Newspace parameters
Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 207.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(64.6637002752\) |
Analytic rank: | \(1\) |
Dimension: | \(5\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) |
Defining polynomial: |
\( x^{5} - 455x^{3} - 474x^{2} + 42284x + 127016 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{5}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 69) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{5} - 455x^{3} - 474x^{2} + 42284x + 127016 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{4} + 142\nu^{3} + 467\nu^{2} - 37904\nu - 76396 ) / 1552 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 11\nu^{4} - 10\nu^{3} - 3585\nu^{2} + 2560\nu + 117124 ) / 1552 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -11\nu^{4} + 10\nu^{3} + 5137\nu^{2} - 5664\nu - 399588 ) / 1552 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} + \beta_{3} + 2\beta _1 + 182 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{4} + 11\beta_{2} + 265\beta _1 + 284 \)
|
\(\nu^{4}\) | \(=\) |
\( 325\beta_{4} + 467\beta_{3} + 10\beta_{2} + 660\beta _1 + 48926 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−18.2528 | 0 | 205.166 | 55.2224 | 0 | −1258.24 | −1408.51 | 0 | −1007.97 | |||||||||||||||||||||||||||||||||
1.2 | −12.4672 | 0 | 27.4323 | 40.8788 | 0 | 1126.70 | 1253.80 | 0 | −509.647 | ||||||||||||||||||||||||||||||||||
1.3 | 3.24502 | 0 | −117.470 | −168.083 | 0 | 149.817 | −796.555 | 0 | −545.434 | ||||||||||||||||||||||||||||||||||
1.4 | 9.64907 | 0 | −34.8955 | 306.939 | 0 | 733.069 | −1571.79 | 0 | 2961.68 | ||||||||||||||||||||||||||||||||||
1.5 | 17.8260 | 0 | 189.767 | 31.0428 | 0 | −1247.35 | 1101.05 | 0 | 553.369 | ||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(-1\) |
\(23\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 207.8.a.a | 5 | |
3.b | odd | 2 | 1 | 69.8.a.a | ✓ | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
69.8.a.a | ✓ | 5 | 3.b | odd | 2 | 1 | |
207.8.a.a | 5 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{5} - 455T_{2}^{3} + 474T_{2}^{2} + 42284T_{2} - 127016 \)
acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(207))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{5} - 455 T^{3} + 474 T^{2} + \cdots - 127016 \)
$3$
\( T^{5} \)
$5$
\( T^{5} - 266 T^{4} + \cdots + 3615360000 \)
$7$
\( T^{5} + \cdots - 194204974150720 \)
$11$
\( T^{5} + \cdots - 154691619430400 \)
$13$
\( T^{5} + 642 T^{4} + \cdots + 16\!\cdots\!84 \)
$17$
\( T^{5} - 5798 T^{4} + \cdots - 11\!\cdots\!80 \)
$19$
\( T^{5} + 6036 T^{4} + \cdots - 14\!\cdots\!36 \)
$23$
\( (T + 12167)^{5} \)
$29$
\( T^{5} - 169162 T^{4} + \cdots - 24\!\cdots\!88 \)
$31$
\( T^{5} + 199640 T^{4} + \cdots - 23\!\cdots\!28 \)
$37$
\( T^{5} + 202002 T^{4} + \cdots + 82\!\cdots\!20 \)
$41$
\( T^{5} + 541282 T^{4} + \cdots - 16\!\cdots\!52 \)
$43$
\( T^{5} + 909596 T^{4} + \cdots + 66\!\cdots\!00 \)
$47$
\( T^{5} + 80208 T^{4} + \cdots + 24\!\cdots\!00 \)
$53$
\( T^{5} - 278138 T^{4} + \cdots - 10\!\cdots\!60 \)
$59$
\( T^{5} - 3177380 T^{4} + \cdots - 75\!\cdots\!64 \)
$61$
\( T^{5} - 147782 T^{4} + \cdots - 14\!\cdots\!84 \)
$67$
\( T^{5} + 464916 T^{4} + \cdots - 79\!\cdots\!40 \)
$71$
\( T^{5} + 1576792 T^{4} + \cdots - 49\!\cdots\!52 \)
$73$
\( T^{5} + 38190 T^{4} + \cdots + 11\!\cdots\!64 \)
$79$
\( T^{5} + 3913336 T^{4} + \cdots - 36\!\cdots\!20 \)
$83$
\( T^{5} + 15774716 T^{4} + \cdots - 18\!\cdots\!20 \)
$89$
\( T^{5} + 1116482 T^{4} + \cdots + 25\!\cdots\!96 \)
$97$
\( T^{5} + 15738566 T^{4} + \cdots + 11\!\cdots\!20 \)
show more
show less