Properties

Label 207.4.a.g.1.3
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,4,Mod(1,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 26x^{3} + 10x^{2} + 144x + 56 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.413197\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41320 q^{2} -6.00288 q^{4} +6.16513 q^{5} -0.219811 q^{7} +19.7888 q^{8} -8.71253 q^{10} -52.4758 q^{11} +86.8286 q^{13} +0.310636 q^{14} +20.0575 q^{16} -94.7709 q^{17} -41.3899 q^{19} -37.0085 q^{20} +74.1586 q^{22} +23.0000 q^{23} -86.9912 q^{25} -122.706 q^{26} +1.31950 q^{28} -221.765 q^{29} -86.5941 q^{31} -186.656 q^{32} +133.930 q^{34} -1.35516 q^{35} -363.291 q^{37} +58.4920 q^{38} +122.001 q^{40} -342.800 q^{41} +454.201 q^{43} +315.005 q^{44} -32.5035 q^{46} +442.861 q^{47} -342.952 q^{49} +122.936 q^{50} -521.221 q^{52} -456.142 q^{53} -323.520 q^{55} -4.34979 q^{56} +313.398 q^{58} -753.494 q^{59} -75.7151 q^{61} +122.374 q^{62} +103.321 q^{64} +535.309 q^{65} +551.758 q^{67} +568.898 q^{68} +1.91511 q^{70} -565.146 q^{71} +573.048 q^{73} +513.402 q^{74} +248.458 q^{76} +11.5347 q^{77} +37.6381 q^{79} +123.657 q^{80} +484.444 q^{82} +1163.49 q^{83} -584.274 q^{85} -641.875 q^{86} -1038.43 q^{88} +1015.64 q^{89} -19.0859 q^{91} -138.066 q^{92} -625.850 q^{94} -255.174 q^{95} -244.959 q^{97} +484.658 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} + 16 q^{4} - 20 q^{5} - 10 q^{7} - 48 q^{8} + 50 q^{10} - 46 q^{11} + 54 q^{13} - 164 q^{14} - 60 q^{16} - 250 q^{17} - 28 q^{19} - 242 q^{20} - 10 q^{22} + 115 q^{23} + 239 q^{25} - 368 q^{26}+ \cdots + 2400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41320 −0.499640 −0.249820 0.968292i \(-0.580372\pi\)
−0.249820 + 0.968292i \(0.580372\pi\)
\(3\) 0 0
\(4\) −6.00288 −0.750359
\(5\) 6.16513 0.551426 0.275713 0.961240i \(-0.411086\pi\)
0.275713 + 0.961240i \(0.411086\pi\)
\(6\) 0 0
\(7\) −0.219811 −0.0118687 −0.00593433 0.999982i \(-0.501889\pi\)
−0.00593433 + 0.999982i \(0.501889\pi\)
\(8\) 19.7888 0.874550
\(9\) 0 0
\(10\) −8.71253 −0.275515
\(11\) −52.4758 −1.43837 −0.719184 0.694820i \(-0.755484\pi\)
−0.719184 + 0.694820i \(0.755484\pi\)
\(12\) 0 0
\(13\) 86.8286 1.85246 0.926228 0.376965i \(-0.123032\pi\)
0.926228 + 0.376965i \(0.123032\pi\)
\(14\) 0.310636 0.00593006
\(15\) 0 0
\(16\) 20.0575 0.313399
\(17\) −94.7709 −1.35208 −0.676038 0.736866i \(-0.736305\pi\)
−0.676038 + 0.736866i \(0.736305\pi\)
\(18\) 0 0
\(19\) −41.3899 −0.499762 −0.249881 0.968277i \(-0.580392\pi\)
−0.249881 + 0.968277i \(0.580392\pi\)
\(20\) −37.0085 −0.413767
\(21\) 0 0
\(22\) 74.1586 0.718666
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −86.9912 −0.695930
\(26\) −122.706 −0.925562
\(27\) 0 0
\(28\) 1.31950 0.00890576
\(29\) −221.765 −1.42003 −0.710013 0.704189i \(-0.751311\pi\)
−0.710013 + 0.704189i \(0.751311\pi\)
\(30\) 0 0
\(31\) −86.5941 −0.501702 −0.250851 0.968026i \(-0.580710\pi\)
−0.250851 + 0.968026i \(0.580710\pi\)
\(32\) −186.656 −1.03114
\(33\) 0 0
\(34\) 133.930 0.675552
\(35\) −1.35516 −0.00654468
\(36\) 0 0
\(37\) −363.291 −1.61418 −0.807091 0.590428i \(-0.798959\pi\)
−0.807091 + 0.590428i \(0.798959\pi\)
\(38\) 58.4920 0.249701
\(39\) 0 0
\(40\) 122.001 0.482249
\(41\) −342.800 −1.30577 −0.652883 0.757459i \(-0.726441\pi\)
−0.652883 + 0.757459i \(0.726441\pi\)
\(42\) 0 0
\(43\) 454.201 1.61081 0.805406 0.592723i \(-0.201947\pi\)
0.805406 + 0.592723i \(0.201947\pi\)
\(44\) 315.005 1.07929
\(45\) 0 0
\(46\) −32.5035 −0.104182
\(47\) 442.861 1.37442 0.687212 0.726457i \(-0.258834\pi\)
0.687212 + 0.726457i \(0.258834\pi\)
\(48\) 0 0
\(49\) −342.952 −0.999859
\(50\) 122.936 0.347715
\(51\) 0 0
\(52\) −521.221 −1.39001
\(53\) −456.142 −1.18219 −0.591094 0.806603i \(-0.701304\pi\)
−0.591094 + 0.806603i \(0.701304\pi\)
\(54\) 0 0
\(55\) −323.520 −0.793152
\(56\) −4.34979 −0.0103797
\(57\) 0 0
\(58\) 313.398 0.709502
\(59\) −753.494 −1.66265 −0.831327 0.555784i \(-0.812418\pi\)
−0.831327 + 0.555784i \(0.812418\pi\)
\(60\) 0 0
\(61\) −75.7151 −0.158923 −0.0794617 0.996838i \(-0.525320\pi\)
−0.0794617 + 0.996838i \(0.525320\pi\)
\(62\) 122.374 0.250671
\(63\) 0 0
\(64\) 103.321 0.201799
\(65\) 535.309 1.02149
\(66\) 0 0
\(67\) 551.758 1.00609 0.503044 0.864261i \(-0.332213\pi\)
0.503044 + 0.864261i \(0.332213\pi\)
\(68\) 568.898 1.01454
\(69\) 0 0
\(70\) 1.91511 0.00326999
\(71\) −565.146 −0.944655 −0.472328 0.881423i \(-0.656586\pi\)
−0.472328 + 0.881423i \(0.656586\pi\)
\(72\) 0 0
\(73\) 573.048 0.918770 0.459385 0.888237i \(-0.348070\pi\)
0.459385 + 0.888237i \(0.348070\pi\)
\(74\) 513.402 0.806510
\(75\) 0 0
\(76\) 248.458 0.375001
\(77\) 11.5347 0.0170715
\(78\) 0 0
\(79\) 37.6381 0.0536028 0.0268014 0.999641i \(-0.491468\pi\)
0.0268014 + 0.999641i \(0.491468\pi\)
\(80\) 123.657 0.172816
\(81\) 0 0
\(82\) 484.444 0.652414
\(83\) 1163.49 1.53866 0.769332 0.638849i \(-0.220589\pi\)
0.769332 + 0.638849i \(0.220589\pi\)
\(84\) 0 0
\(85\) −584.274 −0.745570
\(86\) −641.875 −0.804827
\(87\) 0 0
\(88\) −1038.43 −1.25792
\(89\) 1015.64 1.20964 0.604820 0.796362i \(-0.293245\pi\)
0.604820 + 0.796362i \(0.293245\pi\)
\(90\) 0 0
\(91\) −19.0859 −0.0219862
\(92\) −138.066 −0.156461
\(93\) 0 0
\(94\) −625.850 −0.686718
\(95\) −255.174 −0.275582
\(96\) 0 0
\(97\) −244.959 −0.256411 −0.128205 0.991748i \(-0.540922\pi\)
−0.128205 + 0.991748i \(0.540922\pi\)
\(98\) 484.658 0.499570
\(99\) 0 0
\(100\) 522.197 0.522197
\(101\) −20.0731 −0.0197757 −0.00988786 0.999951i \(-0.503147\pi\)
−0.00988786 + 0.999951i \(0.503147\pi\)
\(102\) 0 0
\(103\) 1101.13 1.05337 0.526686 0.850060i \(-0.323434\pi\)
0.526686 + 0.850060i \(0.323434\pi\)
\(104\) 1718.24 1.62007
\(105\) 0 0
\(106\) 644.619 0.590669
\(107\) −17.2298 −0.0155670 −0.00778351 0.999970i \(-0.502478\pi\)
−0.00778351 + 0.999970i \(0.502478\pi\)
\(108\) 0 0
\(109\) −729.003 −0.640604 −0.320302 0.947315i \(-0.603784\pi\)
−0.320302 + 0.947315i \(0.603784\pi\)
\(110\) 457.197 0.396291
\(111\) 0 0
\(112\) −4.40886 −0.00371962
\(113\) 99.3322 0.0826937 0.0413468 0.999145i \(-0.486835\pi\)
0.0413468 + 0.999145i \(0.486835\pi\)
\(114\) 0 0
\(115\) 141.798 0.114980
\(116\) 1331.23 1.06553
\(117\) 0 0
\(118\) 1064.83 0.830729
\(119\) 20.8316 0.0160473
\(120\) 0 0
\(121\) 1422.71 1.06890
\(122\) 107.000 0.0794046
\(123\) 0 0
\(124\) 519.814 0.376457
\(125\) −1306.95 −0.935179
\(126\) 0 0
\(127\) −1177.21 −0.822522 −0.411261 0.911518i \(-0.634912\pi\)
−0.411261 + 0.911518i \(0.634912\pi\)
\(128\) 1347.23 0.930310
\(129\) 0 0
\(130\) −756.497 −0.510378
\(131\) 638.839 0.426074 0.213037 0.977044i \(-0.431665\pi\)
0.213037 + 0.977044i \(0.431665\pi\)
\(132\) 0 0
\(133\) 9.09793 0.00593151
\(134\) −779.742 −0.502682
\(135\) 0 0
\(136\) −1875.40 −1.18246
\(137\) 282.549 0.176203 0.0881016 0.996111i \(-0.471920\pi\)
0.0881016 + 0.996111i \(0.471920\pi\)
\(138\) 0 0
\(139\) −1014.95 −0.619331 −0.309665 0.950846i \(-0.600217\pi\)
−0.309665 + 0.950846i \(0.600217\pi\)
\(140\) 8.13486 0.00491086
\(141\) 0 0
\(142\) 798.663 0.471988
\(143\) −4556.40 −2.66451
\(144\) 0 0
\(145\) −1367.21 −0.783038
\(146\) −809.829 −0.459055
\(147\) 0 0
\(148\) 2180.79 1.21122
\(149\) −2363.79 −1.29966 −0.649830 0.760079i \(-0.725160\pi\)
−0.649830 + 0.760079i \(0.725160\pi\)
\(150\) 0 0
\(151\) −2721.03 −1.46645 −0.733227 0.679984i \(-0.761987\pi\)
−0.733227 + 0.679984i \(0.761987\pi\)
\(152\) −819.056 −0.437067
\(153\) 0 0
\(154\) −16.3008 −0.00852961
\(155\) −533.863 −0.276651
\(156\) 0 0
\(157\) 783.921 0.398495 0.199248 0.979949i \(-0.436150\pi\)
0.199248 + 0.979949i \(0.436150\pi\)
\(158\) −53.1901 −0.0267821
\(159\) 0 0
\(160\) −1150.76 −0.568595
\(161\) −5.05565 −0.00247479
\(162\) 0 0
\(163\) −1078.60 −0.518298 −0.259149 0.965837i \(-0.583442\pi\)
−0.259149 + 0.965837i \(0.583442\pi\)
\(164\) 2057.79 0.979794
\(165\) 0 0
\(166\) −1644.23 −0.768779
\(167\) 2191.56 1.01550 0.507749 0.861505i \(-0.330478\pi\)
0.507749 + 0.861505i \(0.330478\pi\)
\(168\) 0 0
\(169\) 5342.20 2.43159
\(170\) 825.694 0.372517
\(171\) 0 0
\(172\) −2726.51 −1.20869
\(173\) −3254.30 −1.43017 −0.715086 0.699036i \(-0.753613\pi\)
−0.715086 + 0.699036i \(0.753613\pi\)
\(174\) 0 0
\(175\) 19.1216 0.00825975
\(176\) −1052.53 −0.450782
\(177\) 0 0
\(178\) −1435.30 −0.604385
\(179\) −1969.15 −0.822241 −0.411121 0.911581i \(-0.634862\pi\)
−0.411121 + 0.911581i \(0.634862\pi\)
\(180\) 0 0
\(181\) −57.4589 −0.0235961 −0.0117980 0.999930i \(-0.503756\pi\)
−0.0117980 + 0.999930i \(0.503756\pi\)
\(182\) 26.9721 0.0109852
\(183\) 0 0
\(184\) 455.143 0.182356
\(185\) −2239.74 −0.890101
\(186\) 0 0
\(187\) 4973.17 1.94478
\(188\) −2658.44 −1.03131
\(189\) 0 0
\(190\) 360.611 0.137692
\(191\) 760.313 0.288033 0.144017 0.989575i \(-0.453998\pi\)
0.144017 + 0.989575i \(0.453998\pi\)
\(192\) 0 0
\(193\) −2971.55 −1.10827 −0.554137 0.832426i \(-0.686952\pi\)
−0.554137 + 0.832426i \(0.686952\pi\)
\(194\) 346.175 0.128113
\(195\) 0 0
\(196\) 2058.70 0.750254
\(197\) 496.563 0.179587 0.0897935 0.995960i \(-0.471379\pi\)
0.0897935 + 0.995960i \(0.471379\pi\)
\(198\) 0 0
\(199\) 1626.81 0.579504 0.289752 0.957102i \(-0.406427\pi\)
0.289752 + 0.957102i \(0.406427\pi\)
\(200\) −1721.45 −0.608626
\(201\) 0 0
\(202\) 28.3672 0.00988075
\(203\) 48.7463 0.0168538
\(204\) 0 0
\(205\) −2113.41 −0.720033
\(206\) −1556.11 −0.526307
\(207\) 0 0
\(208\) 1741.57 0.580557
\(209\) 2171.96 0.718842
\(210\) 0 0
\(211\) 1857.31 0.605984 0.302992 0.952993i \(-0.402014\pi\)
0.302992 + 0.952993i \(0.402014\pi\)
\(212\) 2738.17 0.887066
\(213\) 0 0
\(214\) 24.3491 0.00777791
\(215\) 2800.20 0.888243
\(216\) 0 0
\(217\) 19.0343 0.00595453
\(218\) 1030.22 0.320072
\(219\) 0 0
\(220\) 1942.05 0.595149
\(221\) −8228.82 −2.50466
\(222\) 0 0
\(223\) −3204.53 −0.962292 −0.481146 0.876640i \(-0.659779\pi\)
−0.481146 + 0.876640i \(0.659779\pi\)
\(224\) 41.0289 0.0122382
\(225\) 0 0
\(226\) −140.376 −0.0413171
\(227\) 5402.34 1.57959 0.789793 0.613374i \(-0.210188\pi\)
0.789793 + 0.613374i \(0.210188\pi\)
\(228\) 0 0
\(229\) 1242.46 0.358533 0.179267 0.983801i \(-0.442628\pi\)
0.179267 + 0.983801i \(0.442628\pi\)
\(230\) −200.388 −0.0574488
\(231\) 0 0
\(232\) −4388.47 −1.24188
\(233\) −4861.95 −1.36703 −0.683513 0.729939i \(-0.739549\pi\)
−0.683513 + 0.729939i \(0.739549\pi\)
\(234\) 0 0
\(235\) 2730.29 0.757892
\(236\) 4523.13 1.24759
\(237\) 0 0
\(238\) −29.4392 −0.00801790
\(239\) 2370.98 0.641698 0.320849 0.947130i \(-0.396032\pi\)
0.320849 + 0.947130i \(0.396032\pi\)
\(240\) 0 0
\(241\) 5487.10 1.46662 0.733309 0.679895i \(-0.237975\pi\)
0.733309 + 0.679895i \(0.237975\pi\)
\(242\) −2010.56 −0.534066
\(243\) 0 0
\(244\) 454.509 0.119250
\(245\) −2114.34 −0.551348
\(246\) 0 0
\(247\) −3593.82 −0.925787
\(248\) −1713.59 −0.438764
\(249\) 0 0
\(250\) 1846.98 0.467253
\(251\) −3003.63 −0.755328 −0.377664 0.925943i \(-0.623273\pi\)
−0.377664 + 0.925943i \(0.623273\pi\)
\(252\) 0 0
\(253\) −1206.94 −0.299920
\(254\) 1663.63 0.410965
\(255\) 0 0
\(256\) −2730.47 −0.666620
\(257\) −329.844 −0.0800587 −0.0400293 0.999199i \(-0.512745\pi\)
−0.0400293 + 0.999199i \(0.512745\pi\)
\(258\) 0 0
\(259\) 79.8553 0.0191582
\(260\) −3213.39 −0.766486
\(261\) 0 0
\(262\) −902.805 −0.212884
\(263\) 4571.82 1.07190 0.535951 0.844249i \(-0.319953\pi\)
0.535951 + 0.844249i \(0.319953\pi\)
\(264\) 0 0
\(265\) −2812.17 −0.651889
\(266\) −12.8572 −0.00296362
\(267\) 0 0
\(268\) −3312.13 −0.754928
\(269\) 7095.23 1.60819 0.804096 0.594500i \(-0.202650\pi\)
0.804096 + 0.594500i \(0.202650\pi\)
\(270\) 0 0
\(271\) 561.320 0.125822 0.0629110 0.998019i \(-0.479962\pi\)
0.0629110 + 0.998019i \(0.479962\pi\)
\(272\) −1900.87 −0.423739
\(273\) 0 0
\(274\) −399.298 −0.0880382
\(275\) 4564.93 1.00100
\(276\) 0 0
\(277\) −4627.68 −1.00379 −0.501895 0.864928i \(-0.667364\pi\)
−0.501895 + 0.864928i \(0.667364\pi\)
\(278\) 1434.32 0.309443
\(279\) 0 0
\(280\) −26.8170 −0.00572366
\(281\) 1859.67 0.394800 0.197400 0.980323i \(-0.436750\pi\)
0.197400 + 0.980323i \(0.436750\pi\)
\(282\) 0 0
\(283\) 6419.56 1.34842 0.674210 0.738539i \(-0.264484\pi\)
0.674210 + 0.738539i \(0.264484\pi\)
\(284\) 3392.50 0.708831
\(285\) 0 0
\(286\) 6439.08 1.33130
\(287\) 75.3512 0.0154977
\(288\) 0 0
\(289\) 4068.51 0.828112
\(290\) 1932.14 0.391238
\(291\) 0 0
\(292\) −3439.94 −0.689408
\(293\) 9042.97 1.80306 0.901529 0.432720i \(-0.142446\pi\)
0.901529 + 0.432720i \(0.142446\pi\)
\(294\) 0 0
\(295\) −4645.38 −0.916830
\(296\) −7189.10 −1.41168
\(297\) 0 0
\(298\) 3340.50 0.649363
\(299\) 1997.06 0.386264
\(300\) 0 0
\(301\) −99.8381 −0.0191182
\(302\) 3845.36 0.732700
\(303\) 0 0
\(304\) −830.178 −0.156625
\(305\) −466.793 −0.0876345
\(306\) 0 0
\(307\) −1068.09 −0.198563 −0.0992816 0.995059i \(-0.531654\pi\)
−0.0992816 + 0.995059i \(0.531654\pi\)
\(308\) −69.2416 −0.0128098
\(309\) 0 0
\(310\) 754.454 0.138226
\(311\) 4627.28 0.843694 0.421847 0.906667i \(-0.361382\pi\)
0.421847 + 0.906667i \(0.361382\pi\)
\(312\) 0 0
\(313\) −4404.79 −0.795443 −0.397722 0.917506i \(-0.630199\pi\)
−0.397722 + 0.917506i \(0.630199\pi\)
\(314\) −1107.83 −0.199104
\(315\) 0 0
\(316\) −225.937 −0.0402214
\(317\) 1869.08 0.331161 0.165581 0.986196i \(-0.447050\pi\)
0.165581 + 0.986196i \(0.447050\pi\)
\(318\) 0 0
\(319\) 11637.3 2.04252
\(320\) 636.988 0.111277
\(321\) 0 0
\(322\) 7.14462 0.00123650
\(323\) 3922.55 0.675717
\(324\) 0 0
\(325\) −7553.33 −1.28918
\(326\) 1524.28 0.258963
\(327\) 0 0
\(328\) −6783.61 −1.14196
\(329\) −97.3456 −0.0163126
\(330\) 0 0
\(331\) −11426.4 −1.89743 −0.948715 0.316132i \(-0.897616\pi\)
−0.948715 + 0.316132i \(0.897616\pi\)
\(332\) −6984.26 −1.15455
\(333\) 0 0
\(334\) −3097.11 −0.507384
\(335\) 3401.66 0.554783
\(336\) 0 0
\(337\) −3554.86 −0.574615 −0.287308 0.957838i \(-0.592760\pi\)
−0.287308 + 0.957838i \(0.592760\pi\)
\(338\) −7549.59 −1.21492
\(339\) 0 0
\(340\) 3507.33 0.559445
\(341\) 4544.09 0.721631
\(342\) 0 0
\(343\) 150.780 0.0237357
\(344\) 8988.09 1.40874
\(345\) 0 0
\(346\) 4598.96 0.714572
\(347\) −311.236 −0.0481499 −0.0240750 0.999710i \(-0.507664\pi\)
−0.0240750 + 0.999710i \(0.507664\pi\)
\(348\) 0 0
\(349\) 6597.31 1.01188 0.505940 0.862569i \(-0.331146\pi\)
0.505940 + 0.862569i \(0.331146\pi\)
\(350\) −27.0226 −0.00412691
\(351\) 0 0
\(352\) 9794.90 1.48315
\(353\) 1485.90 0.224041 0.112020 0.993706i \(-0.464268\pi\)
0.112020 + 0.993706i \(0.464268\pi\)
\(354\) 0 0
\(355\) −3484.20 −0.520907
\(356\) −6096.78 −0.907665
\(357\) 0 0
\(358\) 2782.80 0.410825
\(359\) 5855.25 0.860802 0.430401 0.902638i \(-0.358372\pi\)
0.430401 + 0.902638i \(0.358372\pi\)
\(360\) 0 0
\(361\) −5145.88 −0.750238
\(362\) 81.2007 0.0117895
\(363\) 0 0
\(364\) 114.570 0.0164975
\(365\) 3532.91 0.506633
\(366\) 0 0
\(367\) 2413.50 0.343280 0.171640 0.985160i \(-0.445093\pi\)
0.171640 + 0.985160i \(0.445093\pi\)
\(368\) 461.323 0.0653481
\(369\) 0 0
\(370\) 3165.19 0.444730
\(371\) 100.265 0.0140310
\(372\) 0 0
\(373\) 9146.62 1.26969 0.634844 0.772640i \(-0.281064\pi\)
0.634844 + 0.772640i \(0.281064\pi\)
\(374\) −7028.07 −0.971692
\(375\) 0 0
\(376\) 8763.70 1.20200
\(377\) −19255.6 −2.63053
\(378\) 0 0
\(379\) −11710.4 −1.58714 −0.793568 0.608481i \(-0.791779\pi\)
−0.793568 + 0.608481i \(0.791779\pi\)
\(380\) 1531.78 0.206785
\(381\) 0 0
\(382\) −1074.47 −0.143913
\(383\) −11769.1 −1.57017 −0.785084 0.619389i \(-0.787380\pi\)
−0.785084 + 0.619389i \(0.787380\pi\)
\(384\) 0 0
\(385\) 71.1131 0.00941366
\(386\) 4199.38 0.553738
\(387\) 0 0
\(388\) 1470.46 0.192400
\(389\) −5080.01 −0.662125 −0.331063 0.943609i \(-0.607407\pi\)
−0.331063 + 0.943609i \(0.607407\pi\)
\(390\) 0 0
\(391\) −2179.73 −0.281928
\(392\) −6786.61 −0.874427
\(393\) 0 0
\(394\) −701.741 −0.0897289
\(395\) 232.044 0.0295579
\(396\) 0 0
\(397\) 4377.90 0.553452 0.276726 0.960949i \(-0.410751\pi\)
0.276726 + 0.960949i \(0.410751\pi\)
\(398\) −2299.00 −0.289544
\(399\) 0 0
\(400\) −1744.83 −0.218103
\(401\) −14961.0 −1.86313 −0.931567 0.363569i \(-0.881558\pi\)
−0.931567 + 0.363569i \(0.881558\pi\)
\(402\) 0 0
\(403\) −7518.84 −0.929380
\(404\) 120.496 0.0148389
\(405\) 0 0
\(406\) −68.8882 −0.00842084
\(407\) 19064.0 2.32178
\(408\) 0 0
\(409\) 4236.25 0.512149 0.256075 0.966657i \(-0.417571\pi\)
0.256075 + 0.966657i \(0.417571\pi\)
\(410\) 2986.66 0.359758
\(411\) 0 0
\(412\) −6609.93 −0.790408
\(413\) 165.626 0.0197335
\(414\) 0 0
\(415\) 7173.03 0.848459
\(416\) −16207.1 −1.91014
\(417\) 0 0
\(418\) −3069.41 −0.359162
\(419\) 1497.60 0.174612 0.0873059 0.996182i \(-0.472174\pi\)
0.0873059 + 0.996182i \(0.472174\pi\)
\(420\) 0 0
\(421\) 2464.85 0.285343 0.142671 0.989770i \(-0.454431\pi\)
0.142671 + 0.989770i \(0.454431\pi\)
\(422\) −2624.75 −0.302774
\(423\) 0 0
\(424\) −9026.52 −1.03388
\(425\) 8244.23 0.940951
\(426\) 0 0
\(427\) 16.6430 0.00188621
\(428\) 103.429 0.0116809
\(429\) 0 0
\(430\) −3957.24 −0.443802
\(431\) −5637.58 −0.630052 −0.315026 0.949083i \(-0.602013\pi\)
−0.315026 + 0.949083i \(0.602013\pi\)
\(432\) 0 0
\(433\) 14222.1 1.57845 0.789225 0.614104i \(-0.210482\pi\)
0.789225 + 0.614104i \(0.210482\pi\)
\(434\) −26.8992 −0.00297512
\(435\) 0 0
\(436\) 4376.12 0.480683
\(437\) −951.967 −0.104208
\(438\) 0 0
\(439\) −17165.9 −1.86625 −0.933124 0.359555i \(-0.882929\pi\)
−0.933124 + 0.359555i \(0.882929\pi\)
\(440\) −6402.07 −0.693652
\(441\) 0 0
\(442\) 11628.9 1.25143
\(443\) 4580.12 0.491214 0.245607 0.969369i \(-0.421013\pi\)
0.245607 + 0.969369i \(0.421013\pi\)
\(444\) 0 0
\(445\) 6261.57 0.667027
\(446\) 4528.63 0.480800
\(447\) 0 0
\(448\) −22.7111 −0.00239508
\(449\) 1540.91 0.161960 0.0809802 0.996716i \(-0.474195\pi\)
0.0809802 + 0.996716i \(0.474195\pi\)
\(450\) 0 0
\(451\) 17988.7 1.87817
\(452\) −596.279 −0.0620500
\(453\) 0 0
\(454\) −7634.57 −0.789225
\(455\) −117.667 −0.0121237
\(456\) 0 0
\(457\) 7134.74 0.730304 0.365152 0.930948i \(-0.381017\pi\)
0.365152 + 0.930948i \(0.381017\pi\)
\(458\) −1755.84 −0.179138
\(459\) 0 0
\(460\) −851.195 −0.0862765
\(461\) 3720.33 0.375864 0.187932 0.982182i \(-0.439822\pi\)
0.187932 + 0.982182i \(0.439822\pi\)
\(462\) 0 0
\(463\) 5612.05 0.563314 0.281657 0.959515i \(-0.409116\pi\)
0.281657 + 0.959515i \(0.409116\pi\)
\(464\) −4448.06 −0.445034
\(465\) 0 0
\(466\) 6870.89 0.683021
\(467\) −93.2112 −0.00923619 −0.00461810 0.999989i \(-0.501470\pi\)
−0.00461810 + 0.999989i \(0.501470\pi\)
\(468\) 0 0
\(469\) −121.282 −0.0119409
\(470\) −3858.44 −0.378674
\(471\) 0 0
\(472\) −14910.8 −1.45407
\(473\) −23834.5 −2.31694
\(474\) 0 0
\(475\) 3600.55 0.347799
\(476\) −125.050 −0.0120413
\(477\) 0 0
\(478\) −3350.66 −0.320618
\(479\) 114.073 0.0108813 0.00544063 0.999985i \(-0.498268\pi\)
0.00544063 + 0.999985i \(0.498268\pi\)
\(480\) 0 0
\(481\) −31544.1 −2.99020
\(482\) −7754.35 −0.732782
\(483\) 0 0
\(484\) −8540.32 −0.802059
\(485\) −1510.20 −0.141391
\(486\) 0 0
\(487\) −10495.0 −0.976541 −0.488271 0.872692i \(-0.662372\pi\)
−0.488271 + 0.872692i \(0.662372\pi\)
\(488\) −1498.31 −0.138987
\(489\) 0 0
\(490\) 2987.98 0.275476
\(491\) 8987.02 0.826025 0.413013 0.910725i \(-0.364477\pi\)
0.413013 + 0.910725i \(0.364477\pi\)
\(492\) 0 0
\(493\) 21016.9 1.91998
\(494\) 5078.78 0.462561
\(495\) 0 0
\(496\) −1736.86 −0.157233
\(497\) 124.225 0.0112118
\(498\) 0 0
\(499\) −8539.75 −0.766115 −0.383058 0.923724i \(-0.625129\pi\)
−0.383058 + 0.923724i \(0.625129\pi\)
\(500\) 7845.47 0.701720
\(501\) 0 0
\(502\) 4244.72 0.377392
\(503\) −4858.42 −0.430668 −0.215334 0.976540i \(-0.569084\pi\)
−0.215334 + 0.976540i \(0.569084\pi\)
\(504\) 0 0
\(505\) −123.753 −0.0109048
\(506\) 1705.65 0.149852
\(507\) 0 0
\(508\) 7066.63 0.617187
\(509\) 8906.97 0.775628 0.387814 0.921738i \(-0.373230\pi\)
0.387814 + 0.921738i \(0.373230\pi\)
\(510\) 0 0
\(511\) −125.962 −0.0109046
\(512\) −6919.17 −0.597240
\(513\) 0 0
\(514\) 466.134 0.0400006
\(515\) 6788.59 0.580857
\(516\) 0 0
\(517\) −23239.5 −1.97693
\(518\) −112.851 −0.00957220
\(519\) 0 0
\(520\) 10593.1 0.893346
\(521\) 6022.66 0.506444 0.253222 0.967408i \(-0.418510\pi\)
0.253222 + 0.967408i \(0.418510\pi\)
\(522\) 0 0
\(523\) −12922.8 −1.08045 −0.540225 0.841521i \(-0.681661\pi\)
−0.540225 + 0.841521i \(0.681661\pi\)
\(524\) −3834.87 −0.319708
\(525\) 0 0
\(526\) −6460.88 −0.535566
\(527\) 8206.60 0.678340
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 3974.16 0.325710
\(531\) 0 0
\(532\) −54.6137 −0.00445076
\(533\) −29764.9 −2.41887
\(534\) 0 0
\(535\) −106.224 −0.00858405
\(536\) 10918.6 0.879875
\(537\) 0 0
\(538\) −10026.9 −0.803518
\(539\) 17996.7 1.43816
\(540\) 0 0
\(541\) −20376.1 −1.61929 −0.809647 0.586917i \(-0.800342\pi\)
−0.809647 + 0.586917i \(0.800342\pi\)
\(542\) −793.256 −0.0628658
\(543\) 0 0
\(544\) 17689.5 1.39418
\(545\) −4494.40 −0.353245
\(546\) 0 0
\(547\) 2667.19 0.208484 0.104242 0.994552i \(-0.466758\pi\)
0.104242 + 0.994552i \(0.466758\pi\)
\(548\) −1696.11 −0.132216
\(549\) 0 0
\(550\) −6451.14 −0.500141
\(551\) 9178.82 0.709675
\(552\) 0 0
\(553\) −8.27326 −0.000636193 0
\(554\) 6539.82 0.501535
\(555\) 0 0
\(556\) 6092.62 0.464721
\(557\) −15757.0 −1.19864 −0.599321 0.800508i \(-0.704563\pi\)
−0.599321 + 0.800508i \(0.704563\pi\)
\(558\) 0 0
\(559\) 39437.6 2.98396
\(560\) −27.1812 −0.00205110
\(561\) 0 0
\(562\) −2628.08 −0.197258
\(563\) −4829.45 −0.361522 −0.180761 0.983527i \(-0.557856\pi\)
−0.180761 + 0.983527i \(0.557856\pi\)
\(564\) 0 0
\(565\) 612.395 0.0455994
\(566\) −9072.10 −0.673726
\(567\) 0 0
\(568\) −11183.6 −0.826149
\(569\) 427.019 0.0314615 0.0157307 0.999876i \(-0.494993\pi\)
0.0157307 + 0.999876i \(0.494993\pi\)
\(570\) 0 0
\(571\) 24460.0 1.79268 0.896338 0.443372i \(-0.146218\pi\)
0.896338 + 0.443372i \(0.146218\pi\)
\(572\) 27351.5 1.99934
\(573\) 0 0
\(574\) −106.486 −0.00774328
\(575\) −2000.80 −0.145111
\(576\) 0 0
\(577\) 8363.36 0.603417 0.301708 0.953400i \(-0.402443\pi\)
0.301708 + 0.953400i \(0.402443\pi\)
\(578\) −5749.61 −0.413758
\(579\) 0 0
\(580\) 8207.19 0.587560
\(581\) −255.747 −0.0182619
\(582\) 0 0
\(583\) 23936.4 1.70042
\(584\) 11339.9 0.803510
\(585\) 0 0
\(586\) −12779.5 −0.900880
\(587\) −14654.5 −1.03042 −0.515208 0.857065i \(-0.672285\pi\)
−0.515208 + 0.857065i \(0.672285\pi\)
\(588\) 0 0
\(589\) 3584.12 0.250732
\(590\) 6564.84 0.458085
\(591\) 0 0
\(592\) −7286.72 −0.505882
\(593\) 4385.56 0.303698 0.151849 0.988404i \(-0.451477\pi\)
0.151849 + 0.988404i \(0.451477\pi\)
\(594\) 0 0
\(595\) 128.430 0.00884892
\(596\) 14189.6 0.975213
\(597\) 0 0
\(598\) −2822.24 −0.192993
\(599\) 21443.4 1.46269 0.731347 0.682006i \(-0.238892\pi\)
0.731347 + 0.682006i \(0.238892\pi\)
\(600\) 0 0
\(601\) −1264.93 −0.0858532 −0.0429266 0.999078i \(-0.513668\pi\)
−0.0429266 + 0.999078i \(0.513668\pi\)
\(602\) 141.091 0.00955222
\(603\) 0 0
\(604\) 16334.0 1.10037
\(605\) 8771.16 0.589419
\(606\) 0 0
\(607\) −7414.17 −0.495769 −0.247884 0.968790i \(-0.579735\pi\)
−0.247884 + 0.968790i \(0.579735\pi\)
\(608\) 7725.65 0.515323
\(609\) 0 0
\(610\) 659.671 0.0437857
\(611\) 38453.0 2.54606
\(612\) 0 0
\(613\) −21120.5 −1.39160 −0.695798 0.718238i \(-0.744949\pi\)
−0.695798 + 0.718238i \(0.744949\pi\)
\(614\) 1509.42 0.0992102
\(615\) 0 0
\(616\) 228.259 0.0149299
\(617\) −3598.75 −0.234814 −0.117407 0.993084i \(-0.537458\pi\)
−0.117407 + 0.993084i \(0.537458\pi\)
\(618\) 0 0
\(619\) −19636.2 −1.27503 −0.637516 0.770437i \(-0.720038\pi\)
−0.637516 + 0.770437i \(0.720038\pi\)
\(620\) 3204.72 0.207588
\(621\) 0 0
\(622\) −6539.26 −0.421544
\(623\) −223.249 −0.0143568
\(624\) 0 0
\(625\) 2816.38 0.180248
\(626\) 6224.84 0.397436
\(627\) 0 0
\(628\) −4705.78 −0.299015
\(629\) 34429.4 2.18250
\(630\) 0 0
\(631\) −1500.90 −0.0946907 −0.0473454 0.998879i \(-0.515076\pi\)
−0.0473454 + 0.998879i \(0.515076\pi\)
\(632\) 744.814 0.0468783
\(633\) 0 0
\(634\) −2641.38 −0.165462
\(635\) −7257.64 −0.453560
\(636\) 0 0
\(637\) −29778.0 −1.85219
\(638\) −16445.8 −1.02052
\(639\) 0 0
\(640\) 8305.86 0.512997
\(641\) −26926.8 −1.65920 −0.829599 0.558359i \(-0.811431\pi\)
−0.829599 + 0.558359i \(0.811431\pi\)
\(642\) 0 0
\(643\) 9023.36 0.553416 0.276708 0.960954i \(-0.410757\pi\)
0.276708 + 0.960954i \(0.410757\pi\)
\(644\) 30.3484 0.00185698
\(645\) 0 0
\(646\) −5543.34 −0.337616
\(647\) −1532.87 −0.0931427 −0.0465714 0.998915i \(-0.514829\pi\)
−0.0465714 + 0.998915i \(0.514829\pi\)
\(648\) 0 0
\(649\) 39540.2 2.39151
\(650\) 10674.3 0.644126
\(651\) 0 0
\(652\) 6474.71 0.388910
\(653\) −2699.48 −0.161774 −0.0808872 0.996723i \(-0.525775\pi\)
−0.0808872 + 0.996723i \(0.525775\pi\)
\(654\) 0 0
\(655\) 3938.52 0.234948
\(656\) −6875.72 −0.409226
\(657\) 0 0
\(658\) 137.568 0.00815042
\(659\) 12669.5 0.748911 0.374456 0.927245i \(-0.377830\pi\)
0.374456 + 0.927245i \(0.377830\pi\)
\(660\) 0 0
\(661\) 645.043 0.0379565 0.0189783 0.999820i \(-0.493959\pi\)
0.0189783 + 0.999820i \(0.493959\pi\)
\(662\) 16147.7 0.948033
\(663\) 0 0
\(664\) 23024.0 1.34564
\(665\) 56.0899 0.00327079
\(666\) 0 0
\(667\) −5100.60 −0.296096
\(668\) −13155.7 −0.761989
\(669\) 0 0
\(670\) −4807.21 −0.277192
\(671\) 3973.21 0.228590
\(672\) 0 0
\(673\) −10045.7 −0.575384 −0.287692 0.957723i \(-0.592888\pi\)
−0.287692 + 0.957723i \(0.592888\pi\)
\(674\) 5023.71 0.287101
\(675\) 0 0
\(676\) −32068.6 −1.82457
\(677\) −9757.06 −0.553906 −0.276953 0.960883i \(-0.589325\pi\)
−0.276953 + 0.960883i \(0.589325\pi\)
\(678\) 0 0
\(679\) 53.8446 0.00304325
\(680\) −11562.1 −0.652038
\(681\) 0 0
\(682\) −6421.69 −0.360556
\(683\) −7439.12 −0.416764 −0.208382 0.978047i \(-0.566820\pi\)
−0.208382 + 0.978047i \(0.566820\pi\)
\(684\) 0 0
\(685\) 1741.95 0.0971629
\(686\) −213.081 −0.0118593
\(687\) 0 0
\(688\) 9110.13 0.504826
\(689\) −39606.2 −2.18995
\(690\) 0 0
\(691\) 26441.7 1.45570 0.727850 0.685736i \(-0.240520\pi\)
0.727850 + 0.685736i \(0.240520\pi\)
\(692\) 19535.2 1.07314
\(693\) 0 0
\(694\) 439.838 0.0240576
\(695\) −6257.30 −0.341515
\(696\) 0 0
\(697\) 32487.5 1.76550
\(698\) −9323.29 −0.505576
\(699\) 0 0
\(700\) −114.785 −0.00619779
\(701\) −5020.78 −0.270517 −0.135258 0.990810i \(-0.543186\pi\)
−0.135258 + 0.990810i \(0.543186\pi\)
\(702\) 0 0
\(703\) 15036.6 0.806707
\(704\) −5421.85 −0.290261
\(705\) 0 0
\(706\) −2099.86 −0.111940
\(707\) 4.41228 0.000234711 0
\(708\) 0 0
\(709\) −31105.5 −1.64766 −0.823830 0.566837i \(-0.808167\pi\)
−0.823830 + 0.566837i \(0.808167\pi\)
\(710\) 4923.86 0.260266
\(711\) 0 0
\(712\) 20098.4 1.05789
\(713\) −1991.66 −0.104612
\(714\) 0 0
\(715\) −28090.8 −1.46928
\(716\) 11820.6 0.616976
\(717\) 0 0
\(718\) −8274.61 −0.430092
\(719\) 23922.6 1.24084 0.620419 0.784270i \(-0.286963\pi\)
0.620419 + 0.784270i \(0.286963\pi\)
\(720\) 0 0
\(721\) −242.040 −0.0125021
\(722\) 7272.14 0.374849
\(723\) 0 0
\(724\) 344.919 0.0177055
\(725\) 19291.6 0.988238
\(726\) 0 0
\(727\) −2445.05 −0.124735 −0.0623673 0.998053i \(-0.519865\pi\)
−0.0623673 + 0.998053i \(0.519865\pi\)
\(728\) −377.686 −0.0192280
\(729\) 0 0
\(730\) −4992.70 −0.253134
\(731\) −43045.0 −2.17794
\(732\) 0 0
\(733\) 22351.6 1.12630 0.563148 0.826356i \(-0.309590\pi\)
0.563148 + 0.826356i \(0.309590\pi\)
\(734\) −3410.76 −0.171517
\(735\) 0 0
\(736\) −4293.08 −0.215007
\(737\) −28953.9 −1.44712
\(738\) 0 0
\(739\) −26118.7 −1.30013 −0.650063 0.759880i \(-0.725257\pi\)
−0.650063 + 0.759880i \(0.725257\pi\)
\(740\) 13444.9 0.667896
\(741\) 0 0
\(742\) −141.694 −0.00701045
\(743\) −22855.8 −1.12853 −0.564264 0.825594i \(-0.690840\pi\)
−0.564264 + 0.825594i \(0.690840\pi\)
\(744\) 0 0
\(745\) −14573.1 −0.716666
\(746\) −12926.0 −0.634388
\(747\) 0 0
\(748\) −29853.3 −1.45929
\(749\) 3.78730 0.000184760 0
\(750\) 0 0
\(751\) −21847.5 −1.06155 −0.530776 0.847512i \(-0.678099\pi\)
−0.530776 + 0.847512i \(0.678099\pi\)
\(752\) 8882.69 0.430743
\(753\) 0 0
\(754\) 27211.9 1.31432
\(755\) −16775.5 −0.808641
\(756\) 0 0
\(757\) −24521.8 −1.17736 −0.588679 0.808367i \(-0.700352\pi\)
−0.588679 + 0.808367i \(0.700352\pi\)
\(758\) 16549.2 0.792998
\(759\) 0 0
\(760\) −5049.58 −0.241010
\(761\) −11368.0 −0.541513 −0.270756 0.962648i \(-0.587274\pi\)
−0.270756 + 0.962648i \(0.587274\pi\)
\(762\) 0 0
\(763\) 160.243 0.00760311
\(764\) −4564.06 −0.216128
\(765\) 0 0
\(766\) 16632.1 0.784519
\(767\) −65424.8 −3.07999
\(768\) 0 0
\(769\) 24734.7 1.15989 0.579945 0.814655i \(-0.303074\pi\)
0.579945 + 0.814655i \(0.303074\pi\)
\(770\) −100.497 −0.00470344
\(771\) 0 0
\(772\) 17837.8 0.831604
\(773\) 11383.5 0.529674 0.264837 0.964293i \(-0.414682\pi\)
0.264837 + 0.964293i \(0.414682\pi\)
\(774\) 0 0
\(775\) 7532.93 0.349149
\(776\) −4847.45 −0.224244
\(777\) 0 0
\(778\) 7179.05 0.330824
\(779\) 14188.5 0.652573
\(780\) 0 0
\(781\) 29656.5 1.35876
\(782\) 3080.39 0.140862
\(783\) 0 0
\(784\) −6878.76 −0.313355
\(785\) 4832.97 0.219740
\(786\) 0 0
\(787\) 6825.16 0.309137 0.154568 0.987982i \(-0.450601\pi\)
0.154568 + 0.987982i \(0.450601\pi\)
\(788\) −2980.81 −0.134755
\(789\) 0 0
\(790\) −327.923 −0.0147683
\(791\) −21.8343 −0.000981463 0
\(792\) 0 0
\(793\) −6574.24 −0.294399
\(794\) −6186.83 −0.276527
\(795\) 0 0
\(796\) −9765.52 −0.434836
\(797\) −29398.7 −1.30659 −0.653297 0.757101i \(-0.726615\pi\)
−0.653297 + 0.757101i \(0.726615\pi\)
\(798\) 0 0
\(799\) −41970.3 −1.85833
\(800\) 16237.4 0.717599
\(801\) 0 0
\(802\) 21142.8 0.930897
\(803\) −30071.1 −1.32153
\(804\) 0 0
\(805\) −31.1687 −0.00136466
\(806\) 10625.6 0.464356
\(807\) 0 0
\(808\) −397.223 −0.0172949
\(809\) 29739.6 1.29245 0.646223 0.763149i \(-0.276348\pi\)
0.646223 + 0.763149i \(0.276348\pi\)
\(810\) 0 0
\(811\) −31225.8 −1.35202 −0.676010 0.736893i \(-0.736292\pi\)
−0.676010 + 0.736893i \(0.736292\pi\)
\(812\) −292.618 −0.0126464
\(813\) 0 0
\(814\) −26941.2 −1.16006
\(815\) −6649.71 −0.285803
\(816\) 0 0
\(817\) −18799.3 −0.805023
\(818\) −5986.65 −0.255890
\(819\) 0 0
\(820\) 12686.5 0.540284
\(821\) −29267.2 −1.24413 −0.622066 0.782965i \(-0.713706\pi\)
−0.622066 + 0.782965i \(0.713706\pi\)
\(822\) 0 0
\(823\) −2408.64 −0.102017 −0.0510084 0.998698i \(-0.516244\pi\)
−0.0510084 + 0.998698i \(0.516244\pi\)
\(824\) 21790.0 0.921227
\(825\) 0 0
\(826\) −234.062 −0.00985964
\(827\) 21947.4 0.922837 0.461418 0.887183i \(-0.347341\pi\)
0.461418 + 0.887183i \(0.347341\pi\)
\(828\) 0 0
\(829\) −3831.73 −0.160533 −0.0802663 0.996773i \(-0.525577\pi\)
−0.0802663 + 0.996773i \(0.525577\pi\)
\(830\) −10136.9 −0.423924
\(831\) 0 0
\(832\) 8971.23 0.373824
\(833\) 32501.8 1.35189
\(834\) 0 0
\(835\) 13511.3 0.559972
\(836\) −13038.0 −0.539390
\(837\) 0 0
\(838\) −2116.40 −0.0872432
\(839\) −2232.98 −0.0918843 −0.0459421 0.998944i \(-0.514629\pi\)
−0.0459421 + 0.998944i \(0.514629\pi\)
\(840\) 0 0
\(841\) 24790.8 1.01647
\(842\) −3483.32 −0.142569
\(843\) 0 0
\(844\) −11149.2 −0.454706
\(845\) 32935.4 1.34084
\(846\) 0 0
\(847\) −312.726 −0.0126864
\(848\) −9149.08 −0.370496
\(849\) 0 0
\(850\) −11650.7 −0.470137
\(851\) −8355.70 −0.336580
\(852\) 0 0
\(853\) −7431.74 −0.298309 −0.149155 0.988814i \(-0.547655\pi\)
−0.149155 + 0.988814i \(0.547655\pi\)
\(854\) −23.5198 −0.000942426 0
\(855\) 0 0
\(856\) −340.958 −0.0136141
\(857\) −28373.0 −1.13092 −0.565462 0.824774i \(-0.691302\pi\)
−0.565462 + 0.824774i \(0.691302\pi\)
\(858\) 0 0
\(859\) 24814.5 0.985633 0.492816 0.870133i \(-0.335967\pi\)
0.492816 + 0.870133i \(0.335967\pi\)
\(860\) −16809.3 −0.666502
\(861\) 0 0
\(862\) 7967.00 0.314800
\(863\) 5427.03 0.214065 0.107033 0.994256i \(-0.465865\pi\)
0.107033 + 0.994256i \(0.465865\pi\)
\(864\) 0 0
\(865\) −20063.2 −0.788634
\(866\) −20098.6 −0.788658
\(867\) 0 0
\(868\) −114.261 −0.00446804
\(869\) −1975.09 −0.0771005
\(870\) 0 0
\(871\) 47908.3 1.86373
\(872\) −14426.1 −0.560240
\(873\) 0 0
\(874\) 1345.32 0.0520663
\(875\) 287.282 0.0110993
\(876\) 0 0
\(877\) 19222.6 0.740139 0.370069 0.929004i \(-0.379334\pi\)
0.370069 + 0.929004i \(0.379334\pi\)
\(878\) 24258.8 0.932453
\(879\) 0 0
\(880\) −6489.00 −0.248573
\(881\) −28542.6 −1.09152 −0.545758 0.837943i \(-0.683758\pi\)
−0.545758 + 0.837943i \(0.683758\pi\)
\(882\) 0 0
\(883\) −8556.51 −0.326104 −0.163052 0.986617i \(-0.552134\pi\)
−0.163052 + 0.986617i \(0.552134\pi\)
\(884\) 49396.6 1.87940
\(885\) 0 0
\(886\) −6472.61 −0.245431
\(887\) 5901.02 0.223379 0.111689 0.993743i \(-0.464374\pi\)
0.111689 + 0.993743i \(0.464374\pi\)
\(888\) 0 0
\(889\) 258.763 0.00976224
\(890\) −8848.83 −0.333274
\(891\) 0 0
\(892\) 19236.4 0.722065
\(893\) −18330.0 −0.686885
\(894\) 0 0
\(895\) −12140.1 −0.453405
\(896\) −296.136 −0.0110415
\(897\) 0 0
\(898\) −2177.62 −0.0809220
\(899\) 19203.5 0.712430
\(900\) 0 0
\(901\) 43229.0 1.59841
\(902\) −25421.6 −0.938410
\(903\) 0 0
\(904\) 1965.67 0.0723198
\(905\) −354.241 −0.0130115
\(906\) 0 0
\(907\) 25144.5 0.920519 0.460259 0.887784i \(-0.347756\pi\)
0.460259 + 0.887784i \(0.347756\pi\)
\(908\) −32429.6 −1.18526
\(909\) 0 0
\(910\) 166.286 0.00605751
\(911\) 47767.5 1.73722 0.868609 0.495497i \(-0.165014\pi\)
0.868609 + 0.495497i \(0.165014\pi\)
\(912\) 0 0
\(913\) −61054.8 −2.21316
\(914\) −10082.8 −0.364889
\(915\) 0 0
\(916\) −7458.34 −0.269029
\(917\) −140.424 −0.00505692
\(918\) 0 0
\(919\) −42390.6 −1.52159 −0.760793 0.648995i \(-0.775190\pi\)
−0.760793 + 0.648995i \(0.775190\pi\)
\(920\) 2806.01 0.100556
\(921\) 0 0
\(922\) −5257.56 −0.187797
\(923\) −49070.9 −1.74993
\(924\) 0 0
\(925\) 31603.1 1.12336
\(926\) −7930.93 −0.281454
\(927\) 0 0
\(928\) 41393.7 1.46424
\(929\) −14954.8 −0.528151 −0.264075 0.964502i \(-0.585067\pi\)
−0.264075 + 0.964502i \(0.585067\pi\)
\(930\) 0 0
\(931\) 14194.7 0.499692
\(932\) 29185.7 1.02576
\(933\) 0 0
\(934\) 131.726 0.00461477
\(935\) 30660.2 1.07240
\(936\) 0 0
\(937\) 3106.76 0.108318 0.0541588 0.998532i \(-0.482752\pi\)
0.0541588 + 0.998532i \(0.482752\pi\)
\(938\) 171.396 0.00596617
\(939\) 0 0
\(940\) −16389.6 −0.568692
\(941\) 4533.73 0.157062 0.0785311 0.996912i \(-0.474977\pi\)
0.0785311 + 0.996912i \(0.474977\pi\)
\(942\) 0 0
\(943\) −7884.41 −0.272271
\(944\) −15113.2 −0.521073
\(945\) 0 0
\(946\) 33682.9 1.15764
\(947\) 57160.0 1.96141 0.980703 0.195505i \(-0.0626347\pi\)
0.980703 + 0.195505i \(0.0626347\pi\)
\(948\) 0 0
\(949\) 49756.9 1.70198
\(950\) −5088.29 −0.173775
\(951\) 0 0
\(952\) 412.234 0.0140342
\(953\) 13484.3 0.458340 0.229170 0.973386i \(-0.426399\pi\)
0.229170 + 0.973386i \(0.426399\pi\)
\(954\) 0 0
\(955\) 4687.42 0.158829
\(956\) −14232.7 −0.481504
\(957\) 0 0
\(958\) −161.207 −0.00543672
\(959\) −62.1074 −0.00209130
\(960\) 0 0
\(961\) −22292.5 −0.748295
\(962\) 44578.0 1.49402
\(963\) 0 0
\(964\) −32938.4 −1.10049
\(965\) −18320.0 −0.611131
\(966\) 0 0
\(967\) −3323.25 −0.110516 −0.0552578 0.998472i \(-0.517598\pi\)
−0.0552578 + 0.998472i \(0.517598\pi\)
\(968\) 28153.7 0.934807
\(969\) 0 0
\(970\) 2134.21 0.0706449
\(971\) 38715.8 1.27956 0.639778 0.768560i \(-0.279026\pi\)
0.639778 + 0.768560i \(0.279026\pi\)
\(972\) 0 0
\(973\) 223.097 0.00735063
\(974\) 14831.6 0.487920
\(975\) 0 0
\(976\) −1518.66 −0.0498064
\(977\) 18615.4 0.609579 0.304789 0.952420i \(-0.401414\pi\)
0.304789 + 0.952420i \(0.401414\pi\)
\(978\) 0 0
\(979\) −53296.7 −1.73991
\(980\) 12692.1 0.413709
\(981\) 0 0
\(982\) −12700.4 −0.412716
\(983\) −26659.7 −0.865017 −0.432508 0.901630i \(-0.642371\pi\)
−0.432508 + 0.901630i \(0.642371\pi\)
\(984\) 0 0
\(985\) 3061.37 0.0990289
\(986\) −29701.0 −0.959302
\(987\) 0 0
\(988\) 21573.3 0.694673
\(989\) 10446.6 0.335878
\(990\) 0 0
\(991\) −53383.3 −1.71118 −0.855589 0.517656i \(-0.826805\pi\)
−0.855589 + 0.517656i \(0.826805\pi\)
\(992\) 16163.3 0.517323
\(993\) 0 0
\(994\) −175.555 −0.00560187
\(995\) 10029.5 0.319553
\(996\) 0 0
\(997\) 27221.4 0.864705 0.432353 0.901705i \(-0.357684\pi\)
0.432353 + 0.901705i \(0.357684\pi\)
\(998\) 12068.3 0.382782
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.g.1.3 5
3.2 odd 2 207.4.a.h.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
207.4.a.g.1.3 5 1.1 even 1 trivial
207.4.a.h.1.3 yes 5 3.2 odd 2