Properties

Label 207.4.a.h.1.1
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 26x^{3} + 10x^{2} + 144x + 56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(4.57357\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.57357 q^{2} +4.77043 q^{4} +14.0958 q^{5} +0.770211 q^{7} +11.5411 q^{8} -50.3723 q^{10} +34.6566 q^{11} -15.6261 q^{13} -2.75241 q^{14} -79.4064 q^{16} -0.878967 q^{17} -23.7345 q^{19} +67.2429 q^{20} -123.848 q^{22} -23.0000 q^{23} +73.6905 q^{25} +55.8410 q^{26} +3.67424 q^{28} +208.088 q^{29} +28.7376 q^{31} +191.436 q^{32} +3.14106 q^{34} +10.8567 q^{35} +378.729 q^{37} +84.8171 q^{38} +162.680 q^{40} -85.2339 q^{41} +405.033 q^{43} +165.327 q^{44} +82.1922 q^{46} +302.256 q^{47} -342.407 q^{49} -263.339 q^{50} -74.5432 q^{52} +49.6962 q^{53} +488.512 q^{55} +8.88908 q^{56} -743.618 q^{58} +337.780 q^{59} +439.911 q^{61} -102.696 q^{62} -48.8596 q^{64} -220.261 q^{65} -324.861 q^{67} -4.19306 q^{68} -38.7973 q^{70} +88.8411 q^{71} +224.481 q^{73} -1353.42 q^{74} -113.224 q^{76} +26.6929 q^{77} -1085.07 q^{79} -1119.29 q^{80} +304.590 q^{82} -463.847 q^{83} -12.3897 q^{85} -1447.41 q^{86} +399.976 q^{88} +1296.24 q^{89} -12.0354 q^{91} -109.720 q^{92} -1080.14 q^{94} -334.556 q^{95} +195.994 q^{97} +1223.62 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 16 q^{4} + 20 q^{5} - 10 q^{7} + 48 q^{8} + 50 q^{10} + 46 q^{11} + 54 q^{13} + 164 q^{14} - 60 q^{16} + 250 q^{17} - 28 q^{19} + 242 q^{20} - 10 q^{22} - 115 q^{23} + 239 q^{25} + 368 q^{26}+ \cdots - 2400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.57357 −1.26345 −0.631725 0.775193i \(-0.717653\pi\)
−0.631725 + 0.775193i \(0.717653\pi\)
\(3\) 0 0
\(4\) 4.77043 0.596304
\(5\) 14.0958 1.26076 0.630382 0.776285i \(-0.282898\pi\)
0.630382 + 0.776285i \(0.282898\pi\)
\(6\) 0 0
\(7\) 0.770211 0.0415875 0.0207937 0.999784i \(-0.493381\pi\)
0.0207937 + 0.999784i \(0.493381\pi\)
\(8\) 11.5411 0.510049
\(9\) 0 0
\(10\) −50.3723 −1.59291
\(11\) 34.6566 0.949943 0.474971 0.880001i \(-0.342458\pi\)
0.474971 + 0.880001i \(0.342458\pi\)
\(12\) 0 0
\(13\) −15.6261 −0.333377 −0.166688 0.986010i \(-0.553307\pi\)
−0.166688 + 0.986010i \(0.553307\pi\)
\(14\) −2.75241 −0.0525437
\(15\) 0 0
\(16\) −79.4064 −1.24073
\(17\) −0.878967 −0.0125401 −0.00627003 0.999980i \(-0.501996\pi\)
−0.00627003 + 0.999980i \(0.501996\pi\)
\(18\) 0 0
\(19\) −23.7345 −0.286583 −0.143291 0.989681i \(-0.545769\pi\)
−0.143291 + 0.989681i \(0.545769\pi\)
\(20\) 67.2429 0.751799
\(21\) 0 0
\(22\) −123.848 −1.20020
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 73.6905 0.589524
\(26\) 55.8410 0.421204
\(27\) 0 0
\(28\) 3.67424 0.0247988
\(29\) 208.088 1.33245 0.666224 0.745752i \(-0.267910\pi\)
0.666224 + 0.745752i \(0.267910\pi\)
\(30\) 0 0
\(31\) 28.7376 0.166498 0.0832489 0.996529i \(-0.473470\pi\)
0.0832489 + 0.996529i \(0.473470\pi\)
\(32\) 191.436 1.05754
\(33\) 0 0
\(34\) 3.14106 0.0158437
\(35\) 10.8567 0.0524320
\(36\) 0 0
\(37\) 378.729 1.68278 0.841388 0.540431i \(-0.181739\pi\)
0.841388 + 0.540431i \(0.181739\pi\)
\(38\) 84.8171 0.362083
\(39\) 0 0
\(40\) 162.680 0.643051
\(41\) −85.2339 −0.324666 −0.162333 0.986736i \(-0.551902\pi\)
−0.162333 + 0.986736i \(0.551902\pi\)
\(42\) 0 0
\(43\) 405.033 1.43644 0.718220 0.695816i \(-0.244957\pi\)
0.718220 + 0.695816i \(0.244957\pi\)
\(44\) 165.327 0.566455
\(45\) 0 0
\(46\) 82.1922 0.263447
\(47\) 302.256 0.938055 0.469028 0.883183i \(-0.344604\pi\)
0.469028 + 0.883183i \(0.344604\pi\)
\(48\) 0 0
\(49\) −342.407 −0.998270
\(50\) −263.339 −0.744834
\(51\) 0 0
\(52\) −74.5432 −0.198794
\(53\) 49.6962 0.128798 0.0643990 0.997924i \(-0.479487\pi\)
0.0643990 + 0.997924i \(0.479487\pi\)
\(54\) 0 0
\(55\) 488.512 1.19765
\(56\) 8.88908 0.0212117
\(57\) 0 0
\(58\) −743.618 −1.68348
\(59\) 337.780 0.745343 0.372672 0.927963i \(-0.378442\pi\)
0.372672 + 0.927963i \(0.378442\pi\)
\(60\) 0 0
\(61\) 439.911 0.923359 0.461679 0.887047i \(-0.347247\pi\)
0.461679 + 0.887047i \(0.347247\pi\)
\(62\) −102.696 −0.210361
\(63\) 0 0
\(64\) −48.8596 −0.0954288
\(65\) −220.261 −0.420309
\(66\) 0 0
\(67\) −324.861 −0.592359 −0.296180 0.955132i \(-0.595713\pi\)
−0.296180 + 0.955132i \(0.595713\pi\)
\(68\) −4.19306 −0.00747769
\(69\) 0 0
\(70\) −38.7973 −0.0662452
\(71\) 88.8411 0.148500 0.0742500 0.997240i \(-0.476344\pi\)
0.0742500 + 0.997240i \(0.476344\pi\)
\(72\) 0 0
\(73\) 224.481 0.359911 0.179955 0.983675i \(-0.442405\pi\)
0.179955 + 0.983675i \(0.442405\pi\)
\(74\) −1353.42 −2.12610
\(75\) 0 0
\(76\) −113.224 −0.170891
\(77\) 26.6929 0.0395057
\(78\) 0 0
\(79\) −1085.07 −1.54532 −0.772661 0.634819i \(-0.781075\pi\)
−0.772661 + 0.634819i \(0.781075\pi\)
\(80\) −1119.29 −1.56426
\(81\) 0 0
\(82\) 304.590 0.410199
\(83\) −463.847 −0.613420 −0.306710 0.951803i \(-0.599228\pi\)
−0.306710 + 0.951803i \(0.599228\pi\)
\(84\) 0 0
\(85\) −12.3897 −0.0158100
\(86\) −1447.41 −1.81487
\(87\) 0 0
\(88\) 399.976 0.484517
\(89\) 1296.24 1.54384 0.771918 0.635722i \(-0.219297\pi\)
0.771918 + 0.635722i \(0.219297\pi\)
\(90\) 0 0
\(91\) −12.0354 −0.0138643
\(92\) −109.720 −0.124338
\(93\) 0 0
\(94\) −1080.14 −1.18519
\(95\) −334.556 −0.361313
\(96\) 0 0
\(97\) 195.994 0.205156 0.102578 0.994725i \(-0.467291\pi\)
0.102578 + 0.994725i \(0.467291\pi\)
\(98\) 1223.62 1.26126
\(99\) 0 0
\(100\) 351.536 0.351536
\(101\) 173.946 0.171369 0.0856847 0.996322i \(-0.472692\pi\)
0.0856847 + 0.996322i \(0.472692\pi\)
\(102\) 0 0
\(103\) −1750.76 −1.67483 −0.837413 0.546571i \(-0.815933\pi\)
−0.837413 + 0.546571i \(0.815933\pi\)
\(104\) −180.342 −0.170038
\(105\) 0 0
\(106\) −177.593 −0.162730
\(107\) −427.158 −0.385934 −0.192967 0.981205i \(-0.561811\pi\)
−0.192967 + 0.981205i \(0.561811\pi\)
\(108\) 0 0
\(109\) 1368.12 1.20222 0.601110 0.799166i \(-0.294725\pi\)
0.601110 + 0.799166i \(0.294725\pi\)
\(110\) −1745.73 −1.51317
\(111\) 0 0
\(112\) −61.1597 −0.0515987
\(113\) 339.060 0.282266 0.141133 0.989991i \(-0.454925\pi\)
0.141133 + 0.989991i \(0.454925\pi\)
\(114\) 0 0
\(115\) −324.203 −0.262887
\(116\) 992.671 0.794544
\(117\) 0 0
\(118\) −1207.08 −0.941704
\(119\) −0.676991 −0.000521509 0
\(120\) 0 0
\(121\) −129.917 −0.0976085
\(122\) −1572.06 −1.16662
\(123\) 0 0
\(124\) 137.091 0.0992833
\(125\) −723.246 −0.517513
\(126\) 0 0
\(127\) 411.307 0.287382 0.143691 0.989623i \(-0.454103\pi\)
0.143691 + 0.989623i \(0.454103\pi\)
\(128\) −1356.89 −0.936975
\(129\) 0 0
\(130\) 787.121 0.531039
\(131\) 1230.44 0.820641 0.410320 0.911941i \(-0.365417\pi\)
0.410320 + 0.911941i \(0.365417\pi\)
\(132\) 0 0
\(133\) −18.2806 −0.0119183
\(134\) 1160.91 0.748416
\(135\) 0 0
\(136\) −10.1442 −0.00639604
\(137\) 2032.60 1.26757 0.633784 0.773510i \(-0.281501\pi\)
0.633784 + 0.773510i \(0.281501\pi\)
\(138\) 0 0
\(139\) −292.753 −0.178640 −0.0893202 0.996003i \(-0.528469\pi\)
−0.0893202 + 0.996003i \(0.528469\pi\)
\(140\) 51.7912 0.0312654
\(141\) 0 0
\(142\) −317.480 −0.187622
\(143\) −541.547 −0.316689
\(144\) 0 0
\(145\) 2933.16 1.67990
\(146\) −802.199 −0.454729
\(147\) 0 0
\(148\) 1806.70 1.00345
\(149\) −1089.45 −0.599002 −0.299501 0.954096i \(-0.596820\pi\)
−0.299501 + 0.954096i \(0.596820\pi\)
\(150\) 0 0
\(151\) −292.288 −0.157523 −0.0787617 0.996893i \(-0.525097\pi\)
−0.0787617 + 0.996893i \(0.525097\pi\)
\(152\) −273.922 −0.146171
\(153\) 0 0
\(154\) −95.3892 −0.0499135
\(155\) 405.079 0.209914
\(156\) 0 0
\(157\) 2191.65 1.11410 0.557048 0.830481i \(-0.311934\pi\)
0.557048 + 0.830481i \(0.311934\pi\)
\(158\) 3877.59 1.95244
\(159\) 0 0
\(160\) 2698.44 1.33331
\(161\) −17.7149 −0.00867159
\(162\) 0 0
\(163\) 2654.50 1.27556 0.637781 0.770218i \(-0.279853\pi\)
0.637781 + 0.770218i \(0.279853\pi\)
\(164\) −406.603 −0.193600
\(165\) 0 0
\(166\) 1657.59 0.775025
\(167\) 4092.12 1.89616 0.948078 0.318038i \(-0.103024\pi\)
0.948078 + 0.318038i \(0.103024\pi\)
\(168\) 0 0
\(169\) −1952.83 −0.888860
\(170\) 44.2756 0.0199752
\(171\) 0 0
\(172\) 1932.18 0.856555
\(173\) 2402.61 1.05588 0.527940 0.849282i \(-0.322964\pi\)
0.527940 + 0.849282i \(0.322964\pi\)
\(174\) 0 0
\(175\) 56.7573 0.0245168
\(176\) −2751.96 −1.17862
\(177\) 0 0
\(178\) −4632.22 −1.95056
\(179\) −2487.90 −1.03885 −0.519426 0.854515i \(-0.673854\pi\)
−0.519426 + 0.854515i \(0.673854\pi\)
\(180\) 0 0
\(181\) −2223.03 −0.912907 −0.456454 0.889747i \(-0.650881\pi\)
−0.456454 + 0.889747i \(0.650881\pi\)
\(182\) 43.0093 0.0175168
\(183\) 0 0
\(184\) −265.445 −0.106353
\(185\) 5338.48 2.12158
\(186\) 0 0
\(187\) −30.4621 −0.0119123
\(188\) 1441.89 0.559366
\(189\) 0 0
\(190\) 1195.56 0.456501
\(191\) −3732.12 −1.41386 −0.706928 0.707286i \(-0.749919\pi\)
−0.706928 + 0.707286i \(0.749919\pi\)
\(192\) 0 0
\(193\) −4405.10 −1.64293 −0.821466 0.570258i \(-0.806843\pi\)
−0.821466 + 0.570258i \(0.806843\pi\)
\(194\) −700.399 −0.259205
\(195\) 0 0
\(196\) −1633.43 −0.595273
\(197\) 3105.42 1.12311 0.561554 0.827440i \(-0.310204\pi\)
0.561554 + 0.827440i \(0.310204\pi\)
\(198\) 0 0
\(199\) −3960.09 −1.41067 −0.705334 0.708875i \(-0.749203\pi\)
−0.705334 + 0.708875i \(0.749203\pi\)
\(200\) 850.469 0.300686
\(201\) 0 0
\(202\) −621.610 −0.216517
\(203\) 160.272 0.0554132
\(204\) 0 0
\(205\) −1201.44 −0.409327
\(206\) 6256.45 2.11606
\(207\) 0 0
\(208\) 1240.81 0.413629
\(209\) −822.559 −0.272237
\(210\) 0 0
\(211\) −4579.76 −1.49423 −0.747117 0.664692i \(-0.768563\pi\)
−0.747117 + 0.664692i \(0.768563\pi\)
\(212\) 237.072 0.0768028
\(213\) 0 0
\(214\) 1526.48 0.487608
\(215\) 5709.25 1.81101
\(216\) 0 0
\(217\) 22.1340 0.00692422
\(218\) −4889.08 −1.51895
\(219\) 0 0
\(220\) 2330.41 0.714166
\(221\) 13.7348 0.00418056
\(222\) 0 0
\(223\) −2471.89 −0.742286 −0.371143 0.928576i \(-0.621034\pi\)
−0.371143 + 0.928576i \(0.621034\pi\)
\(224\) 147.446 0.0439806
\(225\) 0 0
\(226\) −1211.66 −0.356629
\(227\) −512.013 −0.149707 −0.0748535 0.997195i \(-0.523849\pi\)
−0.0748535 + 0.997195i \(0.523849\pi\)
\(228\) 0 0
\(229\) −2588.38 −0.746921 −0.373460 0.927646i \(-0.621829\pi\)
−0.373460 + 0.927646i \(0.621829\pi\)
\(230\) 1158.56 0.332145
\(231\) 0 0
\(232\) 2401.56 0.679614
\(233\) −1787.24 −0.502514 −0.251257 0.967920i \(-0.580844\pi\)
−0.251257 + 0.967920i \(0.580844\pi\)
\(234\) 0 0
\(235\) 4260.53 1.18267
\(236\) 1611.36 0.444451
\(237\) 0 0
\(238\) 2.41928 0.000658901 0
\(239\) −3814.71 −1.03244 −0.516220 0.856456i \(-0.672661\pi\)
−0.516220 + 0.856456i \(0.672661\pi\)
\(240\) 0 0
\(241\) −4567.63 −1.22086 −0.610430 0.792071i \(-0.709003\pi\)
−0.610430 + 0.792071i \(0.709003\pi\)
\(242\) 464.268 0.123323
\(243\) 0 0
\(244\) 2098.57 0.550603
\(245\) −4826.48 −1.25858
\(246\) 0 0
\(247\) 370.878 0.0955400
\(248\) 331.664 0.0849220
\(249\) 0 0
\(250\) 2584.57 0.653851
\(251\) −3741.36 −0.940847 −0.470424 0.882441i \(-0.655899\pi\)
−0.470424 + 0.882441i \(0.655899\pi\)
\(252\) 0 0
\(253\) −797.103 −0.198077
\(254\) −1469.84 −0.363093
\(255\) 0 0
\(256\) 5239.81 1.27925
\(257\) −5140.06 −1.24758 −0.623790 0.781592i \(-0.714408\pi\)
−0.623790 + 0.781592i \(0.714408\pi\)
\(258\) 0 0
\(259\) 291.702 0.0699825
\(260\) −1050.74 −0.250632
\(261\) 0 0
\(262\) −4397.06 −1.03684
\(263\) −7922.61 −1.85752 −0.928762 0.370675i \(-0.879126\pi\)
−0.928762 + 0.370675i \(0.879126\pi\)
\(264\) 0 0
\(265\) 700.505 0.162384
\(266\) 65.3271 0.0150581
\(267\) 0 0
\(268\) −1549.73 −0.353226
\(269\) 6413.47 1.45367 0.726833 0.686814i \(-0.240991\pi\)
0.726833 + 0.686814i \(0.240991\pi\)
\(270\) 0 0
\(271\) 6613.47 1.48244 0.741218 0.671265i \(-0.234249\pi\)
0.741218 + 0.671265i \(0.234249\pi\)
\(272\) 69.7957 0.0155588
\(273\) 0 0
\(274\) −7263.65 −1.60151
\(275\) 2553.87 0.560014
\(276\) 0 0
\(277\) 6732.51 1.46035 0.730176 0.683259i \(-0.239438\pi\)
0.730176 + 0.683259i \(0.239438\pi\)
\(278\) 1046.18 0.225703
\(279\) 0 0
\(280\) 125.298 0.0267429
\(281\) −4032.08 −0.855991 −0.427996 0.903781i \(-0.640780\pi\)
−0.427996 + 0.903781i \(0.640780\pi\)
\(282\) 0 0
\(283\) −136.001 −0.0285669 −0.0142834 0.999898i \(-0.504547\pi\)
−0.0142834 + 0.999898i \(0.504547\pi\)
\(284\) 423.811 0.0885512
\(285\) 0 0
\(286\) 1935.26 0.400120
\(287\) −65.6481 −0.0135020
\(288\) 0 0
\(289\) −4912.23 −0.999843
\(290\) −10481.9 −2.12247
\(291\) 0 0
\(292\) 1070.87 0.214616
\(293\) 5675.38 1.13160 0.565801 0.824542i \(-0.308567\pi\)
0.565801 + 0.824542i \(0.308567\pi\)
\(294\) 0 0
\(295\) 4761.27 0.939702
\(296\) 4370.95 0.858299
\(297\) 0 0
\(298\) 3893.24 0.756809
\(299\) 359.400 0.0695138
\(300\) 0 0
\(301\) 311.961 0.0597379
\(302\) 1044.51 0.199023
\(303\) 0 0
\(304\) 1884.67 0.355571
\(305\) 6200.89 1.16414
\(306\) 0 0
\(307\) 7409.87 1.37754 0.688768 0.724982i \(-0.258152\pi\)
0.688768 + 0.724982i \(0.258152\pi\)
\(308\) 127.337 0.0235574
\(309\) 0 0
\(310\) −1447.58 −0.265216
\(311\) −7379.57 −1.34552 −0.672761 0.739860i \(-0.734892\pi\)
−0.672761 + 0.739860i \(0.734892\pi\)
\(312\) 0 0
\(313\) −3768.81 −0.680594 −0.340297 0.940318i \(-0.610528\pi\)
−0.340297 + 0.940318i \(0.610528\pi\)
\(314\) −7832.03 −1.40760
\(315\) 0 0
\(316\) −5176.28 −0.921482
\(317\) −5262.96 −0.932483 −0.466242 0.884657i \(-0.654392\pi\)
−0.466242 + 0.884657i \(0.654392\pi\)
\(318\) 0 0
\(319\) 7211.63 1.26575
\(320\) −688.713 −0.120313
\(321\) 0 0
\(322\) 63.3054 0.0109561
\(323\) 20.8619 0.00359376
\(324\) 0 0
\(325\) −1151.49 −0.196533
\(326\) −9486.05 −1.61161
\(327\) 0 0
\(328\) −983.692 −0.165595
\(329\) 232.801 0.0390114
\(330\) 0 0
\(331\) 2968.99 0.493022 0.246511 0.969140i \(-0.420716\pi\)
0.246511 + 0.969140i \(0.420716\pi\)
\(332\) −2212.75 −0.365785
\(333\) 0 0
\(334\) −14623.5 −2.39570
\(335\) −4579.16 −0.746825
\(336\) 0 0
\(337\) 6534.46 1.05625 0.528123 0.849168i \(-0.322896\pi\)
0.528123 + 0.849168i \(0.322896\pi\)
\(338\) 6978.57 1.12303
\(339\) 0 0
\(340\) −59.1043 −0.00942759
\(341\) 995.949 0.158163
\(342\) 0 0
\(343\) −527.908 −0.0831031
\(344\) 4674.52 0.732655
\(345\) 0 0
\(346\) −8585.92 −1.33405
\(347\) −6855.73 −1.06062 −0.530310 0.847804i \(-0.677924\pi\)
−0.530310 + 0.847804i \(0.677924\pi\)
\(348\) 0 0
\(349\) 9490.70 1.45566 0.727830 0.685757i \(-0.240529\pi\)
0.727830 + 0.685757i \(0.240529\pi\)
\(350\) −202.826 −0.0309758
\(351\) 0 0
\(352\) 6634.53 1.00461
\(353\) 12731.2 1.91958 0.959789 0.280721i \(-0.0905735\pi\)
0.959789 + 0.280721i \(0.0905735\pi\)
\(354\) 0 0
\(355\) 1252.28 0.187223
\(356\) 6183.64 0.920596
\(357\) 0 0
\(358\) 8890.71 1.31254
\(359\) −5770.57 −0.848353 −0.424177 0.905579i \(-0.639436\pi\)
−0.424177 + 0.905579i \(0.639436\pi\)
\(360\) 0 0
\(361\) −6295.67 −0.917870
\(362\) 7944.15 1.15341
\(363\) 0 0
\(364\) −57.4140 −0.00826734
\(365\) 3164.23 0.453762
\(366\) 0 0
\(367\) −600.196 −0.0853678 −0.0426839 0.999089i \(-0.513591\pi\)
−0.0426839 + 0.999089i \(0.513591\pi\)
\(368\) 1826.35 0.258709
\(369\) 0 0
\(370\) −19077.5 −2.68051
\(371\) 38.2765 0.00535639
\(372\) 0 0
\(373\) 650.318 0.0902740 0.0451370 0.998981i \(-0.485628\pi\)
0.0451370 + 0.998981i \(0.485628\pi\)
\(374\) 108.858 0.0150506
\(375\) 0 0
\(376\) 3488.37 0.478454
\(377\) −3251.60 −0.444207
\(378\) 0 0
\(379\) −3681.71 −0.498989 −0.249494 0.968376i \(-0.580264\pi\)
−0.249494 + 0.968376i \(0.580264\pi\)
\(380\) −1595.98 −0.215453
\(381\) 0 0
\(382\) 13337.0 1.78634
\(383\) −9834.02 −1.31200 −0.655998 0.754762i \(-0.727752\pi\)
−0.655998 + 0.754762i \(0.727752\pi\)
\(384\) 0 0
\(385\) 376.257 0.0498074
\(386\) 15741.9 2.07576
\(387\) 0 0
\(388\) 934.976 0.122336
\(389\) −9694.04 −1.26352 −0.631758 0.775166i \(-0.717666\pi\)
−0.631758 + 0.775166i \(0.717666\pi\)
\(390\) 0 0
\(391\) 20.2163 0.00261478
\(392\) −3951.75 −0.509167
\(393\) 0 0
\(394\) −11097.5 −1.41899
\(395\) −15295.0 −1.94829
\(396\) 0 0
\(397\) −388.579 −0.0491240 −0.0245620 0.999698i \(-0.507819\pi\)
−0.0245620 + 0.999698i \(0.507819\pi\)
\(398\) 14151.7 1.78231
\(399\) 0 0
\(400\) −5851.50 −0.731438
\(401\) −1900.42 −0.236664 −0.118332 0.992974i \(-0.537755\pi\)
−0.118332 + 0.992974i \(0.537755\pi\)
\(402\) 0 0
\(403\) −449.056 −0.0555064
\(404\) 829.800 0.102188
\(405\) 0 0
\(406\) −572.743 −0.0700117
\(407\) 13125.5 1.59854
\(408\) 0 0
\(409\) −12654.5 −1.52989 −0.764945 0.644096i \(-0.777234\pi\)
−0.764945 + 0.644096i \(0.777234\pi\)
\(410\) 4293.42 0.517163
\(411\) 0 0
\(412\) −8351.86 −0.998706
\(413\) 260.162 0.0309970
\(414\) 0 0
\(415\) −6538.28 −0.773377
\(416\) −2991.39 −0.352561
\(417\) 0 0
\(418\) 2939.48 0.343958
\(419\) −5617.52 −0.654973 −0.327486 0.944856i \(-0.606202\pi\)
−0.327486 + 0.944856i \(0.606202\pi\)
\(420\) 0 0
\(421\) 9653.27 1.11751 0.558755 0.829333i \(-0.311279\pi\)
0.558755 + 0.829333i \(0.311279\pi\)
\(422\) 16366.1 1.88789
\(423\) 0 0
\(424\) 573.548 0.0656933
\(425\) −64.7716 −0.00739266
\(426\) 0 0
\(427\) 338.825 0.0384002
\(428\) −2037.73 −0.230134
\(429\) 0 0
\(430\) −20402.4 −2.28812
\(431\) 10873.1 1.21518 0.607588 0.794253i \(-0.292137\pi\)
0.607588 + 0.794253i \(0.292137\pi\)
\(432\) 0 0
\(433\) −9450.87 −1.04891 −0.524457 0.851437i \(-0.675732\pi\)
−0.524457 + 0.851437i \(0.675732\pi\)
\(434\) −79.0976 −0.00874840
\(435\) 0 0
\(436\) 6526.52 0.716890
\(437\) 545.894 0.0597566
\(438\) 0 0
\(439\) −9684.70 −1.05291 −0.526453 0.850204i \(-0.676478\pi\)
−0.526453 + 0.850204i \(0.676478\pi\)
\(440\) 5637.96 0.610862
\(441\) 0 0
\(442\) −49.0824 −0.00528192
\(443\) 3263.76 0.350036 0.175018 0.984565i \(-0.444002\pi\)
0.175018 + 0.984565i \(0.444002\pi\)
\(444\) 0 0
\(445\) 18271.5 1.94641
\(446\) 8833.47 0.937840
\(447\) 0 0
\(448\) −37.6322 −0.00396865
\(449\) 5206.00 0.547186 0.273593 0.961846i \(-0.411788\pi\)
0.273593 + 0.961846i \(0.411788\pi\)
\(450\) 0 0
\(451\) −2953.92 −0.308414
\(452\) 1617.46 0.168317
\(453\) 0 0
\(454\) 1829.72 0.189147
\(455\) −169.648 −0.0174796
\(456\) 0 0
\(457\) 12120.6 1.24065 0.620324 0.784346i \(-0.287001\pi\)
0.620324 + 0.784346i \(0.287001\pi\)
\(458\) 9249.76 0.943696
\(459\) 0 0
\(460\) −1546.59 −0.156761
\(461\) 15435.0 1.55939 0.779696 0.626158i \(-0.215374\pi\)
0.779696 + 0.626158i \(0.215374\pi\)
\(462\) 0 0
\(463\) −1631.70 −0.163783 −0.0818913 0.996641i \(-0.526096\pi\)
−0.0818913 + 0.996641i \(0.526096\pi\)
\(464\) −16523.5 −1.65320
\(465\) 0 0
\(466\) 6386.83 0.634902
\(467\) −1772.49 −0.175634 −0.0878172 0.996137i \(-0.527989\pi\)
−0.0878172 + 0.996137i \(0.527989\pi\)
\(468\) 0 0
\(469\) −250.211 −0.0246347
\(470\) −15225.3 −1.49424
\(471\) 0 0
\(472\) 3898.35 0.380162
\(473\) 14037.1 1.36454
\(474\) 0 0
\(475\) −1749.01 −0.168947
\(476\) −3.22954 −0.000310978 0
\(477\) 0 0
\(478\) 13632.2 1.30444
\(479\) −8581.09 −0.818539 −0.409270 0.912414i \(-0.634216\pi\)
−0.409270 + 0.912414i \(0.634216\pi\)
\(480\) 0 0
\(481\) −5918.06 −0.560998
\(482\) 16322.8 1.54249
\(483\) 0 0
\(484\) −619.760 −0.0582044
\(485\) 2762.68 0.258654
\(486\) 0 0
\(487\) 18759.7 1.74555 0.872775 0.488122i \(-0.162318\pi\)
0.872775 + 0.488122i \(0.162318\pi\)
\(488\) 5077.06 0.470958
\(489\) 0 0
\(490\) 17247.8 1.59016
\(491\) 9373.98 0.861592 0.430796 0.902449i \(-0.358233\pi\)
0.430796 + 0.902449i \(0.358233\pi\)
\(492\) 0 0
\(493\) −182.903 −0.0167090
\(494\) −1325.36 −0.120710
\(495\) 0 0
\(496\) −2281.95 −0.206578
\(497\) 68.4264 0.00617574
\(498\) 0 0
\(499\) −12711.3 −1.14035 −0.570175 0.821523i \(-0.693125\pi\)
−0.570175 + 0.821523i \(0.693125\pi\)
\(500\) −3450.20 −0.308595
\(501\) 0 0
\(502\) 13370.0 1.18871
\(503\) −7048.98 −0.624848 −0.312424 0.949943i \(-0.601141\pi\)
−0.312424 + 0.949943i \(0.601141\pi\)
\(504\) 0 0
\(505\) 2451.91 0.216056
\(506\) 2848.51 0.250260
\(507\) 0 0
\(508\) 1962.11 0.171367
\(509\) −10031.3 −0.873535 −0.436767 0.899574i \(-0.643877\pi\)
−0.436767 + 0.899574i \(0.643877\pi\)
\(510\) 0 0
\(511\) 172.898 0.0149678
\(512\) −7869.76 −0.679292
\(513\) 0 0
\(514\) 18368.4 1.57625
\(515\) −24678.2 −2.11156
\(516\) 0 0
\(517\) 10475.2 0.891099
\(518\) −1042.42 −0.0884193
\(519\) 0 0
\(520\) −2542.06 −0.214378
\(521\) −1292.93 −0.108722 −0.0543610 0.998521i \(-0.517312\pi\)
−0.0543610 + 0.998521i \(0.517312\pi\)
\(522\) 0 0
\(523\) −6448.73 −0.539165 −0.269582 0.962977i \(-0.586886\pi\)
−0.269582 + 0.962977i \(0.586886\pi\)
\(524\) 5869.73 0.489352
\(525\) 0 0
\(526\) 28312.0 2.34689
\(527\) −25.2594 −0.00208789
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −2503.31 −0.205164
\(531\) 0 0
\(532\) −87.2064 −0.00710691
\(533\) 1331.87 0.108236
\(534\) 0 0
\(535\) −6021.12 −0.486572
\(536\) −3749.25 −0.302132
\(537\) 0 0
\(538\) −22919.0 −1.83663
\(539\) −11866.7 −0.948300
\(540\) 0 0
\(541\) −14040.6 −1.11581 −0.557903 0.829906i \(-0.688394\pi\)
−0.557903 + 0.829906i \(0.688394\pi\)
\(542\) −23633.7 −1.87298
\(543\) 0 0
\(544\) −168.266 −0.0132617
\(545\) 19284.7 1.51572
\(546\) 0 0
\(547\) 2398.58 0.187488 0.0937440 0.995596i \(-0.470116\pi\)
0.0937440 + 0.995596i \(0.470116\pi\)
\(548\) 9696.39 0.755856
\(549\) 0 0
\(550\) −9126.43 −0.707550
\(551\) −4938.87 −0.381857
\(552\) 0 0
\(553\) −835.737 −0.0642661
\(554\) −24059.1 −1.84508
\(555\) 0 0
\(556\) −1396.56 −0.106524
\(557\) −5086.11 −0.386904 −0.193452 0.981110i \(-0.561968\pi\)
−0.193452 + 0.981110i \(0.561968\pi\)
\(558\) 0 0
\(559\) −6329.07 −0.478875
\(560\) −862.093 −0.0650537
\(561\) 0 0
\(562\) 14408.9 1.08150
\(563\) 12808.3 0.958806 0.479403 0.877595i \(-0.340853\pi\)
0.479403 + 0.877595i \(0.340853\pi\)
\(564\) 0 0
\(565\) 4779.31 0.355871
\(566\) 486.010 0.0360928
\(567\) 0 0
\(568\) 1025.32 0.0757423
\(569\) 11625.9 0.856560 0.428280 0.903646i \(-0.359120\pi\)
0.428280 + 0.903646i \(0.359120\pi\)
\(570\) 0 0
\(571\) −5508.34 −0.403707 −0.201854 0.979416i \(-0.564697\pi\)
−0.201854 + 0.979416i \(0.564697\pi\)
\(572\) −2583.42 −0.188843
\(573\) 0 0
\(574\) 234.598 0.0170591
\(575\) −1694.88 −0.122924
\(576\) 0 0
\(577\) −16634.3 −1.20016 −0.600082 0.799939i \(-0.704865\pi\)
−0.600082 + 0.799939i \(0.704865\pi\)
\(578\) 17554.2 1.26325
\(579\) 0 0
\(580\) 13992.4 1.00173
\(581\) −357.260 −0.0255106
\(582\) 0 0
\(583\) 1722.30 0.122351
\(584\) 2590.75 0.183572
\(585\) 0 0
\(586\) −20281.4 −1.42972
\(587\) −6224.23 −0.437652 −0.218826 0.975764i \(-0.570223\pi\)
−0.218826 + 0.975764i \(0.570223\pi\)
\(588\) 0 0
\(589\) −682.074 −0.0477154
\(590\) −17014.8 −1.18727
\(591\) 0 0
\(592\) −30073.6 −2.08786
\(593\) −13717.8 −0.949954 −0.474977 0.879998i \(-0.657544\pi\)
−0.474977 + 0.879998i \(0.657544\pi\)
\(594\) 0 0
\(595\) −9.54270 −0.000657500 0
\(596\) −5197.16 −0.357188
\(597\) 0 0
\(598\) −1284.34 −0.0878272
\(599\) −7465.64 −0.509245 −0.254623 0.967040i \(-0.581951\pi\)
−0.254623 + 0.967040i \(0.581951\pi\)
\(600\) 0 0
\(601\) 27528.4 1.86840 0.934199 0.356752i \(-0.116116\pi\)
0.934199 + 0.356752i \(0.116116\pi\)
\(602\) −1114.81 −0.0754759
\(603\) 0 0
\(604\) −1394.34 −0.0939319
\(605\) −1831.28 −0.123061
\(606\) 0 0
\(607\) −29065.0 −1.94351 −0.971757 0.235985i \(-0.924168\pi\)
−0.971757 + 0.235985i \(0.924168\pi\)
\(608\) −4543.64 −0.303074
\(609\) 0 0
\(610\) −22159.3 −1.47083
\(611\) −4723.08 −0.312726
\(612\) 0 0
\(613\) −22786.9 −1.50139 −0.750696 0.660648i \(-0.770282\pi\)
−0.750696 + 0.660648i \(0.770282\pi\)
\(614\) −26479.7 −1.74045
\(615\) 0 0
\(616\) 308.066 0.0201499
\(617\) 5693.08 0.371467 0.185733 0.982600i \(-0.440534\pi\)
0.185733 + 0.982600i \(0.440534\pi\)
\(618\) 0 0
\(619\) −20940.6 −1.35973 −0.679866 0.733336i \(-0.737962\pi\)
−0.679866 + 0.733336i \(0.737962\pi\)
\(620\) 1932.40 0.125173
\(621\) 0 0
\(622\) 26371.5 1.70000
\(623\) 998.380 0.0642043
\(624\) 0 0
\(625\) −19406.0 −1.24199
\(626\) 13468.1 0.859896
\(627\) 0 0
\(628\) 10455.1 0.664340
\(629\) −332.891 −0.0211021
\(630\) 0 0
\(631\) 27598.8 1.74119 0.870595 0.491999i \(-0.163734\pi\)
0.870595 + 0.491999i \(0.163734\pi\)
\(632\) −12522.9 −0.788190
\(633\) 0 0
\(634\) 18807.6 1.17815
\(635\) 5797.68 0.362321
\(636\) 0 0
\(637\) 5350.48 0.332800
\(638\) −25771.3 −1.59921
\(639\) 0 0
\(640\) −19126.3 −1.18130
\(641\) 21618.2 1.33209 0.666043 0.745914i \(-0.267987\pi\)
0.666043 + 0.745914i \(0.267987\pi\)
\(642\) 0 0
\(643\) 312.377 0.0191586 0.00957928 0.999954i \(-0.496951\pi\)
0.00957928 + 0.999954i \(0.496951\pi\)
\(644\) −84.5076 −0.00517091
\(645\) 0 0
\(646\) −74.5515 −0.00454054
\(647\) −24658.0 −1.49831 −0.749156 0.662394i \(-0.769541\pi\)
−0.749156 + 0.662394i \(0.769541\pi\)
\(648\) 0 0
\(649\) 11706.3 0.708034
\(650\) 4114.95 0.248310
\(651\) 0 0
\(652\) 12663.1 0.760623
\(653\) −5605.33 −0.335917 −0.167958 0.985794i \(-0.553717\pi\)
−0.167958 + 0.985794i \(0.553717\pi\)
\(654\) 0 0
\(655\) 17344.0 1.03463
\(656\) 6768.12 0.402821
\(657\) 0 0
\(658\) −831.932 −0.0492889
\(659\) 7019.45 0.414930 0.207465 0.978242i \(-0.433479\pi\)
0.207465 + 0.978242i \(0.433479\pi\)
\(660\) 0 0
\(661\) −25530.3 −1.50229 −0.751144 0.660138i \(-0.770498\pi\)
−0.751144 + 0.660138i \(0.770498\pi\)
\(662\) −10609.9 −0.622908
\(663\) 0 0
\(664\) −5353.30 −0.312874
\(665\) −257.679 −0.0150261
\(666\) 0 0
\(667\) −4786.03 −0.277835
\(668\) 19521.2 1.13069
\(669\) 0 0
\(670\) 16364.0 0.943575
\(671\) 15245.9 0.877138
\(672\) 0 0
\(673\) 5813.10 0.332955 0.166477 0.986045i \(-0.446761\pi\)
0.166477 + 0.986045i \(0.446761\pi\)
\(674\) −23351.4 −1.33451
\(675\) 0 0
\(676\) −9315.83 −0.530031
\(677\) 30771.4 1.74689 0.873443 0.486926i \(-0.161882\pi\)
0.873443 + 0.486926i \(0.161882\pi\)
\(678\) 0 0
\(679\) 150.957 0.00853194
\(680\) −142.991 −0.00806390
\(681\) 0 0
\(682\) −3559.10 −0.199831
\(683\) 23739.4 1.32996 0.664980 0.746861i \(-0.268440\pi\)
0.664980 + 0.746861i \(0.268440\pi\)
\(684\) 0 0
\(685\) 28651.1 1.59810
\(686\) 1886.52 0.104997
\(687\) 0 0
\(688\) −32162.2 −1.78223
\(689\) −776.556 −0.0429382
\(690\) 0 0
\(691\) −1721.20 −0.0947575 −0.0473787 0.998877i \(-0.515087\pi\)
−0.0473787 + 0.998877i \(0.515087\pi\)
\(692\) 11461.5 0.629626
\(693\) 0 0
\(694\) 24499.5 1.34004
\(695\) −4126.58 −0.225223
\(696\) 0 0
\(697\) 74.9178 0.00407132
\(698\) −33915.7 −1.83915
\(699\) 0 0
\(700\) 270.757 0.0146195
\(701\) −14258.5 −0.768239 −0.384120 0.923283i \(-0.625495\pi\)
−0.384120 + 0.923283i \(0.625495\pi\)
\(702\) 0 0
\(703\) −8988.96 −0.482255
\(704\) −1693.31 −0.0906519
\(705\) 0 0
\(706\) −45495.8 −2.42529
\(707\) 133.975 0.00712683
\(708\) 0 0
\(709\) 11544.3 0.611500 0.305750 0.952112i \(-0.401093\pi\)
0.305750 + 0.952112i \(0.401093\pi\)
\(710\) −4475.13 −0.236547
\(711\) 0 0
\(712\) 14960.1 0.787432
\(713\) −660.965 −0.0347172
\(714\) 0 0
\(715\) −7633.52 −0.399269
\(716\) −11868.4 −0.619472
\(717\) 0 0
\(718\) 20621.6 1.07185
\(719\) −11736.1 −0.608737 −0.304368 0.952554i \(-0.598445\pi\)
−0.304368 + 0.952554i \(0.598445\pi\)
\(720\) 0 0
\(721\) −1348.45 −0.0696518
\(722\) 22498.1 1.15968
\(723\) 0 0
\(724\) −10604.8 −0.544371
\(725\) 15334.1 0.785510
\(726\) 0 0
\(727\) 15532.4 0.792387 0.396193 0.918167i \(-0.370331\pi\)
0.396193 + 0.918167i \(0.370331\pi\)
\(728\) −138.901 −0.00707147
\(729\) 0 0
\(730\) −11307.6 −0.573306
\(731\) −356.011 −0.0180130
\(732\) 0 0
\(733\) 10102.8 0.509080 0.254540 0.967062i \(-0.418076\pi\)
0.254540 + 0.967062i \(0.418076\pi\)
\(734\) 2144.85 0.107858
\(735\) 0 0
\(736\) −4403.03 −0.220513
\(737\) −11258.6 −0.562707
\(738\) 0 0
\(739\) −3063.89 −0.152513 −0.0762565 0.997088i \(-0.524297\pi\)
−0.0762565 + 0.997088i \(0.524297\pi\)
\(740\) 25466.9 1.26511
\(741\) 0 0
\(742\) −136.784 −0.00676752
\(743\) 13681.0 0.675517 0.337758 0.941233i \(-0.390331\pi\)
0.337758 + 0.941233i \(0.390331\pi\)
\(744\) 0 0
\(745\) −15356.6 −0.755200
\(746\) −2323.96 −0.114057
\(747\) 0 0
\(748\) −145.317 −0.00710338
\(749\) −329.002 −0.0160500
\(750\) 0 0
\(751\) −3652.90 −0.177492 −0.0887458 0.996054i \(-0.528286\pi\)
−0.0887458 + 0.996054i \(0.528286\pi\)
\(752\) −24001.1 −1.16387
\(753\) 0 0
\(754\) 11619.8 0.561233
\(755\) −4120.02 −0.198600
\(756\) 0 0
\(757\) 5446.96 0.261523 0.130762 0.991414i \(-0.458258\pi\)
0.130762 + 0.991414i \(0.458258\pi\)
\(758\) 13156.9 0.630447
\(759\) 0 0
\(760\) −3861.14 −0.184287
\(761\) 26195.8 1.24783 0.623915 0.781492i \(-0.285541\pi\)
0.623915 + 0.781492i \(0.285541\pi\)
\(762\) 0 0
\(763\) 1053.74 0.0499974
\(764\) −17803.8 −0.843088
\(765\) 0 0
\(766\) 35142.6 1.65764
\(767\) −5278.18 −0.248480
\(768\) 0 0
\(769\) 15201.2 0.712834 0.356417 0.934327i \(-0.383998\pi\)
0.356417 + 0.934327i \(0.383998\pi\)
\(770\) −1344.58 −0.0629291
\(771\) 0 0
\(772\) −21014.2 −0.979687
\(773\) 28555.0 1.32866 0.664328 0.747441i \(-0.268718\pi\)
0.664328 + 0.747441i \(0.268718\pi\)
\(774\) 0 0
\(775\) 2117.69 0.0981544
\(776\) 2261.98 0.104640
\(777\) 0 0
\(778\) 34642.4 1.59639
\(779\) 2022.99 0.0930436
\(780\) 0 0
\(781\) 3078.93 0.141067
\(782\) −72.2443 −0.00330364
\(783\) 0 0
\(784\) 27189.3 1.23858
\(785\) 30893.0 1.40461
\(786\) 0 0
\(787\) 2461.65 0.111497 0.0557486 0.998445i \(-0.482245\pi\)
0.0557486 + 0.998445i \(0.482245\pi\)
\(788\) 14814.2 0.669714
\(789\) 0 0
\(790\) 54657.7 2.46156
\(791\) 261.148 0.0117387
\(792\) 0 0
\(793\) −6874.09 −0.307826
\(794\) 1388.62 0.0620656
\(795\) 0 0
\(796\) −18891.3 −0.841188
\(797\) 35779.6 1.59019 0.795094 0.606487i \(-0.207422\pi\)
0.795094 + 0.606487i \(0.207422\pi\)
\(798\) 0 0
\(799\) −265.673 −0.0117633
\(800\) 14107.0 0.623448
\(801\) 0 0
\(802\) 6791.29 0.299014
\(803\) 7779.75 0.341895
\(804\) 0 0
\(805\) −249.704 −0.0109328
\(806\) 1604.74 0.0701296
\(807\) 0 0
\(808\) 2007.53 0.0874068
\(809\) 21167.0 0.919890 0.459945 0.887947i \(-0.347869\pi\)
0.459945 + 0.887947i \(0.347869\pi\)
\(810\) 0 0
\(811\) 42245.1 1.82913 0.914565 0.404438i \(-0.132533\pi\)
0.914565 + 0.404438i \(0.132533\pi\)
\(812\) 764.566 0.0330431
\(813\) 0 0
\(814\) −46904.9 −2.01968
\(815\) 37417.2 1.60818
\(816\) 0 0
\(817\) −9613.26 −0.411659
\(818\) 45221.8 1.93294
\(819\) 0 0
\(820\) −5731.37 −0.244083
\(821\) −16085.0 −0.683763 −0.341881 0.939743i \(-0.611064\pi\)
−0.341881 + 0.939743i \(0.611064\pi\)
\(822\) 0 0
\(823\) −30884.6 −1.30810 −0.654052 0.756450i \(-0.726932\pi\)
−0.654052 + 0.756450i \(0.726932\pi\)
\(824\) −20205.6 −0.854243
\(825\) 0 0
\(826\) −929.709 −0.0391631
\(827\) −34941.5 −1.46921 −0.734605 0.678496i \(-0.762632\pi\)
−0.734605 + 0.678496i \(0.762632\pi\)
\(828\) 0 0
\(829\) −17009.2 −0.712609 −0.356305 0.934370i \(-0.615963\pi\)
−0.356305 + 0.934370i \(0.615963\pi\)
\(830\) 23365.0 0.977123
\(831\) 0 0
\(832\) 763.483 0.0318137
\(833\) 300.964 0.0125184
\(834\) 0 0
\(835\) 57681.6 2.39060
\(836\) −3923.96 −0.162336
\(837\) 0 0
\(838\) 20074.6 0.827525
\(839\) −10126.7 −0.416700 −0.208350 0.978054i \(-0.566809\pi\)
−0.208350 + 0.978054i \(0.566809\pi\)
\(840\) 0 0
\(841\) 18911.6 0.775417
\(842\) −34496.7 −1.41192
\(843\) 0 0
\(844\) −21847.4 −0.891018
\(845\) −27526.6 −1.12064
\(846\) 0 0
\(847\) −100.063 −0.00405929
\(848\) −3946.19 −0.159803
\(849\) 0 0
\(850\) 231.466 0.00934026
\(851\) −8710.78 −0.350883
\(852\) 0 0
\(853\) −24818.1 −0.996198 −0.498099 0.867120i \(-0.665968\pi\)
−0.498099 + 0.867120i \(0.665968\pi\)
\(854\) −1210.82 −0.0485167
\(855\) 0 0
\(856\) −4929.87 −0.196845
\(857\) 36314.0 1.44745 0.723724 0.690090i \(-0.242429\pi\)
0.723724 + 0.690090i \(0.242429\pi\)
\(858\) 0 0
\(859\) −22525.8 −0.894728 −0.447364 0.894352i \(-0.647637\pi\)
−0.447364 + 0.894352i \(0.647637\pi\)
\(860\) 27235.6 1.07991
\(861\) 0 0
\(862\) −38856.0 −1.53531
\(863\) −15662.3 −0.617789 −0.308894 0.951096i \(-0.599959\pi\)
−0.308894 + 0.951096i \(0.599959\pi\)
\(864\) 0 0
\(865\) 33866.7 1.33122
\(866\) 33773.4 1.32525
\(867\) 0 0
\(868\) 105.589 0.00412894
\(869\) −37605.0 −1.46797
\(870\) 0 0
\(871\) 5076.30 0.197479
\(872\) 15789.6 0.613192
\(873\) 0 0
\(874\) −1950.79 −0.0754995
\(875\) −557.052 −0.0215221
\(876\) 0 0
\(877\) −35339.3 −1.36069 −0.680343 0.732893i \(-0.738169\pi\)
−0.680343 + 0.732893i \(0.738169\pi\)
\(878\) 34609.0 1.33029
\(879\) 0 0
\(880\) −38791.0 −1.48596
\(881\) −24946.1 −0.953978 −0.476989 0.878909i \(-0.658272\pi\)
−0.476989 + 0.878909i \(0.658272\pi\)
\(882\) 0 0
\(883\) 25605.1 0.975853 0.487927 0.872885i \(-0.337753\pi\)
0.487927 + 0.872885i \(0.337753\pi\)
\(884\) 65.5210 0.00249289
\(885\) 0 0
\(886\) −11663.3 −0.442253
\(887\) 15401.5 0.583011 0.291505 0.956569i \(-0.405844\pi\)
0.291505 + 0.956569i \(0.405844\pi\)
\(888\) 0 0
\(889\) 316.793 0.0119515
\(890\) −65294.7 −2.45919
\(891\) 0 0
\(892\) −11792.0 −0.442628
\(893\) −7173.91 −0.268831
\(894\) 0 0
\(895\) −35068.9 −1.30975
\(896\) −1045.09 −0.0389665
\(897\) 0 0
\(898\) −18604.0 −0.691341
\(899\) 5979.96 0.221850
\(900\) 0 0
\(901\) −43.6813 −0.00161513
\(902\) 10556.1 0.389665
\(903\) 0 0
\(904\) 3913.12 0.143970
\(905\) −31335.3 −1.15096
\(906\) 0 0
\(907\) −28802.1 −1.05442 −0.527209 0.849736i \(-0.676762\pi\)
−0.527209 + 0.849736i \(0.676762\pi\)
\(908\) −2442.52 −0.0892709
\(909\) 0 0
\(910\) 606.249 0.0220846
\(911\) 35607.8 1.29499 0.647496 0.762069i \(-0.275816\pi\)
0.647496 + 0.762069i \(0.275816\pi\)
\(912\) 0 0
\(913\) −16075.4 −0.582714
\(914\) −43313.7 −1.56750
\(915\) 0 0
\(916\) −12347.7 −0.445392
\(917\) 947.698 0.0341284
\(918\) 0 0
\(919\) 43275.2 1.55334 0.776670 0.629908i \(-0.216908\pi\)
0.776670 + 0.629908i \(0.216908\pi\)
\(920\) −3741.65 −0.134085
\(921\) 0 0
\(922\) −55158.1 −1.97021
\(923\) −1388.24 −0.0495064
\(924\) 0 0
\(925\) 27908.8 0.992037
\(926\) 5830.99 0.206931
\(927\) 0 0
\(928\) 39835.6 1.40912
\(929\) −9027.96 −0.318835 −0.159418 0.987211i \(-0.550962\pi\)
−0.159418 + 0.987211i \(0.550962\pi\)
\(930\) 0 0
\(931\) 8126.86 0.286087
\(932\) −8525.90 −0.299652
\(933\) 0 0
\(934\) 6334.14 0.221905
\(935\) −429.386 −0.0150186
\(936\) 0 0
\(937\) −14374.0 −0.501152 −0.250576 0.968097i \(-0.580620\pi\)
−0.250576 + 0.968097i \(0.580620\pi\)
\(938\) 894.149 0.0311247
\(939\) 0 0
\(940\) 20324.6 0.705229
\(941\) −535.779 −0.0185610 −0.00928050 0.999957i \(-0.502954\pi\)
−0.00928050 + 0.999957i \(0.502954\pi\)
\(942\) 0 0
\(943\) 1960.38 0.0676975
\(944\) −26821.9 −0.924766
\(945\) 0 0
\(946\) −50162.5 −1.72402
\(947\) 14640.6 0.502381 0.251191 0.967938i \(-0.419178\pi\)
0.251191 + 0.967938i \(0.419178\pi\)
\(948\) 0 0
\(949\) −3507.76 −0.119986
\(950\) 6250.21 0.213457
\(951\) 0 0
\(952\) −7.81321 −0.000265995 0
\(953\) 19789.0 0.672644 0.336322 0.941747i \(-0.390817\pi\)
0.336322 + 0.941747i \(0.390817\pi\)
\(954\) 0 0
\(955\) −52607.0 −1.78254
\(956\) −18197.8 −0.615648
\(957\) 0 0
\(958\) 30665.2 1.03418
\(959\) 1565.53 0.0527150
\(960\) 0 0
\(961\) −28965.1 −0.972279
\(962\) 21148.6 0.708793
\(963\) 0 0
\(964\) −21789.6 −0.728004
\(965\) −62093.2 −2.07135
\(966\) 0 0
\(967\) 22988.6 0.764493 0.382246 0.924060i \(-0.375151\pi\)
0.382246 + 0.924060i \(0.375151\pi\)
\(968\) −1499.38 −0.0497851
\(969\) 0 0
\(970\) −9872.66 −0.326796
\(971\) 12281.6 0.405907 0.202954 0.979188i \(-0.434946\pi\)
0.202954 + 0.979188i \(0.434946\pi\)
\(972\) 0 0
\(973\) −225.482 −0.00742921
\(974\) −67039.2 −2.20542
\(975\) 0 0
\(976\) −34931.8 −1.14563
\(977\) 13716.2 0.449152 0.224576 0.974457i \(-0.427900\pi\)
0.224576 + 0.974457i \(0.427900\pi\)
\(978\) 0 0
\(979\) 44923.4 1.46656
\(980\) −23024.4 −0.750498
\(981\) 0 0
\(982\) −33498.6 −1.08858
\(983\) 38091.7 1.23595 0.617975 0.786198i \(-0.287953\pi\)
0.617975 + 0.786198i \(0.287953\pi\)
\(984\) 0 0
\(985\) 43773.3 1.41597
\(986\) 653.616 0.0211109
\(987\) 0 0
\(988\) 1769.25 0.0569709
\(989\) −9315.75 −0.299518
\(990\) 0 0
\(991\) −9639.10 −0.308977 −0.154488 0.987995i \(-0.549373\pi\)
−0.154488 + 0.987995i \(0.549373\pi\)
\(992\) 5501.42 0.176079
\(993\) 0 0
\(994\) −244.527 −0.00780274
\(995\) −55820.4 −1.77852
\(996\) 0 0
\(997\) −10135.6 −0.321962 −0.160981 0.986957i \(-0.551466\pi\)
−0.160981 + 0.986957i \(0.551466\pi\)
\(998\) 45424.7 1.44078
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.h.1.1 yes 5
3.2 odd 2 207.4.a.g.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.4.a.g.1.5 5 3.2 odd 2
207.4.a.h.1.1 yes 5 1.1 even 1 trivial