Defining parameters
Level: | \( N \) | = | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(19008\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(207))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8096 | 6341 | 1755 |
Cusp forms | 7744 | 6153 | 1591 |
Eisenstein series | 352 | 188 | 164 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(207))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
207.6.a | \(\chi_{207}(1, \cdot)\) | 207.6.a.a | 2 | 1 |
207.6.a.b | 3 | |||
207.6.a.c | 3 | |||
207.6.a.d | 4 | |||
207.6.a.e | 4 | |||
207.6.a.f | 5 | |||
207.6.a.g | 6 | |||
207.6.a.h | 10 | |||
207.6.a.i | 10 | |||
207.6.c | \(\chi_{207}(206, \cdot)\) | 207.6.c.a | 40 | 1 |
207.6.e | \(\chi_{207}(70, \cdot)\) | n/a | 220 | 2 |
207.6.g | \(\chi_{207}(68, \cdot)\) | n/a | 236 | 2 |
207.6.i | \(\chi_{207}(55, \cdot)\) | n/a | 490 | 10 |
207.6.k | \(\chi_{207}(17, \cdot)\) | n/a | 400 | 10 |
207.6.m | \(\chi_{207}(4, \cdot)\) | n/a | 2360 | 20 |
207.6.o | \(\chi_{207}(5, \cdot)\) | n/a | 2360 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)