Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [207,4,Mod(17,207)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(207, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([11, 7]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("207.17");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 207.k (of order \(22\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.2133953712\) |
Analytic rank: | \(0\) |
Dimension: | \(240\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{22})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{22}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −5.02588 | − | 2.29524i | 0 | 14.7525 | + | 17.0253i | −10.4096 | + | 6.68987i | 0 | −21.0843 | − | 3.03147i | −22.6141 | − | 77.0164i | 0 | 67.6725 | − | 9.72984i | ||||||
17.2 | −4.68035 | − | 2.13744i | 0 | 12.0981 | + | 13.9619i | −11.9438 | + | 7.67580i | 0 | 15.7604 | + | 2.26600i | −15.1836 | − | 51.7105i | 0 | 72.3076 | − | 10.3963i | ||||||
17.3 | −4.46976 | − | 2.04127i | 0 | 10.5731 | + | 12.2020i | 12.9900 | − | 8.34816i | 0 | −15.7159 | − | 2.25960i | −11.2765 | − | 38.4041i | 0 | −75.1029 | + | 10.7982i | ||||||
17.4 | −4.13754 | − | 1.88955i | 0 | 8.30996 | + | 9.59021i | 5.59605 | − | 3.59636i | 0 | 31.1534 | + | 4.47919i | −6.00974 | − | 20.4673i | 0 | −29.9494 | + | 4.30607i | ||||||
17.5 | −3.37221 | − | 1.54004i | 0 | 3.76119 | + | 4.34065i | 12.0953 | − | 7.77317i | 0 | −21.2515 | − | 3.05551i | 2.35679 | + | 8.02650i | 0 | −52.7588 | + | 7.58557i | ||||||
17.6 | −3.30139 | − | 1.50770i | 0 | 3.38716 | + | 3.90899i | −3.53051 | + | 2.26892i | 0 | 15.8804 | + | 2.28326i | 2.89132 | + | 9.84694i | 0 | 15.0764 | − | 2.16766i | ||||||
17.7 | −2.69131 | − | 1.22908i | 0 | 0.493632 | + | 0.569681i | −11.2770 | + | 7.24732i | 0 | 3.62983 | + | 0.521890i | 6.04012 | + | 20.5708i | 0 | 39.2576 | − | 5.64439i | ||||||
17.8 | −2.68424 | − | 1.22585i | 0 | 0.463566 | + | 0.534984i | −7.48507 | + | 4.81036i | 0 | −33.1778 | − | 4.77024i | 6.06243 | + | 20.6467i | 0 | 25.9886 | − | 3.73659i | ||||||
17.9 | −2.29204 | − | 1.04674i | 0 | −1.08109 | − | 1.24764i | 13.2608 | − | 8.52220i | 0 | 17.5008 | + | 2.51624i | 6.85110 | + | 23.3327i | 0 | −39.3149 | + | 5.65263i | ||||||
17.10 | −0.918702 | − | 0.419557i | 0 | −4.57090 | − | 5.27510i | −0.902026 | + | 0.579697i | 0 | −14.9619 | − | 2.15120i | 4.26242 | + | 14.5165i | 0 | 1.07191 | − | 0.154117i | ||||||
17.11 | −0.614837 | − | 0.280787i | 0 | −4.93970 | − | 5.70072i | 4.23867 | − | 2.72403i | 0 | 3.75888 | + | 0.540445i | 2.95985 | + | 10.0803i | 0 | −3.37096 | + | 0.484671i | ||||||
17.12 | −0.212130 | − | 0.0968765i | 0 | −5.20327 | − | 6.00490i | 15.1089 | − | 9.70992i | 0 | 18.5077 | + | 2.66100i | 1.04765 | + | 3.56796i | 0 | −4.14572 | + | 0.596065i | ||||||
17.13 | 0.212130 | + | 0.0968765i | 0 | −5.20327 | − | 6.00490i | −15.1089 | + | 9.70992i | 0 | 18.5077 | + | 2.66100i | −1.04765 | − | 3.56796i | 0 | −4.14572 | + | 0.596065i | ||||||
17.14 | 0.614837 | + | 0.280787i | 0 | −4.93970 | − | 5.70072i | −4.23867 | + | 2.72403i | 0 | 3.75888 | + | 0.540445i | −2.95985 | − | 10.0803i | 0 | −3.37096 | + | 0.484671i | ||||||
17.15 | 0.918702 | + | 0.419557i | 0 | −4.57090 | − | 5.27510i | 0.902026 | − | 0.579697i | 0 | −14.9619 | − | 2.15120i | −4.26242 | − | 14.5165i | 0 | 1.07191 | − | 0.154117i | ||||||
17.16 | 2.29204 | + | 1.04674i | 0 | −1.08109 | − | 1.24764i | −13.2608 | + | 8.52220i | 0 | 17.5008 | + | 2.51624i | −6.85110 | − | 23.3327i | 0 | −39.3149 | + | 5.65263i | ||||||
17.17 | 2.68424 | + | 1.22585i | 0 | 0.463566 | + | 0.534984i | 7.48507 | − | 4.81036i | 0 | −33.1778 | − | 4.77024i | −6.06243 | − | 20.6467i | 0 | 25.9886 | − | 3.73659i | ||||||
17.18 | 2.69131 | + | 1.22908i | 0 | 0.493632 | + | 0.569681i | 11.2770 | − | 7.24732i | 0 | 3.62983 | + | 0.521890i | −6.04012 | − | 20.5708i | 0 | 39.2576 | − | 5.64439i | ||||||
17.19 | 3.30139 | + | 1.50770i | 0 | 3.38716 | + | 3.90899i | 3.53051 | − | 2.26892i | 0 | 15.8804 | + | 2.28326i | −2.89132 | − | 9.84694i | 0 | 15.0764 | − | 2.16766i | ||||||
17.20 | 3.37221 | + | 1.54004i | 0 | 3.76119 | + | 4.34065i | −12.0953 | + | 7.77317i | 0 | −21.2515 | − | 3.05551i | −2.35679 | − | 8.02650i | 0 | −52.7588 | + | 7.58557i | ||||||
See next 80 embeddings (of 240 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
23.d | odd | 22 | 1 | inner |
69.g | even | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 207.4.k.a | ✓ | 240 |
3.b | odd | 2 | 1 | inner | 207.4.k.a | ✓ | 240 |
23.d | odd | 22 | 1 | inner | 207.4.k.a | ✓ | 240 |
69.g | even | 22 | 1 | inner | 207.4.k.a | ✓ | 240 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
207.4.k.a | ✓ | 240 | 1.a | even | 1 | 1 | trivial |
207.4.k.a | ✓ | 240 | 3.b | odd | 2 | 1 | inner |
207.4.k.a | ✓ | 240 | 23.d | odd | 22 | 1 | inner |
207.4.k.a | ✓ | 240 | 69.g | even | 22 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(207, [\chi])\).