Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [207,4,Mod(55,207)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(207, base_ring=CyclotomicField(22))
chi = DirichletCharacter(H, H._module([0, 10]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("207.55");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 207.i (of order \(11\), degree \(10\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.2133953712\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{11})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
55.1 | −5.10814 | + | 1.49988i | 0 | 17.1134 | − | 10.9981i | 0.282807 | + | 1.96697i | 0 | 0.431353 | − | 0.944532i | −43.0309 | + | 49.6603i | 0 | −4.39484 | − | 9.62336i | ||||||
55.2 | −3.54609 | + | 1.04123i | 0 | 4.76056 | − | 3.05942i | 2.17870 | + | 15.1532i | 0 | 5.20421 | − | 11.3956i | 5.66604 | − | 6.53896i | 0 | −23.5037 | − | 51.4660i | ||||||
55.3 | −3.45688 | + | 1.01503i | 0 | 4.18971 | − | 2.69257i | −1.06996 | − | 7.44170i | 0 | −11.8480 | + | 25.9435i | 7.12446 | − | 8.22207i | 0 | 11.2523 | + | 24.6390i | ||||||
55.4 | −3.23376 | + | 0.949517i | 0 | 2.82558 | − | 1.81589i | −2.31518 | − | 16.1024i | 0 | 13.7180 | − | 30.0382i | 10.2435 | − | 11.8216i | 0 | 22.7762 | + | 49.8730i | ||||||
55.5 | −1.25127 | + | 0.367407i | 0 | −5.29933 | + | 3.40567i | 0.179870 | + | 1.25102i | 0 | 4.43639 | − | 9.71434i | 12.2117 | − | 14.0930i | 0 | −0.684701 | − | 1.49929i | ||||||
55.6 | −0.778533 | + | 0.228598i | 0 | −6.17617 | + | 3.96918i | 2.23693 | + | 15.5582i | 0 | −5.88963 | + | 12.8965i | 8.15184 | − | 9.40772i | 0 | −5.29808 | − | 11.6012i | ||||||
55.7 | 0.778533 | − | 0.228598i | 0 | −6.17617 | + | 3.96918i | −2.23693 | − | 15.5582i | 0 | −5.88963 | + | 12.8965i | −8.15184 | + | 9.40772i | 0 | −5.29808 | − | 11.6012i | ||||||
55.8 | 1.25127 | − | 0.367407i | 0 | −5.29933 | + | 3.40567i | −0.179870 | − | 1.25102i | 0 | 4.43639 | − | 9.71434i | −12.2117 | + | 14.0930i | 0 | −0.684701 | − | 1.49929i | ||||||
55.9 | 3.23376 | − | 0.949517i | 0 | 2.82558 | − | 1.81589i | 2.31518 | + | 16.1024i | 0 | 13.7180 | − | 30.0382i | −10.2435 | + | 11.8216i | 0 | 22.7762 | + | 49.8730i | ||||||
55.10 | 3.45688 | − | 1.01503i | 0 | 4.18971 | − | 2.69257i | 1.06996 | + | 7.44170i | 0 | −11.8480 | + | 25.9435i | −7.12446 | + | 8.22207i | 0 | 11.2523 | + | 24.6390i | ||||||
55.11 | 3.54609 | − | 1.04123i | 0 | 4.76056 | − | 3.05942i | −2.17870 | − | 15.1532i | 0 | 5.20421 | − | 11.3956i | −5.66604 | + | 6.53896i | 0 | −23.5037 | − | 51.4660i | ||||||
55.12 | 5.10814 | − | 1.49988i | 0 | 17.1134 | − | 10.9981i | −0.282807 | − | 1.96697i | 0 | 0.431353 | − | 0.944532i | 43.0309 | − | 49.6603i | 0 | −4.39484 | − | 9.62336i | ||||||
64.1 | −5.10814 | − | 1.49988i | 0 | 17.1134 | + | 10.9981i | 0.282807 | − | 1.96697i | 0 | 0.431353 | + | 0.944532i | −43.0309 | − | 49.6603i | 0 | −4.39484 | + | 9.62336i | ||||||
64.2 | −3.54609 | − | 1.04123i | 0 | 4.76056 | + | 3.05942i | 2.17870 | − | 15.1532i | 0 | 5.20421 | + | 11.3956i | 5.66604 | + | 6.53896i | 0 | −23.5037 | + | 51.4660i | ||||||
64.3 | −3.45688 | − | 1.01503i | 0 | 4.18971 | + | 2.69257i | −1.06996 | + | 7.44170i | 0 | −11.8480 | − | 25.9435i | 7.12446 | + | 8.22207i | 0 | 11.2523 | − | 24.6390i | ||||||
64.4 | −3.23376 | − | 0.949517i | 0 | 2.82558 | + | 1.81589i | −2.31518 | + | 16.1024i | 0 | 13.7180 | + | 30.0382i | 10.2435 | + | 11.8216i | 0 | 22.7762 | − | 49.8730i | ||||||
64.5 | −1.25127 | − | 0.367407i | 0 | −5.29933 | − | 3.40567i | 0.179870 | − | 1.25102i | 0 | 4.43639 | + | 9.71434i | 12.2117 | + | 14.0930i | 0 | −0.684701 | + | 1.49929i | ||||||
64.6 | −0.778533 | − | 0.228598i | 0 | −6.17617 | − | 3.96918i | 2.23693 | − | 15.5582i | 0 | −5.88963 | − | 12.8965i | 8.15184 | + | 9.40772i | 0 | −5.29808 | + | 11.6012i | ||||||
64.7 | 0.778533 | + | 0.228598i | 0 | −6.17617 | − | 3.96918i | −2.23693 | + | 15.5582i | 0 | −5.88963 | − | 12.8965i | −8.15184 | − | 9.40772i | 0 | −5.29808 | + | 11.6012i | ||||||
64.8 | 1.25127 | + | 0.367407i | 0 | −5.29933 | − | 3.40567i | −0.179870 | + | 1.25102i | 0 | 4.43639 | + | 9.71434i | −12.2117 | − | 14.0930i | 0 | −0.684701 | + | 1.49929i | ||||||
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
23.c | even | 11 | 1 | inner |
69.h | odd | 22 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 207.4.i.d | ✓ | 120 |
3.b | odd | 2 | 1 | inner | 207.4.i.d | ✓ | 120 |
23.c | even | 11 | 1 | inner | 207.4.i.d | ✓ | 120 |
69.h | odd | 22 | 1 | inner | 207.4.i.d | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
207.4.i.d | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
207.4.i.d | ✓ | 120 | 3.b | odd | 2 | 1 | inner |
207.4.i.d | ✓ | 120 | 23.c | even | 11 | 1 | inner |
207.4.i.d | ✓ | 120 | 69.h | odd | 22 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{120} + 56 T_{2}^{118} + 2930 T_{2}^{116} + 122872 T_{2}^{114} + 4643635 T_{2}^{112} + \cdots + 29\!\cdots\!04 \)
acting on \(S_{4}^{\mathrm{new}}(207, [\chi])\).