Defining parameters
Level: | \( N \) | = | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | = | \( 7 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(22176\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(207))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9680 | 7591 | 2089 |
Cusp forms | 9328 | 7401 | 1927 |
Eisenstein series | 352 | 190 | 162 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(207))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
207.7.b | \(\chi_{207}(116, \cdot)\) | 207.7.b.a | 44 | 1 |
207.7.d | \(\chi_{207}(91, \cdot)\) | 207.7.d.a | 1 | 1 |
207.7.d.b | 2 | |||
207.7.d.c | 8 | |||
207.7.d.d | 24 | |||
207.7.d.e | 24 | |||
207.7.f | \(\chi_{207}(22, \cdot)\) | n/a | 284 | 2 |
207.7.h | \(\chi_{207}(47, \cdot)\) | n/a | 264 | 2 |
207.7.j | \(\chi_{207}(10, \cdot)\) | n/a | 590 | 10 |
207.7.l | \(\chi_{207}(8, \cdot)\) | n/a | 480 | 10 |
207.7.n | \(\chi_{207}(2, \cdot)\) | n/a | 2840 | 20 |
207.7.p | \(\chi_{207}(7, \cdot)\) | n/a | 2840 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 1}\)