Defining parameters
Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 207.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(207, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 148 | 61 | 87 |
Cusp forms | 140 | 59 | 81 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(207, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
207.7.d.a | $1$ | $47.621$ | \(\Q\) | \(\Q(\sqrt{-23}) \) | \(7\) | \(0\) | \(0\) | \(0\) | \(q+7q^{2}-15q^{4}-553q^{8}+1082q^{13}+\cdots\) |
207.7.d.b | $2$ | $47.621$ | \(\Q(\sqrt{69}) \) | \(\Q(\sqrt{-23}) \) | \(-7\) | \(0\) | \(0\) | \(0\) | \(q+(-3-\beta )q^{2}+(10^{2}+7\beta )q^{4}+(-1193+\cdots)q^{8}+\cdots\) |
207.7.d.c | $8$ | $47.621$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(-8\) | \(0\) | \(0\) | \(0\) | \(q+(-1-\beta _{1})q^{2}+(21-3\beta _{1}-\beta _{5})q^{4}+\cdots\) |
207.7.d.d | $24$ | $47.621$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
207.7.d.e | $24$ | $47.621$ | None | \(20\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{7}^{\mathrm{old}}(207, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(207, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)