Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [207,4,Mod(70,207)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(207, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("207.70");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 207.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.2133953712\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
70.1 | −2.57355 | + | 4.45752i | −3.60487 | + | 3.74231i | −9.24630 | − | 16.0151i | 0.902609 | + | 1.56336i | −7.40412 | − | 25.6998i | −3.57930 | + | 6.19954i | 54.0064 | −1.00983 | − | 26.9811i | −9.29163 | ||||
70.2 | −2.55137 | + | 4.41911i | 2.73067 | + | 4.42080i | −9.01901 | − | 15.6214i | 7.85281 | + | 13.6015i | −26.5029 | + | 0.788011i | −0.363909 | + | 0.630308i | 51.2214 | −12.0869 | + | 24.1435i | −80.1418 | ||||
70.3 | −2.37008 | + | 4.10510i | −0.535333 | − | 5.16850i | −7.23454 | − | 12.5306i | −5.40004 | − | 9.35314i | 22.4860 | + | 10.0522i | 14.9238 | − | 25.8488i | 30.6645 | −26.4268 | + | 5.53374i | 51.1941 | ||||
70.4 | −2.30175 | + | 3.98674i | 5.14035 | − | 0.759451i | −6.59607 | − | 11.4247i | 2.09747 | + | 3.63292i | −8.80405 | + | 22.2413i | 8.90896 | − | 15.4308i | 23.9019 | 25.8465 | − | 7.80769i | −19.3114 | ||||
70.5 | −2.05243 | + | 3.55491i | −4.17639 | − | 3.09157i | −4.42494 | − | 7.66422i | 1.57198 | + | 2.72275i | 19.5620 | − | 8.50147i | −9.77669 | + | 16.9337i | 3.48861 | 7.88443 | + | 25.8232i | −12.9055 | ||||
70.6 | −1.68372 | + | 2.91629i | −3.83845 | + | 3.50233i | −1.66982 | − | 2.89222i | −9.76462 | − | 16.9128i | −3.75093 | − | 17.0910i | 9.04552 | − | 15.6673i | −15.6935 | 2.46739 | − | 26.8870i | 65.7635 | ||||
70.7 | −1.60060 | + | 2.77231i | 3.32200 | + | 3.99554i | −1.12381 | − | 1.94650i | −6.25381 | − | 10.8319i | −16.3941 | + | 2.81439i | −8.10483 | + | 14.0380i | −18.4145 | −4.92863 | + | 26.5463i | 40.0393 | ||||
70.8 | −1.51967 | + | 2.63215i | 2.06557 | − | 4.76796i | −0.618808 | − | 1.07181i | 9.87501 | + | 17.1040i | 9.41099 | + | 12.6826i | 2.48108 | − | 4.29736i | −20.5532 | −18.4669 | − | 19.6971i | −60.0271 | ||||
70.9 | −1.43497 | + | 2.48544i | −5.11636 | + | 0.907134i | −0.118276 | − | 0.204859i | −0.668007 | − | 1.15702i | 5.08719 | − | 14.0181i | 0.0673957 | − | 0.116733i | −22.2806 | 25.3542 | − | 9.28244i | 3.83428 | ||||
70.10 | −1.01426 | + | 1.75675i | 0.336238 | + | 5.18526i | 1.94255 | + | 3.36459i | 8.32986 | + | 14.4277i | −9.45025 | − | 4.66852i | −6.32052 | + | 10.9475i | −24.1092 | −26.7739 | + | 3.48697i | −33.7946 | ||||
70.11 | −0.811649 | + | 1.40582i | −3.66036 | − | 3.68806i | 2.68245 | + | 4.64614i | 0.826466 | + | 1.43148i | 8.15567 | − | 2.15239i | 13.9680 | − | 24.1934i | −21.6952 | −0.203560 | + | 26.9992i | −2.68320 | ||||
70.12 | −0.766015 | + | 1.32678i | 5.19611 | − | 0.0210829i | 2.82644 | + | 4.89554i | −7.31529 | − | 12.6705i | −3.95232 | + | 6.91022i | 0.640043 | − | 1.10859i | −20.9166 | 26.9991 | − | 0.219098i | 22.4145 | ||||
70.13 | −0.722249 | + | 1.25097i | 0.332165 | − | 5.18552i | 2.95671 | + | 5.12118i | 1.42317 | + | 2.46500i | 6.24704 | + | 4.16077i | −13.5745 | + | 23.5117i | −20.0979 | −26.7793 | − | 3.44490i | −4.11153 | ||||
70.14 | −0.422111 | + | 0.731118i | 0.0750198 | + | 5.19561i | 3.64364 | + | 6.31098i | −2.08369 | − | 3.60905i | −3.83027 | − | 2.13828i | 2.15206 | − | 3.72748i | −12.9059 | −26.9887 | + | 0.779548i | 3.51819 | ||||
70.15 | −0.00508851 | + | 0.00881355i | 4.46871 | − | 2.65154i | 3.99995 | + | 6.92811i | −2.30210 | − | 3.98736i | 0.000630412 | 0.0528775i | −16.3016 | + | 28.2353i | −0.162831 | 12.9387 | − | 23.6979i | 0.0468570 | |||||
70.16 | 0.0289891 | − | 0.0502106i | 5.05505 | − | 1.20271i | 3.99832 | + | 6.92529i | 8.15005 | + | 14.1163i | 0.0861526 | − | 0.288682i | 4.81238 | − | 8.33529i | 0.927457 | 24.1070 | − | 12.1595i | 0.945050 | ||||
70.17 | 0.160401 | − | 0.277823i | −4.88884 | + | 1.76047i | 3.94854 | + | 6.83908i | 7.85383 | + | 13.6032i | −0.295076 | + | 1.64061i | 16.7204 | − | 28.9605i | 5.09982 | 20.8015 | − | 17.2133i | 5.03905 | ||||
70.18 | 0.570058 | − | 0.987370i | 0.819092 | − | 5.13119i | 3.35007 | + | 5.80249i | −9.96374 | − | 17.2577i | −4.59945 | − | 3.73382i | 2.52132 | − | 4.36706i | 16.7599 | −25.6582 | − | 8.40583i | −22.7196 | ||||
70.19 | 0.707928 | − | 1.22617i | 4.51263 | + | 2.57607i | 2.99768 | + | 5.19213i | −6.22282 | − | 10.7782i | 6.35331 | − | 3.70957i | 15.4063 | − | 26.6845i | 19.8154 | 13.7277 | + | 23.2497i | −17.6212 | ||||
70.20 | 0.932770 | − | 1.61560i | −3.08980 | + | 4.17770i | 2.25988 | + | 3.91423i | 5.34727 | + | 9.26174i | 3.86743 | + | 8.88872i | −9.50172 | + | 16.4575i | 23.3561 | −7.90628 | − | 25.8165i | 19.9511 | ||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 207.4.e.a | ✓ | 60 |
9.c | even | 3 | 1 | inner | 207.4.e.a | ✓ | 60 |
9.c | even | 3 | 1 | 1863.4.a.g | 30 | ||
9.d | odd | 6 | 1 | 1863.4.a.h | 30 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
207.4.e.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
207.4.e.a | ✓ | 60 | 9.c | even | 3 | 1 | inner |
1863.4.a.g | 30 | 9.c | even | 3 | 1 | ||
1863.4.a.h | 30 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{60} - 2 T_{2}^{59} + 176 T_{2}^{58} - 266 T_{2}^{57} + 17012 T_{2}^{56} - 19960 T_{2}^{55} + \cdots + 46\!\cdots\!04 \)
acting on \(S_{4}^{\mathrm{new}}(207, [\chi])\).