Properties

Label 207.4.a.h.1.4
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,4,Mod(1,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 26x^{3} + 10x^{2} + 144x + 56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.28650\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.28650 q^{2} +2.80110 q^{4} +21.8905 q^{5} +23.4895 q^{7} -17.0862 q^{8} +71.9433 q^{10} -53.0888 q^{11} +18.8707 q^{13} +77.1983 q^{14} -78.5626 q^{16} +107.017 q^{17} -43.5150 q^{19} +61.3175 q^{20} -174.477 q^{22} -23.0000 q^{23} +354.195 q^{25} +62.0186 q^{26} +65.7964 q^{28} +101.638 q^{29} -224.819 q^{31} -121.507 q^{32} +351.710 q^{34} +514.198 q^{35} +70.5460 q^{37} -143.012 q^{38} -374.026 q^{40} +42.6933 q^{41} -297.280 q^{43} -148.707 q^{44} -75.5896 q^{46} +174.746 q^{47} +208.757 q^{49} +1164.06 q^{50} +52.8587 q^{52} -684.506 q^{53} -1162.14 q^{55} -401.346 q^{56} +334.032 q^{58} -226.519 q^{59} -782.305 q^{61} -738.869 q^{62} +229.169 q^{64} +413.090 q^{65} -637.736 q^{67} +299.764 q^{68} +1689.91 q^{70} +828.705 q^{71} -820.013 q^{73} +231.850 q^{74} -121.890 q^{76} -1247.03 q^{77} +649.539 q^{79} -1719.78 q^{80} +140.311 q^{82} -7.84073 q^{83} +2342.65 q^{85} -977.012 q^{86} +907.086 q^{88} +582.459 q^{89} +443.264 q^{91} -64.4253 q^{92} +574.302 q^{94} -952.567 q^{95} -389.191 q^{97} +686.079 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 16 q^{4} + 20 q^{5} - 10 q^{7} + 48 q^{8} + 50 q^{10} + 46 q^{11} + 54 q^{13} + 164 q^{14} - 60 q^{16} + 250 q^{17} - 28 q^{19} + 242 q^{20} - 10 q^{22} - 115 q^{23} + 239 q^{25} + 368 q^{26}+ \cdots - 2400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.28650 1.16195 0.580977 0.813920i \(-0.302671\pi\)
0.580977 + 0.813920i \(0.302671\pi\)
\(3\) 0 0
\(4\) 2.80110 0.350137
\(5\) 21.8905 1.95795 0.978974 0.203984i \(-0.0653891\pi\)
0.978974 + 0.203984i \(0.0653891\pi\)
\(6\) 0 0
\(7\) 23.4895 1.26831 0.634157 0.773204i \(-0.281347\pi\)
0.634157 + 0.773204i \(0.281347\pi\)
\(8\) −17.0862 −0.755111
\(9\) 0 0
\(10\) 71.9433 2.27505
\(11\) −53.0888 −1.45517 −0.727586 0.686017i \(-0.759358\pi\)
−0.727586 + 0.686017i \(0.759358\pi\)
\(12\) 0 0
\(13\) 18.8707 0.402600 0.201300 0.979530i \(-0.435483\pi\)
0.201300 + 0.979530i \(0.435483\pi\)
\(14\) 77.1983 1.47372
\(15\) 0 0
\(16\) −78.5626 −1.22754
\(17\) 107.017 1.52679 0.763393 0.645935i \(-0.223532\pi\)
0.763393 + 0.645935i \(0.223532\pi\)
\(18\) 0 0
\(19\) −43.5150 −0.525423 −0.262711 0.964874i \(-0.584617\pi\)
−0.262711 + 0.964874i \(0.584617\pi\)
\(20\) 61.3175 0.685551
\(21\) 0 0
\(22\) −174.477 −1.69084
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 354.195 2.83356
\(26\) 62.0186 0.467802
\(27\) 0 0
\(28\) 65.7964 0.444084
\(29\) 101.638 0.650815 0.325407 0.945574i \(-0.394499\pi\)
0.325407 + 0.945574i \(0.394499\pi\)
\(30\) 0 0
\(31\) −224.819 −1.30254 −0.651270 0.758846i \(-0.725763\pi\)
−0.651270 + 0.758846i \(0.725763\pi\)
\(32\) −121.507 −0.671236
\(33\) 0 0
\(34\) 351.710 1.77405
\(35\) 514.198 2.48329
\(36\) 0 0
\(37\) 70.5460 0.313451 0.156726 0.987642i \(-0.449906\pi\)
0.156726 + 0.987642i \(0.449906\pi\)
\(38\) −143.012 −0.610517
\(39\) 0 0
\(40\) −374.026 −1.47847
\(41\) 42.6933 0.162624 0.0813118 0.996689i \(-0.474089\pi\)
0.0813118 + 0.996689i \(0.474089\pi\)
\(42\) 0 0
\(43\) −297.280 −1.05430 −0.527149 0.849773i \(-0.676739\pi\)
−0.527149 + 0.849773i \(0.676739\pi\)
\(44\) −148.707 −0.509510
\(45\) 0 0
\(46\) −75.5896 −0.242284
\(47\) 174.746 0.542325 0.271162 0.962534i \(-0.412592\pi\)
0.271162 + 0.962534i \(0.412592\pi\)
\(48\) 0 0
\(49\) 208.757 0.608620
\(50\) 1164.06 3.29247
\(51\) 0 0
\(52\) 52.8587 0.140965
\(53\) −684.506 −1.77404 −0.887020 0.461731i \(-0.847228\pi\)
−0.887020 + 0.461731i \(0.847228\pi\)
\(54\) 0 0
\(55\) −1162.14 −2.84915
\(56\) −401.346 −0.957717
\(57\) 0 0
\(58\) 334.032 0.756217
\(59\) −226.519 −0.499835 −0.249917 0.968267i \(-0.580403\pi\)
−0.249917 + 0.968267i \(0.580403\pi\)
\(60\) 0 0
\(61\) −782.305 −1.64203 −0.821015 0.570906i \(-0.806592\pi\)
−0.821015 + 0.570906i \(0.806592\pi\)
\(62\) −738.869 −1.51349
\(63\) 0 0
\(64\) 229.169 0.447596
\(65\) 413.090 0.788269
\(66\) 0 0
\(67\) −637.736 −1.16286 −0.581432 0.813595i \(-0.697507\pi\)
−0.581432 + 0.813595i \(0.697507\pi\)
\(68\) 299.764 0.534584
\(69\) 0 0
\(70\) 1689.91 2.88547
\(71\) 828.705 1.38520 0.692600 0.721322i \(-0.256465\pi\)
0.692600 + 0.721322i \(0.256465\pi\)
\(72\) 0 0
\(73\) −820.013 −1.31473 −0.657365 0.753573i \(-0.728329\pi\)
−0.657365 + 0.753573i \(0.728329\pi\)
\(74\) 231.850 0.364216
\(75\) 0 0
\(76\) −121.890 −0.183970
\(77\) −1247.03 −1.84561
\(78\) 0 0
\(79\) 649.539 0.925049 0.462525 0.886606i \(-0.346944\pi\)
0.462525 + 0.886606i \(0.346944\pi\)
\(80\) −1719.78 −2.40346
\(81\) 0 0
\(82\) 140.311 0.188961
\(83\) −7.84073 −0.0103691 −0.00518453 0.999987i \(-0.501650\pi\)
−0.00518453 + 0.999987i \(0.501650\pi\)
\(84\) 0 0
\(85\) 2342.65 2.98937
\(86\) −977.012 −1.22505
\(87\) 0 0
\(88\) 907.086 1.09882
\(89\) 582.459 0.693713 0.346857 0.937918i \(-0.387249\pi\)
0.346857 + 0.937918i \(0.387249\pi\)
\(90\) 0 0
\(91\) 443.264 0.510623
\(92\) −64.4253 −0.0730087
\(93\) 0 0
\(94\) 574.302 0.630156
\(95\) −952.567 −1.02875
\(96\) 0 0
\(97\) −389.191 −0.407385 −0.203693 0.979035i \(-0.565294\pi\)
−0.203693 + 0.979035i \(0.565294\pi\)
\(98\) 686.079 0.707188
\(99\) 0 0
\(100\) 992.136 0.992136
\(101\) −271.413 −0.267392 −0.133696 0.991022i \(-0.542685\pi\)
−0.133696 + 0.991022i \(0.542685\pi\)
\(102\) 0 0
\(103\) 58.3654 0.0558341 0.0279170 0.999610i \(-0.491113\pi\)
0.0279170 + 0.999610i \(0.491113\pi\)
\(104\) −322.429 −0.304007
\(105\) 0 0
\(106\) −2249.63 −2.06135
\(107\) 559.848 0.505818 0.252909 0.967490i \(-0.418613\pi\)
0.252909 + 0.967490i \(0.418613\pi\)
\(108\) 0 0
\(109\) −96.8835 −0.0851353 −0.0425677 0.999094i \(-0.513554\pi\)
−0.0425677 + 0.999094i \(0.513554\pi\)
\(110\) −3819.38 −3.31058
\(111\) 0 0
\(112\) −1845.40 −1.55691
\(113\) 675.286 0.562173 0.281086 0.959682i \(-0.409305\pi\)
0.281086 + 0.959682i \(0.409305\pi\)
\(114\) 0 0
\(115\) −503.482 −0.408260
\(116\) 284.697 0.227874
\(117\) 0 0
\(118\) −744.455 −0.580785
\(119\) 2513.77 1.93644
\(120\) 0 0
\(121\) 1487.42 1.11752
\(122\) −2571.05 −1.90796
\(123\) 0 0
\(124\) −629.741 −0.456068
\(125\) 5017.20 3.59002
\(126\) 0 0
\(127\) −1417.21 −0.990210 −0.495105 0.868833i \(-0.664870\pi\)
−0.495105 + 0.868833i \(0.664870\pi\)
\(128\) 1725.22 1.19132
\(129\) 0 0
\(130\) 1357.62 0.915933
\(131\) −792.935 −0.528848 −0.264424 0.964407i \(-0.585182\pi\)
−0.264424 + 0.964407i \(0.585182\pi\)
\(132\) 0 0
\(133\) −1022.15 −0.666401
\(134\) −2095.92 −1.35119
\(135\) 0 0
\(136\) −1828.51 −1.15289
\(137\) −841.176 −0.524573 −0.262287 0.964990i \(-0.584477\pi\)
−0.262287 + 0.964990i \(0.584477\pi\)
\(138\) 0 0
\(139\) −1418.00 −0.865276 −0.432638 0.901568i \(-0.642417\pi\)
−0.432638 + 0.901568i \(0.642417\pi\)
\(140\) 1440.32 0.869493
\(141\) 0 0
\(142\) 2723.54 1.60954
\(143\) −1001.82 −0.585851
\(144\) 0 0
\(145\) 2224.90 1.27426
\(146\) −2694.97 −1.52766
\(147\) 0 0
\(148\) 197.606 0.109751
\(149\) 326.139 0.179318 0.0896589 0.995973i \(-0.471422\pi\)
0.0896589 + 0.995973i \(0.471422\pi\)
\(150\) 0 0
\(151\) 1362.97 0.734551 0.367275 0.930112i \(-0.380291\pi\)
0.367275 + 0.930112i \(0.380291\pi\)
\(152\) 743.507 0.396752
\(153\) 0 0
\(154\) −4098.37 −2.14452
\(155\) −4921.41 −2.55031
\(156\) 0 0
\(157\) 362.468 0.184256 0.0921278 0.995747i \(-0.470633\pi\)
0.0921278 + 0.995747i \(0.470633\pi\)
\(158\) 2134.71 1.07486
\(159\) 0 0
\(160\) −2659.85 −1.31425
\(161\) −540.258 −0.264462
\(162\) 0 0
\(163\) −1251.83 −0.601538 −0.300769 0.953697i \(-0.597243\pi\)
−0.300769 + 0.953697i \(0.597243\pi\)
\(164\) 119.588 0.0569406
\(165\) 0 0
\(166\) −25.7686 −0.0120484
\(167\) 3586.72 1.66197 0.830984 0.556296i \(-0.187778\pi\)
0.830984 + 0.556296i \(0.187778\pi\)
\(168\) 0 0
\(169\) −1840.90 −0.837914
\(170\) 7699.13 3.47351
\(171\) 0 0
\(172\) −832.711 −0.369149
\(173\) −1898.77 −0.834455 −0.417227 0.908802i \(-0.636998\pi\)
−0.417227 + 0.908802i \(0.636998\pi\)
\(174\) 0 0
\(175\) 8319.87 3.59385
\(176\) 4170.80 1.78628
\(177\) 0 0
\(178\) 1914.25 0.806063
\(179\) 410.977 0.171608 0.0858041 0.996312i \(-0.472654\pi\)
0.0858041 + 0.996312i \(0.472654\pi\)
\(180\) 0 0
\(181\) 1133.03 0.465291 0.232646 0.972562i \(-0.425262\pi\)
0.232646 + 0.972562i \(0.425262\pi\)
\(182\) 1456.79 0.593320
\(183\) 0 0
\(184\) 392.983 0.157451
\(185\) 1544.29 0.613721
\(186\) 0 0
\(187\) −5681.39 −2.22173
\(188\) 489.480 0.189888
\(189\) 0 0
\(190\) −3130.61 −1.19536
\(191\) 2929.96 1.10997 0.554986 0.831859i \(-0.312723\pi\)
0.554986 + 0.831859i \(0.312723\pi\)
\(192\) 0 0
\(193\) 3634.92 1.35569 0.677843 0.735207i \(-0.262915\pi\)
0.677843 + 0.735207i \(0.262915\pi\)
\(194\) −1279.08 −0.473363
\(195\) 0 0
\(196\) 584.748 0.213100
\(197\) 3054.04 1.10452 0.552262 0.833671i \(-0.313765\pi\)
0.552262 + 0.833671i \(0.313765\pi\)
\(198\) 0 0
\(199\) 2953.78 1.05220 0.526101 0.850422i \(-0.323653\pi\)
0.526101 + 0.850422i \(0.323653\pi\)
\(200\) −6051.85 −2.13965
\(201\) 0 0
\(202\) −891.999 −0.310697
\(203\) 2387.42 0.825437
\(204\) 0 0
\(205\) 934.578 0.318409
\(206\) 191.818 0.0648766
\(207\) 0 0
\(208\) −1482.53 −0.494208
\(209\) 2310.16 0.764580
\(210\) 0 0
\(211\) 753.365 0.245800 0.122900 0.992419i \(-0.460781\pi\)
0.122900 + 0.992419i \(0.460781\pi\)
\(212\) −1917.37 −0.621157
\(213\) 0 0
\(214\) 1839.94 0.587738
\(215\) −6507.62 −2.06426
\(216\) 0 0
\(217\) −5280.89 −1.65203
\(218\) −318.408 −0.0989234
\(219\) 0 0
\(220\) −3255.27 −0.997594
\(221\) 2019.48 0.614683
\(222\) 0 0
\(223\) −2422.36 −0.727414 −0.363707 0.931513i \(-0.618489\pi\)
−0.363707 + 0.931513i \(0.618489\pi\)
\(224\) −2854.13 −0.851338
\(225\) 0 0
\(226\) 2219.33 0.653219
\(227\) −2527.79 −0.739097 −0.369548 0.929211i \(-0.620488\pi\)
−0.369548 + 0.929211i \(0.620488\pi\)
\(228\) 0 0
\(229\) 4478.46 1.29233 0.646167 0.763196i \(-0.276371\pi\)
0.646167 + 0.763196i \(0.276371\pi\)
\(230\) −1654.70 −0.474380
\(231\) 0 0
\(232\) −1736.60 −0.491437
\(233\) 2666.13 0.749631 0.374816 0.927099i \(-0.377706\pi\)
0.374816 + 0.927099i \(0.377706\pi\)
\(234\) 0 0
\(235\) 3825.27 1.06184
\(236\) −634.502 −0.175011
\(237\) 0 0
\(238\) 8261.50 2.25006
\(239\) −4039.81 −1.09336 −0.546681 0.837341i \(-0.684109\pi\)
−0.546681 + 0.837341i \(0.684109\pi\)
\(240\) 0 0
\(241\) −1792.22 −0.479034 −0.239517 0.970892i \(-0.576989\pi\)
−0.239517 + 0.970892i \(0.576989\pi\)
\(242\) 4888.42 1.29851
\(243\) 0 0
\(244\) −2191.31 −0.574936
\(245\) 4569.79 1.19165
\(246\) 0 0
\(247\) −821.160 −0.211535
\(248\) 3841.31 0.983562
\(249\) 0 0
\(250\) 16489.1 4.17144
\(251\) 1328.35 0.334042 0.167021 0.985953i \(-0.446585\pi\)
0.167021 + 0.985953i \(0.446585\pi\)
\(252\) 0 0
\(253\) 1221.04 0.303424
\(254\) −4657.65 −1.15058
\(255\) 0 0
\(256\) 3836.58 0.936665
\(257\) 6605.61 1.60330 0.801648 0.597797i \(-0.203957\pi\)
0.801648 + 0.597797i \(0.203957\pi\)
\(258\) 0 0
\(259\) 1657.09 0.397554
\(260\) 1157.11 0.276002
\(261\) 0 0
\(262\) −2605.98 −0.614497
\(263\) 2912.35 0.682825 0.341413 0.939913i \(-0.389095\pi\)
0.341413 + 0.939913i \(0.389095\pi\)
\(264\) 0 0
\(265\) −14984.2 −3.47348
\(266\) −3359.29 −0.774327
\(267\) 0 0
\(268\) −1786.36 −0.407162
\(269\) −922.528 −0.209098 −0.104549 0.994520i \(-0.533340\pi\)
−0.104549 + 0.994520i \(0.533340\pi\)
\(270\) 0 0
\(271\) 4350.19 0.975112 0.487556 0.873092i \(-0.337888\pi\)
0.487556 + 0.873092i \(0.337888\pi\)
\(272\) −8407.51 −1.87419
\(273\) 0 0
\(274\) −2764.53 −0.609530
\(275\) −18803.8 −4.12332
\(276\) 0 0
\(277\) 1521.88 0.330112 0.165056 0.986284i \(-0.447219\pi\)
0.165056 + 0.986284i \(0.447219\pi\)
\(278\) −4660.27 −1.00541
\(279\) 0 0
\(280\) −8785.68 −1.87516
\(281\) −5639.43 −1.19723 −0.598613 0.801039i \(-0.704281\pi\)
−0.598613 + 0.801039i \(0.704281\pi\)
\(282\) 0 0
\(283\) −1098.07 −0.230648 −0.115324 0.993328i \(-0.536791\pi\)
−0.115324 + 0.993328i \(0.536791\pi\)
\(284\) 2321.28 0.485010
\(285\) 0 0
\(286\) −3292.50 −0.680732
\(287\) 1002.84 0.206258
\(288\) 0 0
\(289\) 6539.56 1.33107
\(290\) 7312.14 1.48063
\(291\) 0 0
\(292\) −2296.94 −0.460336
\(293\) 3403.18 0.678552 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(294\) 0 0
\(295\) −4958.62 −0.978651
\(296\) −1205.36 −0.236690
\(297\) 0 0
\(298\) 1071.86 0.208359
\(299\) −434.026 −0.0839478
\(300\) 0 0
\(301\) −6982.96 −1.33718
\(302\) 4479.41 0.853514
\(303\) 0 0
\(304\) 3418.66 0.644978
\(305\) −17125.1 −3.21501
\(306\) 0 0
\(307\) −3712.90 −0.690250 −0.345125 0.938557i \(-0.612163\pi\)
−0.345125 + 0.938557i \(0.612163\pi\)
\(308\) −3493.05 −0.646218
\(309\) 0 0
\(310\) −16174.2 −2.96334
\(311\) 2638.89 0.481150 0.240575 0.970631i \(-0.422664\pi\)
0.240575 + 0.970631i \(0.422664\pi\)
\(312\) 0 0
\(313\) −8072.97 −1.45786 −0.728932 0.684586i \(-0.759983\pi\)
−0.728932 + 0.684586i \(0.759983\pi\)
\(314\) 1191.25 0.214096
\(315\) 0 0
\(316\) 1819.42 0.323894
\(317\) 1682.83 0.298162 0.149081 0.988825i \(-0.452368\pi\)
0.149081 + 0.988825i \(0.452368\pi\)
\(318\) 0 0
\(319\) −5395.82 −0.947046
\(320\) 5016.63 0.876370
\(321\) 0 0
\(322\) −1775.56 −0.307292
\(323\) −4656.83 −0.802208
\(324\) 0 0
\(325\) 6683.92 1.14079
\(326\) −4114.13 −0.698959
\(327\) 0 0
\(328\) −729.466 −0.122799
\(329\) 4104.69 0.687838
\(330\) 0 0
\(331\) 4251.71 0.706028 0.353014 0.935618i \(-0.385157\pi\)
0.353014 + 0.935618i \(0.385157\pi\)
\(332\) −21.9627 −0.00363059
\(333\) 0 0
\(334\) 11787.8 1.93113
\(335\) −13960.4 −2.27683
\(336\) 0 0
\(337\) −10303.0 −1.66540 −0.832701 0.553723i \(-0.813207\pi\)
−0.832701 + 0.553723i \(0.813207\pi\)
\(338\) −6050.11 −0.973617
\(339\) 0 0
\(340\) 6562.00 1.04669
\(341\) 11935.4 1.89542
\(342\) 0 0
\(343\) −3153.31 −0.496393
\(344\) 5079.39 0.796111
\(345\) 0 0
\(346\) −6240.30 −0.969598
\(347\) 4414.54 0.682954 0.341477 0.939890i \(-0.389073\pi\)
0.341477 + 0.939890i \(0.389073\pi\)
\(348\) 0 0
\(349\) 7388.50 1.13323 0.566615 0.823983i \(-0.308253\pi\)
0.566615 + 0.823983i \(0.308253\pi\)
\(350\) 27343.3 4.17588
\(351\) 0 0
\(352\) 6450.65 0.976763
\(353\) −4899.89 −0.738795 −0.369398 0.929271i \(-0.620436\pi\)
−0.369398 + 0.929271i \(0.620436\pi\)
\(354\) 0 0
\(355\) 18140.8 2.71215
\(356\) 1631.52 0.242895
\(357\) 0 0
\(358\) 1350.68 0.199401
\(359\) 779.159 0.114547 0.0572736 0.998359i \(-0.481759\pi\)
0.0572736 + 0.998359i \(0.481759\pi\)
\(360\) 0 0
\(361\) −4965.44 −0.723931
\(362\) 3723.72 0.540647
\(363\) 0 0
\(364\) 1241.62 0.178788
\(365\) −17950.5 −2.57417
\(366\) 0 0
\(367\) 13201.8 1.87773 0.938865 0.344286i \(-0.111879\pi\)
0.938865 + 0.344286i \(0.111879\pi\)
\(368\) 1806.94 0.255960
\(369\) 0 0
\(370\) 5075.31 0.713116
\(371\) −16078.7 −2.25004
\(372\) 0 0
\(373\) 12365.3 1.71648 0.858242 0.513245i \(-0.171557\pi\)
0.858242 + 0.513245i \(0.171557\pi\)
\(374\) −18671.9 −2.58155
\(375\) 0 0
\(376\) −2985.74 −0.409515
\(377\) 1917.97 0.262018
\(378\) 0 0
\(379\) 11978.8 1.62351 0.811756 0.583997i \(-0.198512\pi\)
0.811756 + 0.583997i \(0.198512\pi\)
\(380\) −2668.23 −0.360204
\(381\) 0 0
\(382\) 9629.34 1.28974
\(383\) 12441.8 1.65992 0.829958 0.557825i \(-0.188364\pi\)
0.829958 + 0.557825i \(0.188364\pi\)
\(384\) 0 0
\(385\) −27298.1 −3.61362
\(386\) 11946.2 1.57524
\(387\) 0 0
\(388\) −1090.16 −0.142641
\(389\) −9254.95 −1.20628 −0.603142 0.797634i \(-0.706085\pi\)
−0.603142 + 0.797634i \(0.706085\pi\)
\(390\) 0 0
\(391\) −2461.38 −0.318357
\(392\) −3566.86 −0.459575
\(393\) 0 0
\(394\) 10037.1 1.28341
\(395\) 14218.8 1.81120
\(396\) 0 0
\(397\) −2957.45 −0.373880 −0.186940 0.982371i \(-0.559857\pi\)
−0.186940 + 0.982371i \(0.559857\pi\)
\(398\) 9707.62 1.22261
\(399\) 0 0
\(400\) −27826.5 −3.47831
\(401\) 8475.76 1.05551 0.527755 0.849397i \(-0.323034\pi\)
0.527755 + 0.849397i \(0.323034\pi\)
\(402\) 0 0
\(403\) −4242.50 −0.524402
\(404\) −760.254 −0.0936239
\(405\) 0 0
\(406\) 7846.25 0.959120
\(407\) −3745.20 −0.456125
\(408\) 0 0
\(409\) 1851.69 0.223863 0.111932 0.993716i \(-0.464296\pi\)
0.111932 + 0.993716i \(0.464296\pi\)
\(410\) 3071.49 0.369976
\(411\) 0 0
\(412\) 163.487 0.0195496
\(413\) −5320.82 −0.633947
\(414\) 0 0
\(415\) −171.638 −0.0203021
\(416\) −2292.92 −0.270239
\(417\) 0 0
\(418\) 7592.35 0.888407
\(419\) 4303.52 0.501768 0.250884 0.968017i \(-0.419279\pi\)
0.250884 + 0.968017i \(0.419279\pi\)
\(420\) 0 0
\(421\) 15653.6 1.81213 0.906067 0.423134i \(-0.139070\pi\)
0.906067 + 0.423134i \(0.139070\pi\)
\(422\) 2475.94 0.285608
\(423\) 0 0
\(424\) 11695.6 1.33960
\(425\) 37904.8 4.32624
\(426\) 0 0
\(427\) −18376.0 −2.08261
\(428\) 1568.19 0.177106
\(429\) 0 0
\(430\) −21387.3 −2.39858
\(431\) 685.365 0.0765960 0.0382980 0.999266i \(-0.487806\pi\)
0.0382980 + 0.999266i \(0.487806\pi\)
\(432\) 0 0
\(433\) 8771.01 0.973459 0.486729 0.873553i \(-0.338190\pi\)
0.486729 + 0.873553i \(0.338190\pi\)
\(434\) −17355.7 −1.91958
\(435\) 0 0
\(436\) −271.380 −0.0298091
\(437\) 1000.85 0.109558
\(438\) 0 0
\(439\) −1983.55 −0.215649 −0.107824 0.994170i \(-0.534388\pi\)
−0.107824 + 0.994170i \(0.534388\pi\)
\(440\) 19856.6 2.15142
\(441\) 0 0
\(442\) 6637.03 0.714233
\(443\) −9467.17 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(444\) 0 0
\(445\) 12750.3 1.35825
\(446\) −7961.10 −0.845222
\(447\) 0 0
\(448\) 5383.07 0.567692
\(449\) −14377.4 −1.51116 −0.755581 0.655055i \(-0.772645\pi\)
−0.755581 + 0.655055i \(0.772645\pi\)
\(450\) 0 0
\(451\) −2266.53 −0.236645
\(452\) 1891.54 0.196838
\(453\) 0 0
\(454\) −8307.57 −0.858797
\(455\) 9703.27 0.999772
\(456\) 0 0
\(457\) −10508.5 −1.07564 −0.537819 0.843060i \(-0.680752\pi\)
−0.537819 + 0.843060i \(0.680752\pi\)
\(458\) 14718.5 1.50163
\(459\) 0 0
\(460\) −1410.30 −0.142947
\(461\) −1640.19 −0.165708 −0.0828539 0.996562i \(-0.526403\pi\)
−0.0828539 + 0.996562i \(0.526403\pi\)
\(462\) 0 0
\(463\) −5863.97 −0.588600 −0.294300 0.955713i \(-0.595087\pi\)
−0.294300 + 0.955713i \(0.595087\pi\)
\(464\) −7984.91 −0.798902
\(465\) 0 0
\(466\) 8762.24 0.871037
\(467\) −5323.17 −0.527467 −0.263733 0.964596i \(-0.584954\pi\)
−0.263733 + 0.964596i \(0.584954\pi\)
\(468\) 0 0
\(469\) −14980.1 −1.47488
\(470\) 12571.8 1.23381
\(471\) 0 0
\(472\) 3870.35 0.377431
\(473\) 15782.2 1.53418
\(474\) 0 0
\(475\) −15412.8 −1.48882
\(476\) 7041.31 0.678021
\(477\) 0 0
\(478\) −13276.9 −1.27044
\(479\) −19819.2 −1.89053 −0.945263 0.326310i \(-0.894195\pi\)
−0.945263 + 0.326310i \(0.894195\pi\)
\(480\) 0 0
\(481\) 1331.25 0.126195
\(482\) −5890.15 −0.556616
\(483\) 0 0
\(484\) 4166.42 0.391286
\(485\) −8519.60 −0.797639
\(486\) 0 0
\(487\) −15258.0 −1.41972 −0.709861 0.704342i \(-0.751242\pi\)
−0.709861 + 0.704342i \(0.751242\pi\)
\(488\) 13366.6 1.23991
\(489\) 0 0
\(490\) 15018.6 1.38464
\(491\) 11077.0 1.01813 0.509063 0.860729i \(-0.329992\pi\)
0.509063 + 0.860729i \(0.329992\pi\)
\(492\) 0 0
\(493\) 10876.9 0.993654
\(494\) −2698.74 −0.245794
\(495\) 0 0
\(496\) 17662.4 1.59892
\(497\) 19465.9 1.75687
\(498\) 0 0
\(499\) 12511.3 1.12241 0.561206 0.827676i \(-0.310338\pi\)
0.561206 + 0.827676i \(0.310338\pi\)
\(500\) 14053.7 1.25700
\(501\) 0 0
\(502\) 4365.61 0.388141
\(503\) −9688.28 −0.858805 −0.429402 0.903113i \(-0.641276\pi\)
−0.429402 + 0.903113i \(0.641276\pi\)
\(504\) 0 0
\(505\) −5941.37 −0.523540
\(506\) 4012.96 0.352565
\(507\) 0 0
\(508\) −3969.73 −0.346710
\(509\) −12217.5 −1.06391 −0.531956 0.846772i \(-0.678543\pi\)
−0.531956 + 0.846772i \(0.678543\pi\)
\(510\) 0 0
\(511\) −19261.7 −1.66749
\(512\) −1192.81 −0.102960
\(513\) 0 0
\(514\) 21709.4 1.86296
\(515\) 1277.65 0.109320
\(516\) 0 0
\(517\) −9277.04 −0.789175
\(518\) 5446.03 0.461940
\(519\) 0 0
\(520\) −7058.14 −0.595230
\(521\) 5006.39 0.420986 0.210493 0.977595i \(-0.432493\pi\)
0.210493 + 0.977595i \(0.432493\pi\)
\(522\) 0 0
\(523\) 3643.50 0.304626 0.152313 0.988332i \(-0.451328\pi\)
0.152313 + 0.988332i \(0.451328\pi\)
\(524\) −2221.09 −0.185169
\(525\) 0 0
\(526\) 9571.44 0.793412
\(527\) −24059.4 −1.98870
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −49245.6 −4.03602
\(531\) 0 0
\(532\) −2863.13 −0.233332
\(533\) 805.652 0.0654722
\(534\) 0 0
\(535\) 12255.4 0.990366
\(536\) 10896.5 0.878091
\(537\) 0 0
\(538\) −3031.89 −0.242963
\(539\) −11082.6 −0.885646
\(540\) 0 0
\(541\) −5995.24 −0.476443 −0.238221 0.971211i \(-0.576564\pi\)
−0.238221 + 0.971211i \(0.576564\pi\)
\(542\) 14296.9 1.13304
\(543\) 0 0
\(544\) −13003.2 −1.02483
\(545\) −2120.83 −0.166691
\(546\) 0 0
\(547\) 6643.19 0.519273 0.259636 0.965706i \(-0.416397\pi\)
0.259636 + 0.965706i \(0.416397\pi\)
\(548\) −2356.22 −0.183673
\(549\) 0 0
\(550\) −61798.8 −4.79110
\(551\) −4422.76 −0.341953
\(552\) 0 0
\(553\) 15257.4 1.17325
\(554\) 5001.67 0.383575
\(555\) 0 0
\(556\) −3971.96 −0.302965
\(557\) −2254.46 −0.171498 −0.0857492 0.996317i \(-0.527328\pi\)
−0.0857492 + 0.996317i \(0.527328\pi\)
\(558\) 0 0
\(559\) −5609.89 −0.424460
\(560\) −40396.7 −3.04834
\(561\) 0 0
\(562\) −18534.0 −1.39112
\(563\) −7591.34 −0.568272 −0.284136 0.958784i \(-0.591707\pi\)
−0.284136 + 0.958784i \(0.591707\pi\)
\(564\) 0 0
\(565\) 14782.4 1.10071
\(566\) −3608.80 −0.268002
\(567\) 0 0
\(568\) −14159.4 −1.04598
\(569\) 5189.45 0.382343 0.191171 0.981557i \(-0.438771\pi\)
0.191171 + 0.981557i \(0.438771\pi\)
\(570\) 0 0
\(571\) −20887.1 −1.53082 −0.765409 0.643544i \(-0.777463\pi\)
−0.765409 + 0.643544i \(0.777463\pi\)
\(572\) −2806.21 −0.205128
\(573\) 0 0
\(574\) 3295.85 0.239662
\(575\) −8146.49 −0.590838
\(576\) 0 0
\(577\) −17317.6 −1.24947 −0.624734 0.780838i \(-0.714793\pi\)
−0.624734 + 0.780838i \(0.714793\pi\)
\(578\) 21492.3 1.54665
\(579\) 0 0
\(580\) 6232.16 0.446166
\(581\) −184.175 −0.0131512
\(582\) 0 0
\(583\) 36339.6 2.58153
\(584\) 14010.9 0.992766
\(585\) 0 0
\(586\) 11184.6 0.788447
\(587\) −8520.93 −0.599142 −0.299571 0.954074i \(-0.596844\pi\)
−0.299571 + 0.954074i \(0.596844\pi\)
\(588\) 0 0
\(589\) 9783.02 0.684384
\(590\) −16296.5 −1.13715
\(591\) 0 0
\(592\) −5542.28 −0.384774
\(593\) 7785.03 0.539111 0.269555 0.962985i \(-0.413123\pi\)
0.269555 + 0.962985i \(0.413123\pi\)
\(594\) 0 0
\(595\) 55027.7 3.79145
\(596\) 913.548 0.0627859
\(597\) 0 0
\(598\) −1426.43 −0.0975435
\(599\) 18699.4 1.27552 0.637760 0.770235i \(-0.279861\pi\)
0.637760 + 0.770235i \(0.279861\pi\)
\(600\) 0 0
\(601\) 8297.05 0.563135 0.281567 0.959541i \(-0.409146\pi\)
0.281567 + 0.959541i \(0.409146\pi\)
\(602\) −22949.5 −1.55374
\(603\) 0 0
\(604\) 3817.82 0.257194
\(605\) 32560.5 2.18805
\(606\) 0 0
\(607\) −15542.6 −1.03930 −0.519650 0.854379i \(-0.673938\pi\)
−0.519650 + 0.854379i \(0.673938\pi\)
\(608\) 5287.37 0.352683
\(609\) 0 0
\(610\) −56281.6 −3.73570
\(611\) 3297.57 0.218340
\(612\) 0 0
\(613\) 21102.0 1.39038 0.695190 0.718826i \(-0.255320\pi\)
0.695190 + 0.718826i \(0.255320\pi\)
\(614\) −12202.5 −0.802038
\(615\) 0 0
\(616\) 21307.0 1.39364
\(617\) 5872.11 0.383148 0.191574 0.981478i \(-0.438641\pi\)
0.191574 + 0.981478i \(0.438641\pi\)
\(618\) 0 0
\(619\) −22326.9 −1.44974 −0.724872 0.688883i \(-0.758101\pi\)
−0.724872 + 0.688883i \(0.758101\pi\)
\(620\) −13785.4 −0.892957
\(621\) 0 0
\(622\) 8672.71 0.559074
\(623\) 13681.7 0.879846
\(624\) 0 0
\(625\) 65554.8 4.19551
\(626\) −26531.9 −1.69397
\(627\) 0 0
\(628\) 1015.31 0.0645147
\(629\) 7549.59 0.478572
\(630\) 0 0
\(631\) −5221.71 −0.329434 −0.164717 0.986341i \(-0.552671\pi\)
−0.164717 + 0.986341i \(0.552671\pi\)
\(632\) −11098.2 −0.698514
\(633\) 0 0
\(634\) 5530.64 0.346451
\(635\) −31023.4 −1.93878
\(636\) 0 0
\(637\) 3939.38 0.245030
\(638\) −17733.4 −1.10042
\(639\) 0 0
\(640\) 37765.9 2.33255
\(641\) 2982.45 0.183775 0.0918875 0.995769i \(-0.470710\pi\)
0.0918875 + 0.995769i \(0.470710\pi\)
\(642\) 0 0
\(643\) −7759.82 −0.475921 −0.237961 0.971275i \(-0.576479\pi\)
−0.237961 + 0.971275i \(0.576479\pi\)
\(644\) −1513.32 −0.0925979
\(645\) 0 0
\(646\) −15304.7 −0.932128
\(647\) −10968.0 −0.666458 −0.333229 0.942846i \(-0.608138\pi\)
−0.333229 + 0.942846i \(0.608138\pi\)
\(648\) 0 0
\(649\) 12025.6 0.727345
\(650\) 21966.7 1.32555
\(651\) 0 0
\(652\) −3506.49 −0.210621
\(653\) 14340.6 0.859407 0.429703 0.902970i \(-0.358618\pi\)
0.429703 + 0.902970i \(0.358618\pi\)
\(654\) 0 0
\(655\) −17357.8 −1.03546
\(656\) −3354.09 −0.199627
\(657\) 0 0
\(658\) 13490.1 0.799236
\(659\) 8567.91 0.506462 0.253231 0.967406i \(-0.418507\pi\)
0.253231 + 0.967406i \(0.418507\pi\)
\(660\) 0 0
\(661\) 33151.8 1.95076 0.975382 0.220523i \(-0.0707762\pi\)
0.975382 + 0.220523i \(0.0707762\pi\)
\(662\) 13973.3 0.820372
\(663\) 0 0
\(664\) 133.968 0.00782979
\(665\) −22375.3 −1.30478
\(666\) 0 0
\(667\) −2337.66 −0.135704
\(668\) 10046.8 0.581917
\(669\) 0 0
\(670\) −45880.8 −2.64557
\(671\) 41531.6 2.38944
\(672\) 0 0
\(673\) −13629.8 −0.780667 −0.390334 0.920674i \(-0.627640\pi\)
−0.390334 + 0.920674i \(0.627640\pi\)
\(674\) −33860.8 −1.93512
\(675\) 0 0
\(676\) −5156.53 −0.293385
\(677\) −22637.0 −1.28510 −0.642549 0.766245i \(-0.722123\pi\)
−0.642549 + 0.766245i \(0.722123\pi\)
\(678\) 0 0
\(679\) −9141.90 −0.516692
\(680\) −40027.0 −2.25730
\(681\) 0 0
\(682\) 39225.7 2.20239
\(683\) −5161.78 −0.289180 −0.144590 0.989492i \(-0.546186\pi\)
−0.144590 + 0.989492i \(0.546186\pi\)
\(684\) 0 0
\(685\) −18413.8 −1.02709
\(686\) −10363.4 −0.576786
\(687\) 0 0
\(688\) 23355.1 1.29419
\(689\) −12917.1 −0.714228
\(690\) 0 0
\(691\) −13302.9 −0.732368 −0.366184 0.930543i \(-0.619336\pi\)
−0.366184 + 0.930543i \(0.619336\pi\)
\(692\) −5318.64 −0.292174
\(693\) 0 0
\(694\) 14508.4 0.793561
\(695\) −31040.8 −1.69417
\(696\) 0 0
\(697\) 4568.89 0.248291
\(698\) 24282.3 1.31676
\(699\) 0 0
\(700\) 23304.8 1.25834
\(701\) 26588.4 1.43257 0.716285 0.697808i \(-0.245841\pi\)
0.716285 + 0.697808i \(0.245841\pi\)
\(702\) 0 0
\(703\) −3069.81 −0.164694
\(704\) −12166.3 −0.651329
\(705\) 0 0
\(706\) −16103.5 −0.858446
\(707\) −6375.35 −0.339137
\(708\) 0 0
\(709\) −15897.2 −0.842074 −0.421037 0.907043i \(-0.638334\pi\)
−0.421037 + 0.907043i \(0.638334\pi\)
\(710\) 59619.8 3.15139
\(711\) 0 0
\(712\) −9952.01 −0.523830
\(713\) 5170.84 0.271598
\(714\) 0 0
\(715\) −21930.5 −1.14707
\(716\) 1151.19 0.0600864
\(717\) 0 0
\(718\) 2560.71 0.133099
\(719\) 22399.4 1.16183 0.580916 0.813963i \(-0.302694\pi\)
0.580916 + 0.813963i \(0.302694\pi\)
\(720\) 0 0
\(721\) 1370.97 0.0708151
\(722\) −16318.9 −0.841175
\(723\) 0 0
\(724\) 3173.74 0.162916
\(725\) 35999.5 1.84412
\(726\) 0 0
\(727\) 35251.9 1.79838 0.899189 0.437560i \(-0.144157\pi\)
0.899189 + 0.437560i \(0.144157\pi\)
\(728\) −7573.69 −0.385576
\(729\) 0 0
\(730\) −58994.4 −2.99107
\(731\) −31813.9 −1.60969
\(732\) 0 0
\(733\) 8709.67 0.438880 0.219440 0.975626i \(-0.429577\pi\)
0.219440 + 0.975626i \(0.429577\pi\)
\(734\) 43387.6 2.18184
\(735\) 0 0
\(736\) 2794.65 0.139962
\(737\) 33856.7 1.69217
\(738\) 0 0
\(739\) −14437.1 −0.718641 −0.359320 0.933214i \(-0.616991\pi\)
−0.359320 + 0.933214i \(0.616991\pi\)
\(740\) 4325.70 0.214887
\(741\) 0 0
\(742\) −52842.7 −2.61444
\(743\) −28347.2 −1.39967 −0.699836 0.714303i \(-0.746744\pi\)
−0.699836 + 0.714303i \(0.746744\pi\)
\(744\) 0 0
\(745\) 7139.36 0.351095
\(746\) 40638.4 1.99448
\(747\) 0 0
\(748\) −15914.1 −0.777912
\(749\) 13150.6 0.641536
\(750\) 0 0
\(751\) −23848.6 −1.15879 −0.579393 0.815048i \(-0.696710\pi\)
−0.579393 + 0.815048i \(0.696710\pi\)
\(752\) −13728.5 −0.665726
\(753\) 0 0
\(754\) 6303.42 0.304452
\(755\) 29836.2 1.43821
\(756\) 0 0
\(757\) −19676.7 −0.944730 −0.472365 0.881403i \(-0.656599\pi\)
−0.472365 + 0.881403i \(0.656599\pi\)
\(758\) 39368.5 1.88645
\(759\) 0 0
\(760\) 16275.8 0.776820
\(761\) 28325.8 1.34929 0.674646 0.738142i \(-0.264296\pi\)
0.674646 + 0.738142i \(0.264296\pi\)
\(762\) 0 0
\(763\) −2275.74 −0.107978
\(764\) 8207.12 0.388643
\(765\) 0 0
\(766\) 40890.1 1.92875
\(767\) −4274.57 −0.201233
\(768\) 0 0
\(769\) −9264.43 −0.434439 −0.217220 0.976123i \(-0.569699\pi\)
−0.217220 + 0.976123i \(0.569699\pi\)
\(770\) −89715.4 −4.19886
\(771\) 0 0
\(772\) 10181.8 0.474676
\(773\) −8356.74 −0.388837 −0.194418 0.980919i \(-0.562282\pi\)
−0.194418 + 0.980919i \(0.562282\pi\)
\(774\) 0 0
\(775\) −79629.9 −3.69083
\(776\) 6649.80 0.307621
\(777\) 0 0
\(778\) −30416.4 −1.40165
\(779\) −1857.80 −0.0854461
\(780\) 0 0
\(781\) −43995.0 −2.01570
\(782\) −8089.34 −0.369916
\(783\) 0 0
\(784\) −16400.5 −0.747106
\(785\) 7934.62 0.360763
\(786\) 0 0
\(787\) 24846.8 1.12540 0.562701 0.826660i \(-0.309762\pi\)
0.562701 + 0.826660i \(0.309762\pi\)
\(788\) 8554.65 0.386735
\(789\) 0 0
\(790\) 46730.0 2.10453
\(791\) 15862.1 0.713011
\(792\) 0 0
\(793\) −14762.7 −0.661081
\(794\) −9719.68 −0.434431
\(795\) 0 0
\(796\) 8273.84 0.368415
\(797\) 17079.6 0.759085 0.379542 0.925174i \(-0.376081\pi\)
0.379542 + 0.925174i \(0.376081\pi\)
\(798\) 0 0
\(799\) 18700.7 0.828013
\(800\) −43037.1 −1.90199
\(801\) 0 0
\(802\) 27855.6 1.22645
\(803\) 43533.5 1.91316
\(804\) 0 0
\(805\) −11826.5 −0.517802
\(806\) −13943.0 −0.609331
\(807\) 0 0
\(808\) 4637.42 0.201911
\(809\) −26016.1 −1.13063 −0.565314 0.824876i \(-0.691245\pi\)
−0.565314 + 0.824876i \(0.691245\pi\)
\(810\) 0 0
\(811\) 25743.2 1.11463 0.557315 0.830301i \(-0.311832\pi\)
0.557315 + 0.830301i \(0.311832\pi\)
\(812\) 6687.39 0.289016
\(813\) 0 0
\(814\) −12308.6 −0.529996
\(815\) −27403.2 −1.17778
\(816\) 0 0
\(817\) 12936.2 0.553952
\(818\) 6085.57 0.260119
\(819\) 0 0
\(820\) 2617.84 0.111487
\(821\) 27463.9 1.16747 0.583737 0.811943i \(-0.301590\pi\)
0.583737 + 0.811943i \(0.301590\pi\)
\(822\) 0 0
\(823\) 10385.9 0.439889 0.219945 0.975512i \(-0.429412\pi\)
0.219945 + 0.975512i \(0.429412\pi\)
\(824\) −997.242 −0.0421609
\(825\) 0 0
\(826\) −17486.9 −0.736618
\(827\) 9008.63 0.378792 0.189396 0.981901i \(-0.439347\pi\)
0.189396 + 0.981901i \(0.439347\pi\)
\(828\) 0 0
\(829\) −36173.8 −1.51552 −0.757762 0.652531i \(-0.773707\pi\)
−0.757762 + 0.652531i \(0.773707\pi\)
\(830\) −564.088 −0.0235901
\(831\) 0 0
\(832\) 4324.58 0.180202
\(833\) 22340.4 0.929231
\(834\) 0 0
\(835\) 78515.2 3.25405
\(836\) 6470.99 0.267708
\(837\) 0 0
\(838\) 14143.5 0.583031
\(839\) −22289.2 −0.917173 −0.458586 0.888650i \(-0.651644\pi\)
−0.458586 + 0.888650i \(0.651644\pi\)
\(840\) 0 0
\(841\) −14058.8 −0.576440
\(842\) 51445.5 2.10562
\(843\) 0 0
\(844\) 2110.25 0.0860637
\(845\) −40298.2 −1.64059
\(846\) 0 0
\(847\) 34938.8 1.41737
\(848\) 53776.6 2.17771
\(849\) 0 0
\(850\) 124574. 5.02689
\(851\) −1622.56 −0.0653591
\(852\) 0 0
\(853\) 10796.1 0.433353 0.216677 0.976243i \(-0.430478\pi\)
0.216677 + 0.976243i \(0.430478\pi\)
\(854\) −60392.6 −2.41990
\(855\) 0 0
\(856\) −9565.68 −0.381949
\(857\) 38628.3 1.53969 0.769847 0.638229i \(-0.220333\pi\)
0.769847 + 0.638229i \(0.220333\pi\)
\(858\) 0 0
\(859\) −3141.74 −0.124790 −0.0623951 0.998052i \(-0.519874\pi\)
−0.0623951 + 0.998052i \(0.519874\pi\)
\(860\) −18228.5 −0.722774
\(861\) 0 0
\(862\) 2252.45 0.0890010
\(863\) 15237.5 0.601034 0.300517 0.953776i \(-0.402841\pi\)
0.300517 + 0.953776i \(0.402841\pi\)
\(864\) 0 0
\(865\) −41565.0 −1.63382
\(866\) 28825.9 1.13111
\(867\) 0 0
\(868\) −14792.3 −0.578437
\(869\) −34483.3 −1.34610
\(870\) 0 0
\(871\) −12034.5 −0.468168
\(872\) 1655.37 0.0642866
\(873\) 0 0
\(874\) 3289.28 0.127302
\(875\) 117852. 4.55327
\(876\) 0 0
\(877\) 14291.5 0.550275 0.275137 0.961405i \(-0.411277\pi\)
0.275137 + 0.961405i \(0.411277\pi\)
\(878\) −6518.95 −0.250574
\(879\) 0 0
\(880\) 91301.0 3.49745
\(881\) −45521.5 −1.74081 −0.870407 0.492333i \(-0.836144\pi\)
−0.870407 + 0.492333i \(0.836144\pi\)
\(882\) 0 0
\(883\) −28192.8 −1.07448 −0.537239 0.843430i \(-0.680533\pi\)
−0.537239 + 0.843430i \(0.680533\pi\)
\(884\) 5656.76 0.215223
\(885\) 0 0
\(886\) −31113.9 −1.17979
\(887\) 4138.35 0.156654 0.0783271 0.996928i \(-0.475042\pi\)
0.0783271 + 0.996928i \(0.475042\pi\)
\(888\) 0 0
\(889\) −33289.5 −1.25590
\(890\) 41904.0 1.57823
\(891\) 0 0
\(892\) −6785.28 −0.254695
\(893\) −7604.06 −0.284950
\(894\) 0 0
\(895\) 8996.50 0.336000
\(896\) 40524.5 1.51097
\(897\) 0 0
\(898\) −47251.4 −1.75590
\(899\) −22850.1 −0.847712
\(900\) 0 0
\(901\) −73253.5 −2.70858
\(902\) −7448.97 −0.274971
\(903\) 0 0
\(904\) −11538.1 −0.424503
\(905\) 24802.7 0.911016
\(906\) 0 0
\(907\) −23216.2 −0.849924 −0.424962 0.905211i \(-0.639713\pi\)
−0.424962 + 0.905211i \(0.639713\pi\)
\(908\) −7080.57 −0.258785
\(909\) 0 0
\(910\) 31889.8 1.16169
\(911\) −17961.0 −0.653211 −0.326606 0.945161i \(-0.605905\pi\)
−0.326606 + 0.945161i \(0.605905\pi\)
\(912\) 0 0
\(913\) 416.255 0.0150888
\(914\) −34536.2 −1.24984
\(915\) 0 0
\(916\) 12544.6 0.452495
\(917\) −18625.6 −0.670745
\(918\) 0 0
\(919\) 27253.0 0.978230 0.489115 0.872219i \(-0.337320\pi\)
0.489115 + 0.872219i \(0.337320\pi\)
\(920\) 8602.60 0.308282
\(921\) 0 0
\(922\) −5390.49 −0.192545
\(923\) 15638.3 0.557681
\(924\) 0 0
\(925\) 24987.0 0.888183
\(926\) −19272.0 −0.683927
\(927\) 0 0
\(928\) −12349.6 −0.436850
\(929\) −33578.2 −1.18586 −0.592931 0.805254i \(-0.702029\pi\)
−0.592931 + 0.805254i \(0.702029\pi\)
\(930\) 0 0
\(931\) −9084.05 −0.319783
\(932\) 7468.09 0.262474
\(933\) 0 0
\(934\) −17494.6 −0.612892
\(935\) −124369. −4.35004
\(936\) 0 0
\(937\) −18381.8 −0.640883 −0.320442 0.947268i \(-0.603831\pi\)
−0.320442 + 0.947268i \(0.603831\pi\)
\(938\) −49232.1 −1.71374
\(939\) 0 0
\(940\) 10715.0 0.371791
\(941\) −50541.5 −1.75091 −0.875454 0.483301i \(-0.839438\pi\)
−0.875454 + 0.483301i \(0.839438\pi\)
\(942\) 0 0
\(943\) −981.945 −0.0339094
\(944\) 17795.9 0.613568
\(945\) 0 0
\(946\) 51868.4 1.78265
\(947\) 32533.7 1.11637 0.558186 0.829716i \(-0.311498\pi\)
0.558186 + 0.829716i \(0.311498\pi\)
\(948\) 0 0
\(949\) −15474.2 −0.529309
\(950\) −50654.3 −1.72994
\(951\) 0 0
\(952\) −42950.7 −1.46223
\(953\) −27408.1 −0.931623 −0.465812 0.884884i \(-0.654238\pi\)
−0.465812 + 0.884884i \(0.654238\pi\)
\(954\) 0 0
\(955\) 64138.5 2.17327
\(956\) −11315.9 −0.382827
\(957\) 0 0
\(958\) −65135.8 −2.19670
\(959\) −19758.8 −0.665324
\(960\) 0 0
\(961\) 20752.7 0.696610
\(962\) 4375.17 0.146633
\(963\) 0 0
\(964\) −5020.20 −0.167728
\(965\) 79570.3 2.65436
\(966\) 0 0
\(967\) 52463.9 1.74470 0.872351 0.488881i \(-0.162595\pi\)
0.872351 + 0.488881i \(0.162595\pi\)
\(968\) −25414.4 −0.843853
\(969\) 0 0
\(970\) −27999.7 −0.926820
\(971\) −52736.1 −1.74293 −0.871463 0.490461i \(-0.836828\pi\)
−0.871463 + 0.490461i \(0.836828\pi\)
\(972\) 0 0
\(973\) −33308.2 −1.09744
\(974\) −50145.3 −1.64965
\(975\) 0 0
\(976\) 61459.9 2.01566
\(977\) 38462.0 1.25948 0.629739 0.776807i \(-0.283162\pi\)
0.629739 + 0.776807i \(0.283162\pi\)
\(978\) 0 0
\(979\) −30922.0 −1.00947
\(980\) 12800.4 0.417240
\(981\) 0 0
\(982\) 36404.7 1.18302
\(983\) −11477.7 −0.372414 −0.186207 0.982511i \(-0.559620\pi\)
−0.186207 + 0.982511i \(0.559620\pi\)
\(984\) 0 0
\(985\) 66854.5 2.16260
\(986\) 35747.0 1.15458
\(987\) 0 0
\(988\) −2300.15 −0.0740663
\(989\) 6837.44 0.219836
\(990\) 0 0
\(991\) 43500.8 1.39440 0.697199 0.716878i \(-0.254430\pi\)
0.697199 + 0.716878i \(0.254430\pi\)
\(992\) 27317.0 0.874312
\(993\) 0 0
\(994\) 63974.6 2.04140
\(995\) 64659.9 2.06016
\(996\) 0 0
\(997\) 10602.9 0.336806 0.168403 0.985718i \(-0.446139\pi\)
0.168403 + 0.985718i \(0.446139\pi\)
\(998\) 41118.5 1.30419
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.h.1.4 yes 5
3.2 odd 2 207.4.a.g.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.4.a.g.1.2 5 3.2 odd 2
207.4.a.h.1.4 yes 5 1.1 even 1 trivial