000 1.05386
\(923\) 0 0
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) −34.0000 −1.11731
\(927\) 0 0
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) −28.0000 −0.917663
\(932\) −22.0000 −0.720634
\(933\) 0 0
\(934\) −4.00000 −0.130884
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) 40.0000 1.30674 0.653372 0.757037i \(-0.273354\pi\)
0.653372 + 0.757037i \(0.273354\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.00000 −0.130466
\(941\) 38.0000 1.23876 0.619382 0.785090i \(-0.287383\pi\)
0.619382 + 0.785090i \(0.287383\pi\)
\(942\) 0 0
\(943\) −2.00000 −0.0651290
\(944\) 0 0
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −4.00000 −0.129777
\(951\) 0 0
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) 8.00000 0.258874
\(956\) 26.0000 0.840900
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 0 0
\(964\) 2.00000 0.0644157
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) −38.0000 −1.22200 −0.610999 0.791632i \(-0.709232\pi\)
−0.610999 + 0.791632i \(0.709232\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) −16.0000 −0.513729
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.00000 −0.0640841
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) −38.0000 −1.21573 −0.607864 0.794041i \(-0.707973\pi\)
−0.607864 + 0.794041i \(0.707973\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) −7.00000 −0.223607
\(981\) 0 0
\(982\) −12.0000 −0.382935
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) −14.0000 −0.446077
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.00000 0.0635963
\(990\) 0 0
\(991\) −36.0000 −1.14358 −0.571789 0.820401i \(-0.693750\pi\)
−0.571789 + 0.820401i \(0.693750\pi\)
\(992\) 8.00000 0.254000
\(993\) 0 0
\(994\) 0 0
\(995\) 24.0000 0.760851
\(996\) 0 0
\(997\) −16.0000 −0.506725 −0.253363 0.967371i \(-0.581537\pi\)
−0.253363 + 0.967371i \(0.581537\pi\)
\(998\) 36.0000 1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.2.a.g.1.1 1
3.2 odd 2 690.2.a.i.1.1 1
12.11 even 2 5520.2.a.d.1.1 1
15.2 even 4 3450.2.d.r.2899.2 2
15.8 even 4 3450.2.d.r.2899.1 2
15.14 odd 2 3450.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
690.2.a.i.1.1 1 3.2 odd 2
2070.2.a.g.1.1 1 1.1 even 1 trivial
3450.2.a.c.1.1 1 15.14 odd 2
3450.2.d.r.2899.1 2 15.8 even 4
3450.2.d.r.2899.2 2 15.2 even 4
5520.2.a.d.1.1 1 12.11 even 2