Properties

Label 207.4.a.h.1.2
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 26x^{3} + 10x^{2} + 144x + 56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.18948\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18948 q^{2} -3.20619 q^{4} -11.9773 q^{5} -36.1543 q^{7} +24.5357 q^{8} +26.2241 q^{10} -21.1816 q^{11} -42.7538 q^{13} +79.1589 q^{14} -28.0708 q^{16} +104.421 q^{17} +3.53221 q^{19} +38.4016 q^{20} +46.3766 q^{22} -23.0000 q^{23} +18.4565 q^{25} +93.6084 q^{26} +115.918 q^{28} -56.5533 q^{29} -36.8766 q^{31} -134.825 q^{32} -228.628 q^{34} +433.032 q^{35} +45.4764 q^{37} -7.73370 q^{38} -293.872 q^{40} +458.159 q^{41} -23.5875 q^{43} +67.9123 q^{44} +50.3580 q^{46} +191.004 q^{47} +964.131 q^{49} -40.4100 q^{50} +137.077 q^{52} +273.107 q^{53} +253.699 q^{55} -887.070 q^{56} +123.822 q^{58} -846.995 q^{59} -386.932 q^{61} +80.7404 q^{62} +519.763 q^{64} +512.076 q^{65} +489.918 q^{67} -334.794 q^{68} -948.113 q^{70} -767.497 q^{71} -1093.47 q^{73} -99.5696 q^{74} -11.3250 q^{76} +765.805 q^{77} +592.548 q^{79} +336.213 q^{80} -1003.13 q^{82} +124.425 q^{83} -1250.69 q^{85} +51.6444 q^{86} -519.705 q^{88} -345.013 q^{89} +1545.73 q^{91} +73.7424 q^{92} -418.198 q^{94} -42.3065 q^{95} +1447.26 q^{97} -2110.94 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 16 q^{4} + 20 q^{5} - 10 q^{7} + 48 q^{8} + 50 q^{10} + 46 q^{11} + 54 q^{13} + 164 q^{14} - 60 q^{16} + 250 q^{17} - 28 q^{19} + 242 q^{20} - 10 q^{22} - 115 q^{23} + 239 q^{25} + 368 q^{26}+ \cdots - 2400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.18948 −0.774097 −0.387048 0.922059i \(-0.626505\pi\)
−0.387048 + 0.922059i \(0.626505\pi\)
\(3\) 0 0
\(4\) −3.20619 −0.400774
\(5\) −11.9773 −1.07129 −0.535643 0.844445i \(-0.679931\pi\)
−0.535643 + 0.844445i \(0.679931\pi\)
\(6\) 0 0
\(7\) −36.1543 −1.95215 −0.976074 0.217440i \(-0.930229\pi\)
−0.976074 + 0.217440i \(0.930229\pi\)
\(8\) 24.5357 1.08433
\(9\) 0 0
\(10\) 26.2241 0.829278
\(11\) −21.1816 −0.580590 −0.290295 0.956937i \(-0.593753\pi\)
−0.290295 + 0.956937i \(0.593753\pi\)
\(12\) 0 0
\(13\) −42.7538 −0.912136 −0.456068 0.889945i \(-0.650743\pi\)
−0.456068 + 0.889945i \(0.650743\pi\)
\(14\) 79.1589 1.51115
\(15\) 0 0
\(16\) −28.0708 −0.438606
\(17\) 104.421 1.48976 0.744878 0.667201i \(-0.232508\pi\)
0.744878 + 0.667201i \(0.232508\pi\)
\(18\) 0 0
\(19\) 3.53221 0.0426497 0.0213249 0.999773i \(-0.493212\pi\)
0.0213249 + 0.999773i \(0.493212\pi\)
\(20\) 38.4016 0.429343
\(21\) 0 0
\(22\) 46.3766 0.449433
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 18.4565 0.147652
\(26\) 93.6084 0.706082
\(27\) 0 0
\(28\) 115.918 0.782370
\(29\) −56.5533 −0.362127 −0.181063 0.983471i \(-0.557954\pi\)
−0.181063 + 0.983471i \(0.557954\pi\)
\(30\) 0 0
\(31\) −36.8766 −0.213653 −0.106826 0.994278i \(-0.534069\pi\)
−0.106826 + 0.994278i \(0.534069\pi\)
\(32\) −134.825 −0.744811
\(33\) 0 0
\(34\) −228.628 −1.15322
\(35\) 433.032 2.09131
\(36\) 0 0
\(37\) 45.4764 0.202062 0.101031 0.994883i \(-0.467786\pi\)
0.101031 + 0.994883i \(0.467786\pi\)
\(38\) −7.73370 −0.0330150
\(39\) 0 0
\(40\) −293.872 −1.16163
\(41\) 458.159 1.74518 0.872590 0.488454i \(-0.162439\pi\)
0.872590 + 0.488454i \(0.162439\pi\)
\(42\) 0 0
\(43\) −23.5875 −0.0836527 −0.0418264 0.999125i \(-0.513318\pi\)
−0.0418264 + 0.999125i \(0.513318\pi\)
\(44\) 67.9123 0.232686
\(45\) 0 0
\(46\) 50.3580 0.161410
\(47\) 191.004 0.592782 0.296391 0.955067i \(-0.404217\pi\)
0.296391 + 0.955067i \(0.404217\pi\)
\(48\) 0 0
\(49\) 964.131 2.81088
\(50\) −40.4100 −0.114297
\(51\) 0 0
\(52\) 137.077 0.365560
\(53\) 273.107 0.707813 0.353906 0.935281i \(-0.384853\pi\)
0.353906 + 0.935281i \(0.384853\pi\)
\(54\) 0 0
\(55\) 253.699 0.621978
\(56\) −887.070 −2.11678
\(57\) 0 0
\(58\) 123.822 0.280321
\(59\) −846.995 −1.86897 −0.934486 0.355999i \(-0.884141\pi\)
−0.934486 + 0.355999i \(0.884141\pi\)
\(60\) 0 0
\(61\) −386.932 −0.812156 −0.406078 0.913838i \(-0.633104\pi\)
−0.406078 + 0.913838i \(0.633104\pi\)
\(62\) 80.7404 0.165388
\(63\) 0 0
\(64\) 519.763 1.01516
\(65\) 512.076 0.977158
\(66\) 0 0
\(67\) 489.918 0.893329 0.446665 0.894702i \(-0.352612\pi\)
0.446665 + 0.894702i \(0.352612\pi\)
\(68\) −334.794 −0.597055
\(69\) 0 0
\(70\) −948.113 −1.61887
\(71\) −767.497 −1.28289 −0.641445 0.767169i \(-0.721665\pi\)
−0.641445 + 0.767169i \(0.721665\pi\)
\(72\) 0 0
\(73\) −1093.47 −1.75317 −0.876586 0.481246i \(-0.840184\pi\)
−0.876586 + 0.481246i \(0.840184\pi\)
\(74\) −99.5696 −0.156415
\(75\) 0 0
\(76\) −11.3250 −0.0170929
\(77\) 765.805 1.13340
\(78\) 0 0
\(79\) 592.548 0.843884 0.421942 0.906623i \(-0.361349\pi\)
0.421942 + 0.906623i \(0.361349\pi\)
\(80\) 336.213 0.469872
\(81\) 0 0
\(82\) −1003.13 −1.35094
\(83\) 124.425 0.164547 0.0822735 0.996610i \(-0.473782\pi\)
0.0822735 + 0.996610i \(0.473782\pi\)
\(84\) 0 0
\(85\) −1250.69 −1.59595
\(86\) 51.6444 0.0647553
\(87\) 0 0
\(88\) −519.705 −0.629554
\(89\) −345.013 −0.410913 −0.205457 0.978666i \(-0.565868\pi\)
−0.205457 + 0.978666i \(0.565868\pi\)
\(90\) 0 0
\(91\) 1545.73 1.78062
\(92\) 73.7424 0.0835672
\(93\) 0 0
\(94\) −418.198 −0.458871
\(95\) −42.3065 −0.0456900
\(96\) 0 0
\(97\) 1447.26 1.51492 0.757460 0.652882i \(-0.226440\pi\)
0.757460 + 0.652882i \(0.226440\pi\)
\(98\) −2110.94 −2.17589
\(99\) 0 0
\(100\) −59.1749 −0.0591749
\(101\) −1146.59 −1.12960 −0.564800 0.825228i \(-0.691047\pi\)
−0.564800 + 0.825228i \(0.691047\pi\)
\(102\) 0 0
\(103\) −1121.66 −1.07301 −0.536505 0.843897i \(-0.680256\pi\)
−0.536505 + 0.843897i \(0.680256\pi\)
\(104\) −1048.99 −0.989061
\(105\) 0 0
\(106\) −597.961 −0.547916
\(107\) −224.533 −0.202864 −0.101432 0.994842i \(-0.532342\pi\)
−0.101432 + 0.994842i \(0.532342\pi\)
\(108\) 0 0
\(109\) −1213.28 −1.06615 −0.533077 0.846067i \(-0.678965\pi\)
−0.533077 + 0.846067i \(0.678965\pi\)
\(110\) −555.468 −0.481471
\(111\) 0 0
\(112\) 1014.88 0.856224
\(113\) 1094.65 0.911288 0.455644 0.890162i \(-0.349409\pi\)
0.455644 + 0.890162i \(0.349409\pi\)
\(114\) 0 0
\(115\) 275.479 0.223378
\(116\) 181.321 0.145131
\(117\) 0 0
\(118\) 1854.48 1.44677
\(119\) −3775.27 −2.90822
\(120\) 0 0
\(121\) −882.340 −0.662915
\(122\) 847.178 0.628688
\(123\) 0 0
\(124\) 118.233 0.0856264
\(125\) 1276.11 0.913108
\(126\) 0 0
\(127\) 1241.01 0.867103 0.433551 0.901129i \(-0.357260\pi\)
0.433551 + 0.901129i \(0.357260\pi\)
\(128\) −59.4073 −0.0410228
\(129\) 0 0
\(130\) −1121.18 −0.756415
\(131\) 2689.20 1.79356 0.896781 0.442475i \(-0.145899\pi\)
0.896781 + 0.442475i \(0.145899\pi\)
\(132\) 0 0
\(133\) −127.705 −0.0832586
\(134\) −1072.66 −0.691523
\(135\) 0 0
\(136\) 2562.05 1.61539
\(137\) 1446.37 0.901986 0.450993 0.892527i \(-0.351070\pi\)
0.450993 + 0.892527i \(0.351070\pi\)
\(138\) 0 0
\(139\) −1783.89 −1.08854 −0.544272 0.838909i \(-0.683194\pi\)
−0.544272 + 0.838909i \(0.683194\pi\)
\(140\) −1388.38 −0.838141
\(141\) 0 0
\(142\) 1680.42 0.993081
\(143\) 905.594 0.529577
\(144\) 0 0
\(145\) 677.357 0.387941
\(146\) 2394.14 1.35712
\(147\) 0 0
\(148\) −145.806 −0.0809810
\(149\) 2362.42 1.29891 0.649454 0.760401i \(-0.274998\pi\)
0.649454 + 0.760401i \(0.274998\pi\)
\(150\) 0 0
\(151\) 1821.89 0.981876 0.490938 0.871194i \(-0.336654\pi\)
0.490938 + 0.871194i \(0.336654\pi\)
\(152\) 86.6653 0.0462466
\(153\) 0 0
\(154\) −1676.71 −0.877360
\(155\) 441.683 0.228883
\(156\) 0 0
\(157\) −850.404 −0.432290 −0.216145 0.976361i \(-0.569348\pi\)
−0.216145 + 0.976361i \(0.569348\pi\)
\(158\) −1297.37 −0.653248
\(159\) 0 0
\(160\) 1614.85 0.797905
\(161\) 831.548 0.407051
\(162\) 0 0
\(163\) −2633.80 −1.26561 −0.632807 0.774310i \(-0.718097\pi\)
−0.632807 + 0.774310i \(0.718097\pi\)
\(164\) −1468.94 −0.699422
\(165\) 0 0
\(166\) −272.425 −0.127375
\(167\) 2305.75 1.06841 0.534205 0.845355i \(-0.320611\pi\)
0.534205 + 0.845355i \(0.320611\pi\)
\(168\) 0 0
\(169\) −369.113 −0.168008
\(170\) 2738.35 1.23542
\(171\) 0 0
\(172\) 75.6262 0.0335258
\(173\) −1991.39 −0.875160 −0.437580 0.899179i \(-0.644164\pi\)
−0.437580 + 0.899179i \(0.644164\pi\)
\(174\) 0 0
\(175\) −667.280 −0.288238
\(176\) 594.584 0.254651
\(177\) 0 0
\(178\) 755.397 0.318087
\(179\) 3526.49 1.47253 0.736264 0.676694i \(-0.236588\pi\)
0.736264 + 0.676694i \(0.236588\pi\)
\(180\) 0 0
\(181\) 4407.36 1.80993 0.904963 0.425491i \(-0.139898\pi\)
0.904963 + 0.425491i \(0.139898\pi\)
\(182\) −3384.35 −1.37838
\(183\) 0 0
\(184\) −564.321 −0.226099
\(185\) −544.686 −0.216466
\(186\) 0 0
\(187\) −2211.81 −0.864938
\(188\) −612.394 −0.237572
\(189\) 0 0
\(190\) 92.6290 0.0353685
\(191\) 1355.35 0.513454 0.256727 0.966484i \(-0.417356\pi\)
0.256727 + 0.966484i \(0.417356\pi\)
\(192\) 0 0
\(193\) −177.379 −0.0661555 −0.0330778 0.999453i \(-0.510531\pi\)
−0.0330778 + 0.999453i \(0.510531\pi\)
\(194\) −3168.75 −1.17269
\(195\) 0 0
\(196\) −3091.19 −1.12653
\(197\) 3005.80 1.08708 0.543538 0.839384i \(-0.317084\pi\)
0.543538 + 0.839384i \(0.317084\pi\)
\(198\) 0 0
\(199\) 2384.12 0.849274 0.424637 0.905364i \(-0.360402\pi\)
0.424637 + 0.905364i \(0.360402\pi\)
\(200\) 452.842 0.160104
\(201\) 0 0
\(202\) 2510.43 0.874420
\(203\) 2044.64 0.706925
\(204\) 0 0
\(205\) −5487.52 −1.86958
\(206\) 2455.84 0.830613
\(207\) 0 0
\(208\) 1200.13 0.400069
\(209\) −74.8179 −0.0247620
\(210\) 0 0
\(211\) −12.8956 −0.00420745 −0.00210372 0.999998i \(-0.500670\pi\)
−0.00210372 + 0.999998i \(0.500670\pi\)
\(212\) −875.632 −0.283673
\(213\) 0 0
\(214\) 491.609 0.157036
\(215\) 282.516 0.0896159
\(216\) 0 0
\(217\) 1333.25 0.417081
\(218\) 2656.44 0.825307
\(219\) 0 0
\(220\) −813.408 −0.249273
\(221\) −4464.40 −1.35886
\(222\) 0 0
\(223\) −559.310 −0.167956 −0.0839780 0.996468i \(-0.526763\pi\)
−0.0839780 + 0.996468i \(0.526763\pi\)
\(224\) 4874.51 1.45398
\(225\) 0 0
\(226\) −2396.70 −0.705426
\(227\) 2210.81 0.646415 0.323208 0.946328i \(-0.395239\pi\)
0.323208 + 0.946328i \(0.395239\pi\)
\(228\) 0 0
\(229\) −4550.81 −1.31322 −0.656608 0.754232i \(-0.728009\pi\)
−0.656608 + 0.754232i \(0.728009\pi\)
\(230\) −603.154 −0.172917
\(231\) 0 0
\(232\) −1387.57 −0.392667
\(233\) 5736.88 1.61303 0.806515 0.591214i \(-0.201351\pi\)
0.806515 + 0.591214i \(0.201351\pi\)
\(234\) 0 0
\(235\) −2287.71 −0.635038
\(236\) 2715.63 0.749036
\(237\) 0 0
\(238\) 8265.87 2.25125
\(239\) −4471.62 −1.21023 −0.605115 0.796138i \(-0.706873\pi\)
−0.605115 + 0.796138i \(0.706873\pi\)
\(240\) 0 0
\(241\) 4600.43 1.22963 0.614813 0.788673i \(-0.289232\pi\)
0.614813 + 0.788673i \(0.289232\pi\)
\(242\) 1931.86 0.513160
\(243\) 0 0
\(244\) 1240.58 0.325491
\(245\) −11547.7 −3.01125
\(246\) 0 0
\(247\) −151.016 −0.0389024
\(248\) −904.792 −0.231671
\(249\) 0 0
\(250\) −2794.01 −0.706834
\(251\) −1378.02 −0.346533 −0.173267 0.984875i \(-0.555432\pi\)
−0.173267 + 0.984875i \(0.555432\pi\)
\(252\) 0 0
\(253\) 487.177 0.121061
\(254\) −2717.17 −0.671222
\(255\) 0 0
\(256\) −4028.03 −0.983407
\(257\) −1097.23 −0.266317 −0.133158 0.991095i \(-0.542512\pi\)
−0.133158 + 0.991095i \(0.542512\pi\)
\(258\) 0 0
\(259\) −1644.17 −0.394454
\(260\) −1641.82 −0.391619
\(261\) 0 0
\(262\) −5887.94 −1.38839
\(263\) −4755.57 −1.11499 −0.557493 0.830182i \(-0.688237\pi\)
−0.557493 + 0.830182i \(0.688237\pi\)
\(264\) 0 0
\(265\) −3271.09 −0.758269
\(266\) 279.606 0.0644502
\(267\) 0 0
\(268\) −1570.77 −0.358023
\(269\) 2510.79 0.569092 0.284546 0.958662i \(-0.408157\pi\)
0.284546 + 0.958662i \(0.408157\pi\)
\(270\) 0 0
\(271\) −6224.93 −1.39534 −0.697671 0.716418i \(-0.745780\pi\)
−0.697671 + 0.716418i \(0.745780\pi\)
\(272\) −2931.19 −0.653416
\(273\) 0 0
\(274\) −3166.80 −0.698225
\(275\) −390.937 −0.0857251
\(276\) 0 0
\(277\) 6768.99 1.46826 0.734132 0.679007i \(-0.237589\pi\)
0.734132 + 0.679007i \(0.237589\pi\)
\(278\) 3905.79 0.842639
\(279\) 0 0
\(280\) 10624.7 2.26768
\(281\) −3095.89 −0.657243 −0.328622 0.944462i \(-0.606584\pi\)
−0.328622 + 0.944462i \(0.606584\pi\)
\(282\) 0 0
\(283\) 3575.40 0.751008 0.375504 0.926821i \(-0.377470\pi\)
0.375504 + 0.926821i \(0.377470\pi\)
\(284\) 2460.74 0.514149
\(285\) 0 0
\(286\) −1982.78 −0.409944
\(287\) −16564.4 −3.40685
\(288\) 0 0
\(289\) 5990.78 1.21937
\(290\) −1483.06 −0.300304
\(291\) 0 0
\(292\) 3505.89 0.702625
\(293\) 8075.58 1.61017 0.805086 0.593158i \(-0.202119\pi\)
0.805086 + 0.593158i \(0.202119\pi\)
\(294\) 0 0
\(295\) 10144.7 2.00220
\(296\) 1115.80 0.219102
\(297\) 0 0
\(298\) −5172.47 −1.00548
\(299\) 983.337 0.190194
\(300\) 0 0
\(301\) 852.791 0.163302
\(302\) −3988.99 −0.760067
\(303\) 0 0
\(304\) −99.1520 −0.0187064
\(305\) 4634.41 0.870051
\(306\) 0 0
\(307\) 5012.21 0.931797 0.465899 0.884838i \(-0.345731\pi\)
0.465899 + 0.884838i \(0.345731\pi\)
\(308\) −2455.32 −0.454236
\(309\) 0 0
\(310\) −967.054 −0.177177
\(311\) 4019.10 0.732805 0.366403 0.930456i \(-0.380589\pi\)
0.366403 + 0.930456i \(0.380589\pi\)
\(312\) 0 0
\(313\) 8919.30 1.61070 0.805349 0.592801i \(-0.201978\pi\)
0.805349 + 0.592801i \(0.201978\pi\)
\(314\) 1861.94 0.334635
\(315\) 0 0
\(316\) −1899.82 −0.338207
\(317\) −6767.22 −1.19901 −0.599503 0.800372i \(-0.704635\pi\)
−0.599503 + 0.800372i \(0.704635\pi\)
\(318\) 0 0
\(319\) 1197.89 0.210247
\(320\) −6225.37 −1.08753
\(321\) 0 0
\(322\) −1820.66 −0.315097
\(323\) 368.838 0.0635377
\(324\) 0 0
\(325\) −789.084 −0.134678
\(326\) 5766.64 0.979707
\(327\) 0 0
\(328\) 11241.2 1.89236
\(329\) −6905.60 −1.15720
\(330\) 0 0
\(331\) −11218.1 −1.86284 −0.931420 0.363946i \(-0.881429\pi\)
−0.931420 + 0.363946i \(0.881429\pi\)
\(332\) −398.930 −0.0659462
\(333\) 0 0
\(334\) −5048.39 −0.827052
\(335\) −5867.91 −0.957010
\(336\) 0 0
\(337\) 2513.85 0.406344 0.203172 0.979143i \(-0.434875\pi\)
0.203172 + 0.979143i \(0.434875\pi\)
\(338\) 808.164 0.130054
\(339\) 0 0
\(340\) 4009.94 0.639617
\(341\) 781.105 0.124045
\(342\) 0 0
\(343\) −22456.6 −3.53510
\(344\) −578.737 −0.0907076
\(345\) 0 0
\(346\) 4360.11 0.677459
\(347\) −384.562 −0.0594938 −0.0297469 0.999557i \(-0.509470\pi\)
−0.0297469 + 0.999557i \(0.509470\pi\)
\(348\) 0 0
\(349\) −2600.52 −0.398861 −0.199431 0.979912i \(-0.563909\pi\)
−0.199431 + 0.979912i \(0.563909\pi\)
\(350\) 1460.99 0.223124
\(351\) 0 0
\(352\) 2855.81 0.432430
\(353\) 5746.10 0.866385 0.433193 0.901301i \(-0.357387\pi\)
0.433193 + 0.901301i \(0.357387\pi\)
\(354\) 0 0
\(355\) 9192.57 1.37434
\(356\) 1106.18 0.164683
\(357\) 0 0
\(358\) −7721.18 −1.13988
\(359\) −10987.6 −1.61533 −0.807664 0.589643i \(-0.799268\pi\)
−0.807664 + 0.589643i \(0.799268\pi\)
\(360\) 0 0
\(361\) −6846.52 −0.998181
\(362\) −9649.81 −1.40106
\(363\) 0 0
\(364\) −4955.91 −0.713628
\(365\) 13096.9 1.87815
\(366\) 0 0
\(367\) 2627.60 0.373732 0.186866 0.982385i \(-0.440167\pi\)
0.186866 + 0.982385i \(0.440167\pi\)
\(368\) 645.628 0.0914557
\(369\) 0 0
\(370\) 1192.58 0.167565
\(371\) −9873.97 −1.38175
\(372\) 0 0
\(373\) −3613.59 −0.501620 −0.250810 0.968036i \(-0.580697\pi\)
−0.250810 + 0.968036i \(0.580697\pi\)
\(374\) 4842.70 0.669546
\(375\) 0 0
\(376\) 4686.41 0.642774
\(377\) 2417.87 0.330309
\(378\) 0 0
\(379\) 6016.03 0.815364 0.407682 0.913124i \(-0.366337\pi\)
0.407682 + 0.913124i \(0.366337\pi\)
\(380\) 135.643 0.0183114
\(381\) 0 0
\(382\) −2967.51 −0.397463
\(383\) −4403.22 −0.587451 −0.293726 0.955890i \(-0.594895\pi\)
−0.293726 + 0.955890i \(0.594895\pi\)
\(384\) 0 0
\(385\) −9172.30 −1.21419
\(386\) 388.367 0.0512108
\(387\) 0 0
\(388\) −4640.20 −0.607140
\(389\) 8511.27 1.10935 0.554677 0.832066i \(-0.312842\pi\)
0.554677 + 0.832066i \(0.312842\pi\)
\(390\) 0 0
\(391\) −2401.69 −0.310636
\(392\) 23655.6 3.04793
\(393\) 0 0
\(394\) −6581.12 −0.841503
\(395\) −7097.14 −0.904040
\(396\) 0 0
\(397\) 927.638 0.117272 0.0586358 0.998279i \(-0.481325\pi\)
0.0586358 + 0.998279i \(0.481325\pi\)
\(398\) −5219.97 −0.657420
\(399\) 0 0
\(400\) −518.087 −0.0647609
\(401\) 1954.86 0.243444 0.121722 0.992564i \(-0.461158\pi\)
0.121722 + 0.992564i \(0.461158\pi\)
\(402\) 0 0
\(403\) 1576.61 0.194880
\(404\) 3676.18 0.452715
\(405\) 0 0
\(406\) −4476.70 −0.547228
\(407\) −963.264 −0.117315
\(408\) 0 0
\(409\) −3081.52 −0.372546 −0.186273 0.982498i \(-0.559641\pi\)
−0.186273 + 0.982498i \(0.559641\pi\)
\(410\) 12014.8 1.44724
\(411\) 0 0
\(412\) 3596.24 0.430034
\(413\) 30622.5 3.64851
\(414\) 0 0
\(415\) −1490.28 −0.176277
\(416\) 5764.29 0.679369
\(417\) 0 0
\(418\) 163.812 0.0191682
\(419\) −1349.08 −0.157296 −0.0786481 0.996902i \(-0.525060\pi\)
−0.0786481 + 0.996902i \(0.525060\pi\)
\(420\) 0 0
\(421\) 9632.71 1.11513 0.557565 0.830134i \(-0.311736\pi\)
0.557565 + 0.830134i \(0.311736\pi\)
\(422\) 28.2347 0.00325697
\(423\) 0 0
\(424\) 6700.86 0.767506
\(425\) 1927.24 0.219965
\(426\) 0 0
\(427\) 13989.2 1.58545
\(428\) 719.895 0.0813024
\(429\) 0 0
\(430\) −618.562 −0.0693714
\(431\) −8791.24 −0.982504 −0.491252 0.871018i \(-0.663461\pi\)
−0.491252 + 0.871018i \(0.663461\pi\)
\(432\) 0 0
\(433\) 10918.2 1.21177 0.605885 0.795552i \(-0.292819\pi\)
0.605885 + 0.795552i \(0.292819\pi\)
\(434\) −2919.11 −0.322861
\(435\) 0 0
\(436\) 3890.00 0.427287
\(437\) −81.2409 −0.00889309
\(438\) 0 0
\(439\) −5800.72 −0.630645 −0.315323 0.948985i \(-0.602113\pi\)
−0.315323 + 0.948985i \(0.602113\pi\)
\(440\) 6224.68 0.674432
\(441\) 0 0
\(442\) 9774.70 1.05189
\(443\) 8203.93 0.879866 0.439933 0.898031i \(-0.355002\pi\)
0.439933 + 0.898031i \(0.355002\pi\)
\(444\) 0 0
\(445\) 4132.33 0.440205
\(446\) 1224.60 0.130014
\(447\) 0 0
\(448\) −18791.7 −1.98175
\(449\) −10030.6 −1.05429 −0.527144 0.849776i \(-0.676737\pi\)
−0.527144 + 0.849776i \(0.676737\pi\)
\(450\) 0 0
\(451\) −9704.53 −1.01323
\(452\) −3509.64 −0.365221
\(453\) 0 0
\(454\) −4840.51 −0.500388
\(455\) −18513.7 −1.90756
\(456\) 0 0
\(457\) 11691.9 1.19677 0.598385 0.801208i \(-0.295809\pi\)
0.598385 + 0.801208i \(0.295809\pi\)
\(458\) 9963.90 1.01656
\(459\) 0 0
\(460\) −883.237 −0.0895242
\(461\) −2132.60 −0.215456 −0.107728 0.994180i \(-0.534358\pi\)
−0.107728 + 0.994180i \(0.534358\pi\)
\(462\) 0 0
\(463\) 13503.1 1.35538 0.677690 0.735348i \(-0.262981\pi\)
0.677690 + 0.735348i \(0.262981\pi\)
\(464\) 1587.50 0.158831
\(465\) 0 0
\(466\) −12560.8 −1.24864
\(467\) −10319.2 −1.02252 −0.511261 0.859425i \(-0.670821\pi\)
−0.511261 + 0.859425i \(0.670821\pi\)
\(468\) 0 0
\(469\) −17712.6 −1.74391
\(470\) 5008.90 0.491581
\(471\) 0 0
\(472\) −20781.6 −2.02659
\(473\) 499.622 0.0485680
\(474\) 0 0
\(475\) 65.1921 0.00629730
\(476\) 12104.2 1.16554
\(477\) 0 0
\(478\) 9790.51 0.936836
\(479\) −6969.19 −0.664782 −0.332391 0.943142i \(-0.607855\pi\)
−0.332391 + 0.943142i \(0.607855\pi\)
\(480\) 0 0
\(481\) −1944.29 −0.184308
\(482\) −10072.5 −0.951849
\(483\) 0 0
\(484\) 2828.95 0.265679
\(485\) −17334.3 −1.62291
\(486\) 0 0
\(487\) −8355.82 −0.777491 −0.388746 0.921345i \(-0.627092\pi\)
−0.388746 + 0.921345i \(0.627092\pi\)
\(488\) −9493.64 −0.880649
\(489\) 0 0
\(490\) 25283.5 2.33100
\(491\) 454.131 0.0417407 0.0208703 0.999782i \(-0.493356\pi\)
0.0208703 + 0.999782i \(0.493356\pi\)
\(492\) 0 0
\(493\) −5905.36 −0.539481
\(494\) 330.645 0.0301142
\(495\) 0 0
\(496\) 1035.15 0.0937093
\(497\) 27748.3 2.50439
\(498\) 0 0
\(499\) −17517.2 −1.57150 −0.785748 0.618547i \(-0.787721\pi\)
−0.785748 + 0.618547i \(0.787721\pi\)
\(500\) −4091.44 −0.365950
\(501\) 0 0
\(502\) 3017.14 0.268250
\(503\) 19111.9 1.69415 0.847076 0.531471i \(-0.178361\pi\)
0.847076 + 0.531471i \(0.178361\pi\)
\(504\) 0 0
\(505\) 13733.1 1.21012
\(506\) −1066.66 −0.0937133
\(507\) 0 0
\(508\) −3978.92 −0.347512
\(509\) 3042.66 0.264958 0.132479 0.991186i \(-0.457706\pi\)
0.132479 + 0.991186i \(0.457706\pi\)
\(510\) 0 0
\(511\) 39533.8 3.42245
\(512\) 9294.54 0.802275
\(513\) 0 0
\(514\) 2402.36 0.206155
\(515\) 13434.4 1.14950
\(516\) 0 0
\(517\) −4045.76 −0.344163
\(518\) 3599.87 0.305346
\(519\) 0 0
\(520\) 12564.2 1.05957
\(521\) 15630.7 1.31438 0.657192 0.753723i \(-0.271744\pi\)
0.657192 + 0.753723i \(0.271744\pi\)
\(522\) 0 0
\(523\) −10090.2 −0.843619 −0.421810 0.906684i \(-0.638605\pi\)
−0.421810 + 0.906684i \(0.638605\pi\)
\(524\) −8622.10 −0.718813
\(525\) 0 0
\(526\) 10412.2 0.863107
\(527\) −3850.69 −0.318290
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 7161.97 0.586974
\(531\) 0 0
\(532\) 409.445 0.0333679
\(533\) −19588.0 −1.59184
\(534\) 0 0
\(535\) 2689.30 0.217325
\(536\) 12020.5 0.968668
\(537\) 0 0
\(538\) −5497.32 −0.440532
\(539\) −20421.8 −1.63197
\(540\) 0 0
\(541\) 8104.99 0.644105 0.322052 0.946722i \(-0.395627\pi\)
0.322052 + 0.946722i \(0.395627\pi\)
\(542\) 13629.3 1.08013
\(543\) 0 0
\(544\) −14078.6 −1.10959
\(545\) 14531.8 1.14216
\(546\) 0 0
\(547\) 9989.69 0.780856 0.390428 0.920634i \(-0.372327\pi\)
0.390428 + 0.920634i \(0.372327\pi\)
\(548\) −4637.36 −0.361493
\(549\) 0 0
\(550\) 855.948 0.0663595
\(551\) −199.758 −0.0154446
\(552\) 0 0
\(553\) −21423.1 −1.64739
\(554\) −14820.5 −1.13658
\(555\) 0 0
\(556\) 5719.50 0.436260
\(557\) −11784.8 −0.896481 −0.448241 0.893913i \(-0.647949\pi\)
−0.448241 + 0.893913i \(0.647949\pi\)
\(558\) 0 0
\(559\) 1008.46 0.0763027
\(560\) −12155.5 −0.917260
\(561\) 0 0
\(562\) 6778.38 0.508770
\(563\) −15284.1 −1.14413 −0.572067 0.820207i \(-0.693858\pi\)
−0.572067 + 0.820207i \(0.693858\pi\)
\(564\) 0 0
\(565\) −13110.9 −0.976250
\(566\) −7828.25 −0.581353
\(567\) 0 0
\(568\) −18831.1 −1.39108
\(569\) −14150.0 −1.04253 −0.521263 0.853396i \(-0.674539\pi\)
−0.521263 + 0.853396i \(0.674539\pi\)
\(570\) 0 0
\(571\) −11692.1 −0.856914 −0.428457 0.903562i \(-0.640943\pi\)
−0.428457 + 0.903562i \(0.640943\pi\)
\(572\) −2903.51 −0.212241
\(573\) 0 0
\(574\) 36267.3 2.63723
\(575\) −424.498 −0.0307875
\(576\) 0 0
\(577\) −15258.6 −1.10091 −0.550455 0.834865i \(-0.685546\pi\)
−0.550455 + 0.834865i \(0.685546\pi\)
\(578\) −13116.7 −0.943913
\(579\) 0 0
\(580\) −2171.74 −0.155477
\(581\) −4498.49 −0.321220
\(582\) 0 0
\(583\) −5784.84 −0.410949
\(584\) −26829.2 −1.90102
\(585\) 0 0
\(586\) −17681.3 −1.24643
\(587\) 18011.8 1.26648 0.633242 0.773954i \(-0.281724\pi\)
0.633242 + 0.773954i \(0.281724\pi\)
\(588\) 0 0
\(589\) −130.256 −0.00911223
\(590\) −22211.7 −1.54990
\(591\) 0 0
\(592\) −1276.56 −0.0886255
\(593\) 20155.3 1.39575 0.697874 0.716221i \(-0.254130\pi\)
0.697874 + 0.716221i \(0.254130\pi\)
\(594\) 0 0
\(595\) 45217.7 3.11554
\(596\) −7574.38 −0.520568
\(597\) 0 0
\(598\) −2152.99 −0.147228
\(599\) −4201.56 −0.286596 −0.143298 0.989680i \(-0.545771\pi\)
−0.143298 + 0.989680i \(0.545771\pi\)
\(600\) 0 0
\(601\) −4514.35 −0.306396 −0.153198 0.988195i \(-0.548957\pi\)
−0.153198 + 0.988195i \(0.548957\pi\)
\(602\) −1867.17 −0.126412
\(603\) 0 0
\(604\) −5841.33 −0.393511
\(605\) 10568.1 0.710171
\(606\) 0 0
\(607\) 12457.9 0.833032 0.416516 0.909128i \(-0.363251\pi\)
0.416516 + 0.909128i \(0.363251\pi\)
\(608\) −476.231 −0.0317660
\(609\) 0 0
\(610\) −10146.9 −0.673504
\(611\) −8166.13 −0.540698
\(612\) 0 0
\(613\) 633.774 0.0417584 0.0208792 0.999782i \(-0.493353\pi\)
0.0208792 + 0.999782i \(0.493353\pi\)
\(614\) −10974.1 −0.721301
\(615\) 0 0
\(616\) 18789.6 1.22898
\(617\) −15940.6 −1.04010 −0.520051 0.854135i \(-0.674087\pi\)
−0.520051 + 0.854135i \(0.674087\pi\)
\(618\) 0 0
\(619\) −13100.8 −0.850675 −0.425337 0.905035i \(-0.639845\pi\)
−0.425337 + 0.905035i \(0.639845\pi\)
\(620\) −1416.12 −0.0917303
\(621\) 0 0
\(622\) −8799.73 −0.567262
\(623\) 12473.7 0.802163
\(624\) 0 0
\(625\) −17591.4 −1.12585
\(626\) −19528.6 −1.24684
\(627\) 0 0
\(628\) 2726.56 0.173251
\(629\) 4748.70 0.301022
\(630\) 0 0
\(631\) −4711.66 −0.297255 −0.148628 0.988893i \(-0.547486\pi\)
−0.148628 + 0.988893i \(0.547486\pi\)
\(632\) 14538.6 0.915053
\(633\) 0 0
\(634\) 14816.7 0.928147
\(635\) −14864.0 −0.928914
\(636\) 0 0
\(637\) −41220.3 −2.56390
\(638\) −2622.75 −0.162752
\(639\) 0 0
\(640\) 711.541 0.0439471
\(641\) −629.519 −0.0387902 −0.0193951 0.999812i \(-0.506174\pi\)
−0.0193951 + 0.999812i \(0.506174\pi\)
\(642\) 0 0
\(643\) −5126.76 −0.314432 −0.157216 0.987564i \(-0.550252\pi\)
−0.157216 + 0.987564i \(0.550252\pi\)
\(644\) −2666.10 −0.163135
\(645\) 0 0
\(646\) −807.562 −0.0491843
\(647\) 25194.9 1.53093 0.765466 0.643476i \(-0.222508\pi\)
0.765466 + 0.643476i \(0.222508\pi\)
\(648\) 0 0
\(649\) 17940.7 1.08511
\(650\) 1727.68 0.104254
\(651\) 0 0
\(652\) 8444.46 0.507225
\(653\) 17041.5 1.02126 0.510631 0.859800i \(-0.329412\pi\)
0.510631 + 0.859800i \(0.329412\pi\)
\(654\) 0 0
\(655\) −32209.5 −1.92142
\(656\) −12860.9 −0.765446
\(657\) 0 0
\(658\) 15119.6 0.895783
\(659\) −8605.48 −0.508683 −0.254341 0.967115i \(-0.581859\pi\)
−0.254341 + 0.967115i \(0.581859\pi\)
\(660\) 0 0
\(661\) −15024.1 −0.884066 −0.442033 0.896999i \(-0.645743\pi\)
−0.442033 + 0.896999i \(0.645743\pi\)
\(662\) 24561.7 1.44202
\(663\) 0 0
\(664\) 3052.85 0.178424
\(665\) 1529.56 0.0891937
\(666\) 0 0
\(667\) 1300.73 0.0755087
\(668\) −7392.68 −0.428191
\(669\) 0 0
\(670\) 12847.7 0.740819
\(671\) 8195.84 0.471530
\(672\) 0 0
\(673\) 2865.62 0.164133 0.0820664 0.996627i \(-0.473848\pi\)
0.0820664 + 0.996627i \(0.473848\pi\)
\(674\) −5504.01 −0.314550
\(675\) 0 0
\(676\) 1183.45 0.0673331
\(677\) −6533.41 −0.370900 −0.185450 0.982654i \(-0.559374\pi\)
−0.185450 + 0.982654i \(0.559374\pi\)
\(678\) 0 0
\(679\) −52324.7 −2.95735
\(680\) −30686.5 −1.73055
\(681\) 0 0
\(682\) −1710.21 −0.0960225
\(683\) −24152.8 −1.35312 −0.676559 0.736388i \(-0.736530\pi\)
−0.676559 + 0.736388i \(0.736530\pi\)
\(684\) 0 0
\(685\) −17323.7 −0.966285
\(686\) 49168.1 2.73651
\(687\) 0 0
\(688\) 662.121 0.0366906
\(689\) −11676.3 −0.645622
\(690\) 0 0
\(691\) −3290.80 −0.181169 −0.0905846 0.995889i \(-0.528874\pi\)
−0.0905846 + 0.995889i \(0.528874\pi\)
\(692\) 6384.79 0.350742
\(693\) 0 0
\(694\) 841.989 0.0460540
\(695\) 21366.2 1.16614
\(696\) 0 0
\(697\) 47841.5 2.59989
\(698\) 5693.78 0.308757
\(699\) 0 0
\(700\) 2139.43 0.115518
\(701\) −8816.55 −0.475031 −0.237515 0.971384i \(-0.576333\pi\)
−0.237515 + 0.971384i \(0.576333\pi\)
\(702\) 0 0
\(703\) 160.632 0.00861788
\(704\) −11009.4 −0.589393
\(705\) 0 0
\(706\) −12580.9 −0.670666
\(707\) 41454.0 2.20515
\(708\) 0 0
\(709\) 26955.8 1.42785 0.713926 0.700221i \(-0.246915\pi\)
0.713926 + 0.700221i \(0.246915\pi\)
\(710\) −20126.9 −1.06387
\(711\) 0 0
\(712\) −8465.13 −0.445567
\(713\) 848.161 0.0445496
\(714\) 0 0
\(715\) −10846.6 −0.567328
\(716\) −11306.6 −0.590151
\(717\) 0 0
\(718\) 24057.1 1.25042
\(719\) −24126.2 −1.25140 −0.625698 0.780065i \(-0.715186\pi\)
−0.625698 + 0.780065i \(0.715186\pi\)
\(720\) 0 0
\(721\) 40552.6 2.09467
\(722\) 14990.3 0.772689
\(723\) 0 0
\(724\) −14130.8 −0.725371
\(725\) −1043.77 −0.0534686
\(726\) 0 0
\(727\) 10884.1 0.555252 0.277626 0.960689i \(-0.410452\pi\)
0.277626 + 0.960689i \(0.410452\pi\)
\(728\) 37925.6 1.93079
\(729\) 0 0
\(730\) −28675.4 −1.45387
\(731\) −2463.04 −0.124622
\(732\) 0 0
\(733\) 18865.2 0.950619 0.475309 0.879819i \(-0.342336\pi\)
0.475309 + 0.879819i \(0.342336\pi\)
\(734\) −5753.08 −0.289305
\(735\) 0 0
\(736\) 3100.98 0.155304
\(737\) −10377.3 −0.518658
\(738\) 0 0
\(739\) 19750.5 0.983133 0.491567 0.870840i \(-0.336424\pi\)
0.491567 + 0.870840i \(0.336424\pi\)
\(740\) 1746.37 0.0867538
\(741\) 0 0
\(742\) 21618.8 1.06961
\(743\) 10392.5 0.513141 0.256570 0.966526i \(-0.417407\pi\)
0.256570 + 0.966526i \(0.417407\pi\)
\(744\) 0 0
\(745\) −28295.5 −1.39150
\(746\) 7911.86 0.388303
\(747\) 0 0
\(748\) 7091.48 0.346645
\(749\) 8117.82 0.396019
\(750\) 0 0
\(751\) 12887.2 0.626177 0.313089 0.949724i \(-0.398636\pi\)
0.313089 + 0.949724i \(0.398636\pi\)
\(752\) −5361.63 −0.259998
\(753\) 0 0
\(754\) −5293.86 −0.255691
\(755\) −21821.4 −1.05187
\(756\) 0 0
\(757\) −10543.7 −0.506231 −0.253116 0.967436i \(-0.581455\pi\)
−0.253116 + 0.967436i \(0.581455\pi\)
\(758\) −13172.0 −0.631170
\(759\) 0 0
\(760\) −1038.02 −0.0495433
\(761\) 21165.3 1.00820 0.504101 0.863645i \(-0.331824\pi\)
0.504101 + 0.863645i \(0.331824\pi\)
\(762\) 0 0
\(763\) 43865.1 2.08129
\(764\) −4345.52 −0.205779
\(765\) 0 0
\(766\) 9640.74 0.454744
\(767\) 36212.3 1.70476
\(768\) 0 0
\(769\) 14341.8 0.672535 0.336267 0.941767i \(-0.390835\pi\)
0.336267 + 0.941767i \(0.390835\pi\)
\(770\) 20082.5 0.939902
\(771\) 0 0
\(772\) 568.711 0.0265134
\(773\) 5489.88 0.255443 0.127721 0.991810i \(-0.459234\pi\)
0.127721 + 0.991810i \(0.459234\pi\)
\(774\) 0 0
\(775\) −680.611 −0.0315461
\(776\) 35509.6 1.64268
\(777\) 0 0
\(778\) −18635.2 −0.858747
\(779\) 1618.31 0.0744315
\(780\) 0 0
\(781\) 16256.8 0.744833
\(782\) 5258.44 0.240462
\(783\) 0 0
\(784\) −27063.9 −1.23287
\(785\) 10185.6 0.463106
\(786\) 0 0
\(787\) −9357.97 −0.423857 −0.211929 0.977285i \(-0.567974\pi\)
−0.211929 + 0.977285i \(0.567974\pi\)
\(788\) −9637.16 −0.435672
\(789\) 0 0
\(790\) 15539.0 0.699815
\(791\) −39576.1 −1.77897
\(792\) 0 0
\(793\) 16542.8 0.740797
\(794\) −2031.04 −0.0907795
\(795\) 0 0
\(796\) −7643.94 −0.340367
\(797\) −76.5677 −0.00340297 −0.00170148 0.999999i \(-0.500542\pi\)
−0.00170148 + 0.999999i \(0.500542\pi\)
\(798\) 0 0
\(799\) 19944.8 0.883100
\(800\) −2488.40 −0.109973
\(801\) 0 0
\(802\) −4280.13 −0.188449
\(803\) 23161.5 1.01787
\(804\) 0 0
\(805\) −9959.73 −0.436067
\(806\) −3451.96 −0.150856
\(807\) 0 0
\(808\) −28132.3 −1.22487
\(809\) 11216.3 0.487449 0.243724 0.969845i \(-0.421631\pi\)
0.243724 + 0.969845i \(0.421631\pi\)
\(810\) 0 0
\(811\) −13688.9 −0.592701 −0.296351 0.955079i \(-0.595770\pi\)
−0.296351 + 0.955079i \(0.595770\pi\)
\(812\) −6555.52 −0.283317
\(813\) 0 0
\(814\) 2109.04 0.0908132
\(815\) 31545.9 1.35583
\(816\) 0 0
\(817\) −83.3162 −0.00356777
\(818\) 6746.91 0.288386
\(819\) 0 0
\(820\) 17594.0 0.749281
\(821\) 34053.7 1.44760 0.723802 0.690008i \(-0.242393\pi\)
0.723802 + 0.690008i \(0.242393\pi\)
\(822\) 0 0
\(823\) 27930.4 1.18298 0.591490 0.806313i \(-0.298540\pi\)
0.591490 + 0.806313i \(0.298540\pi\)
\(824\) −27520.6 −1.16350
\(825\) 0 0
\(826\) −67047.2 −2.82430
\(827\) −17136.6 −0.720554 −0.360277 0.932845i \(-0.617318\pi\)
−0.360277 + 0.932845i \(0.617318\pi\)
\(828\) 0 0
\(829\) 8180.70 0.342735 0.171368 0.985207i \(-0.445181\pi\)
0.171368 + 0.985207i \(0.445181\pi\)
\(830\) 3262.93 0.136455
\(831\) 0 0
\(832\) −22221.8 −0.925966
\(833\) 100676. 4.18752
\(834\) 0 0
\(835\) −27616.7 −1.14457
\(836\) 239.881 0.00992398
\(837\) 0 0
\(838\) 2953.79 0.121762
\(839\) 12825.5 0.527753 0.263877 0.964556i \(-0.414999\pi\)
0.263877 + 0.964556i \(0.414999\pi\)
\(840\) 0 0
\(841\) −21190.7 −0.868864
\(842\) −21090.6 −0.863218
\(843\) 0 0
\(844\) 41.3458 0.00168623
\(845\) 4420.99 0.179984
\(846\) 0 0
\(847\) 31900.3 1.29411
\(848\) −7666.32 −0.310451
\(849\) 0 0
\(850\) −4219.66 −0.170274
\(851\) −1045.96 −0.0421328
\(852\) 0 0
\(853\) −10101.9 −0.405490 −0.202745 0.979232i \(-0.564986\pi\)
−0.202745 + 0.979232i \(0.564986\pi\)
\(854\) −30629.1 −1.22729
\(855\) 0 0
\(856\) −5509.07 −0.219972
\(857\) −8138.65 −0.324400 −0.162200 0.986758i \(-0.551859\pi\)
−0.162200 + 0.986758i \(0.551859\pi\)
\(858\) 0 0
\(859\) 32834.0 1.30417 0.652084 0.758147i \(-0.273895\pi\)
0.652084 + 0.758147i \(0.273895\pi\)
\(860\) −905.800 −0.0359157
\(861\) 0 0
\(862\) 19248.2 0.760553
\(863\) 6055.28 0.238846 0.119423 0.992843i \(-0.461896\pi\)
0.119423 + 0.992843i \(0.461896\pi\)
\(864\) 0 0
\(865\) 23851.6 0.937546
\(866\) −23905.2 −0.938028
\(867\) 0 0
\(868\) −4274.64 −0.167155
\(869\) −12551.1 −0.489951
\(870\) 0 0
\(871\) −20945.9 −0.814838
\(872\) −29768.6 −1.15607
\(873\) 0 0
\(874\) 177.875 0.00688411
\(875\) −46136.7 −1.78252
\(876\) 0 0
\(877\) −17147.2 −0.660227 −0.330113 0.943941i \(-0.607087\pi\)
−0.330113 + 0.943941i \(0.607087\pi\)
\(878\) 12700.5 0.488180
\(879\) 0 0
\(880\) −7121.53 −0.272803
\(881\) 33590.6 1.28456 0.642280 0.766470i \(-0.277989\pi\)
0.642280 + 0.766470i \(0.277989\pi\)
\(882\) 0 0
\(883\) −46447.7 −1.77020 −0.885102 0.465398i \(-0.845911\pi\)
−0.885102 + 0.465398i \(0.845911\pi\)
\(884\) 14313.7 0.544596
\(885\) 0 0
\(886\) −17962.3 −0.681101
\(887\) 19697.6 0.745638 0.372819 0.927904i \(-0.378391\pi\)
0.372819 + 0.927904i \(0.378391\pi\)
\(888\) 0 0
\(889\) −44867.9 −1.69271
\(890\) −9047.64 −0.340761
\(891\) 0 0
\(892\) 1793.26 0.0673124
\(893\) 674.666 0.0252820
\(894\) 0 0
\(895\) −42238.0 −1.57750
\(896\) 2147.83 0.0800825
\(897\) 0 0
\(898\) 21961.9 0.816121
\(899\) 2085.49 0.0773693
\(900\) 0 0
\(901\) 28518.1 1.05447
\(902\) 21247.8 0.784341
\(903\) 0 0
\(904\) 26857.9 0.988142
\(905\) −52788.4 −1.93895
\(906\) 0 0
\(907\) 33566.6 1.22884 0.614422 0.788978i \(-0.289389\pi\)
0.614422 + 0.788978i \(0.289389\pi\)
\(908\) −7088.27 −0.259066
\(909\) 0 0
\(910\) 40535.4 1.47663
\(911\) 27310.8 0.993244 0.496622 0.867967i \(-0.334573\pi\)
0.496622 + 0.867967i \(0.334573\pi\)
\(912\) 0 0
\(913\) −2635.52 −0.0955344
\(914\) −25599.2 −0.926417
\(915\) 0 0
\(916\) 14590.8 0.526303
\(917\) −97226.1 −3.50130
\(918\) 0 0
\(919\) −18988.9 −0.681593 −0.340797 0.940137i \(-0.610697\pi\)
−0.340797 + 0.940137i \(0.610697\pi\)
\(920\) 6759.06 0.242217
\(921\) 0 0
\(922\) 4669.28 0.166784
\(923\) 32813.4 1.17017
\(924\) 0 0
\(925\) 839.334 0.0298347
\(926\) −29564.7 −1.04920
\(927\) 0 0
\(928\) 7624.81 0.269716
\(929\) 8168.78 0.288492 0.144246 0.989542i \(-0.453924\pi\)
0.144246 + 0.989542i \(0.453924\pi\)
\(930\) 0 0
\(931\) 3405.52 0.119883
\(932\) −18393.6 −0.646460
\(933\) 0 0
\(934\) 22593.8 0.791531
\(935\) 26491.6 0.926595
\(936\) 0 0
\(937\) −21901.4 −0.763594 −0.381797 0.924246i \(-0.624695\pi\)
−0.381797 + 0.924246i \(0.624695\pi\)
\(938\) 38781.4 1.34996
\(939\) 0 0
\(940\) 7334.85 0.254507
\(941\) −3043.08 −0.105421 −0.0527107 0.998610i \(-0.516786\pi\)
−0.0527107 + 0.998610i \(0.516786\pi\)
\(942\) 0 0
\(943\) −10537.6 −0.363895
\(944\) 23775.8 0.819743
\(945\) 0 0
\(946\) −1093.91 −0.0375963
\(947\) 3281.61 0.112606 0.0563030 0.998414i \(-0.482069\pi\)
0.0563030 + 0.998414i \(0.482069\pi\)
\(948\) 0 0
\(949\) 46750.2 1.59913
\(950\) −142.737 −0.00487472
\(951\) 0 0
\(952\) −92628.9 −3.15349
\(953\) 25885.0 0.879850 0.439925 0.898034i \(-0.355005\pi\)
0.439925 + 0.898034i \(0.355005\pi\)
\(954\) 0 0
\(955\) −16233.5 −0.550056
\(956\) 14336.9 0.485029
\(957\) 0 0
\(958\) 15258.9 0.514606
\(959\) −52292.6 −1.76081
\(960\) 0 0
\(961\) −28431.1 −0.954353
\(962\) 4256.98 0.142672
\(963\) 0 0
\(964\) −14749.9 −0.492802
\(965\) 2124.53 0.0708714
\(966\) 0 0
\(967\) 41321.7 1.37416 0.687082 0.726580i \(-0.258891\pi\)
0.687082 + 0.726580i \(0.258891\pi\)
\(968\) −21648.8 −0.718822
\(969\) 0 0
\(970\) 37953.1 1.25629
\(971\) −56834.5 −1.87838 −0.939189 0.343401i \(-0.888421\pi\)
−0.939189 + 0.343401i \(0.888421\pi\)
\(972\) 0 0
\(973\) 64495.3 2.12500
\(974\) 18294.9 0.601854
\(975\) 0 0
\(976\) 10861.5 0.356217
\(977\) 44716.5 1.46429 0.732144 0.681150i \(-0.238520\pi\)
0.732144 + 0.681150i \(0.238520\pi\)
\(978\) 0 0
\(979\) 7307.92 0.238572
\(980\) 37024.2 1.20683
\(981\) 0 0
\(982\) −994.310 −0.0323113
\(983\) −24317.3 −0.789014 −0.394507 0.918893i \(-0.629085\pi\)
−0.394507 + 0.918893i \(0.629085\pi\)
\(984\) 0 0
\(985\) −36001.4 −1.16457
\(986\) 12929.6 0.417610
\(987\) 0 0
\(988\) 484.185 0.0155911
\(989\) 542.514 0.0174428
\(990\) 0 0
\(991\) 1887.26 0.0604954 0.0302477 0.999542i \(-0.490370\pi\)
0.0302477 + 0.999542i \(0.490370\pi\)
\(992\) 4971.89 0.159131
\(993\) 0 0
\(994\) −60754.3 −1.93864
\(995\) −28555.4 −0.909815
\(996\) 0 0
\(997\) 17485.0 0.555423 0.277712 0.960664i \(-0.410424\pi\)
0.277712 + 0.960664i \(0.410424\pi\)
\(998\) 38353.4 1.21649
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.h.1.2 yes 5
3.2 odd 2 207.4.a.g.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.4.a.g.1.4 5 3.2 odd 2
207.4.a.h.1.2 yes 5 1.1 even 1 trivial