Properties

Label 207.4.k
Level $207$
Weight $4$
Character orbit 207.k
Rep. character $\chi_{207}(17,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $240$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.k (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(207, [\chi])\).

Total New Old
Modular forms 760 240 520
Cusp forms 680 240 440
Eisenstein series 80 0 80

Trace form

\( 240 q + 120 q^{4} - 96 q^{13} - 960 q^{16} - 648 q^{25} + 96 q^{31} - 3828 q^{34} - 2376 q^{37} + 660 q^{40} + 3432 q^{43} + 6744 q^{46} + 1992 q^{49} + 2940 q^{52} + 1584 q^{55} - 4236 q^{58} - 1056 q^{61}+ \cdots + 12504 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(207, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
207.4.k.a 207.k 69.g $240$ $12.213$ None 207.4.k.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{4}^{\mathrm{old}}(207, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(207, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)