Defining parameters
Level: | \( N \) | = | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(25344\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(207))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11264 | 8837 | 2427 |
Cusp forms | 10912 | 8649 | 2263 |
Eisenstein series | 352 | 188 | 164 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(207))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
207.8.a | \(\chi_{207}(1, \cdot)\) | 207.8.a.a | 5 | 1 |
207.8.a.b | 5 | |||
207.8.a.c | 6 | |||
207.8.a.d | 7 | |||
207.8.a.e | 8 | |||
207.8.a.f | 8 | |||
207.8.a.g | 12 | |||
207.8.a.h | 12 | |||
207.8.c | \(\chi_{207}(206, \cdot)\) | 207.8.c.a | 56 | 1 |
207.8.e | \(\chi_{207}(70, \cdot)\) | n/a | 308 | 2 |
207.8.g | \(\chi_{207}(68, \cdot)\) | n/a | 332 | 2 |
207.8.i | \(\chi_{207}(55, \cdot)\) | n/a | 690 | 10 |
207.8.k | \(\chi_{207}(17, \cdot)\) | n/a | 560 | 10 |
207.8.m | \(\chi_{207}(4, \cdot)\) | n/a | 3320 | 20 |
207.8.o | \(\chi_{207}(5, \cdot)\) | n/a | 3320 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)