Properties

Label 207.4.c
Level $207$
Weight $4$
Character orbit 207.c
Rep. character $\chi_{207}(206,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 69 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(207, [\chi])\).

Total New Old
Modular forms 76 24 52
Cusp forms 68 24 44
Eisenstein series 8 0 8

Trace form

\( 24 q - 120 q^{4} + 96 q^{13} + 960 q^{16} + 648 q^{25} - 96 q^{31} + 1176 q^{46} - 1992 q^{49} - 2280 q^{52} - 528 q^{55} + 3048 q^{58} - 5688 q^{64} + 7896 q^{70} - 1152 q^{73} + 3096 q^{82} + 4080 q^{85}+ \cdots - 12504 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(207, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
207.4.c.a 207.c 69.c $24$ $12.213$ None 207.4.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{4}^{\mathrm{old}}(207, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(207, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)