Properties

Label 207.4.a.d
Level $207$
Weight $4$
Character orbit 207.a
Self dual yes
Analytic conductor $12.213$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,4,Mod(1,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.2009704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 27x^{2} - 6x + 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{3} + \beta_{2} - 2 \beta_1 + 7) q^{4} + (\beta_{3} - 2 \beta_1 - 1) q^{5} + ( - 2 \beta_{3} - 3 \beta_{2} + \cdots - 5) q^{7} + ( - 4 \beta_{3} + 5 \beta_1 - 21) q^{8}+ \cdots + ( - 42 \beta_{3} + 38 \beta_{2} + \cdots + 715) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 26 q^{4} - 4 q^{5} - 14 q^{7} - 84 q^{8} - 100 q^{10} - 70 q^{11} - 12 q^{13} + 18 q^{14} + 130 q^{16} - 178 q^{17} + 96 q^{19} + 296 q^{20} - 326 q^{22} - 92 q^{23} - 80 q^{25} + 464 q^{26}+ \cdots + 2784 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 27x^{2} - 6x + 112 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + \nu^{2} - 18\nu - 20 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 3\nu^{2} + 18\nu - 36 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 3\beta_{2} + 18\beta _1 + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.48161
−2.45983
2.09731
4.84414
−5.48161 0 22.0481 16.3627 0 −19.3367 −77.0061 0 −89.6942
1.2 −3.45983 0 3.97043 −7.89053 0 4.57766 13.9416 0 27.2999
1.3 1.09731 0 −6.79592 −3.76407 0 27.3318 −16.2356 0 −4.13033
1.4 3.84414 0 6.77740 −8.70815 0 −26.5728 −4.69983 0 −33.4753
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 207.4.a.d 4
3.b odd 2 1 69.4.a.d 4
12.b even 2 1 1104.4.a.t 4
15.d odd 2 1 1725.4.a.p 4
69.c even 2 1 1587.4.a.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
69.4.a.d 4 3.b odd 2 1
207.4.a.d 4 1.a even 1 1 trivial
1104.4.a.t 4 12.b even 2 1
1587.4.a.g 4 69.c even 2 1
1725.4.a.p 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 4T_{2}^{3} - 21T_{2}^{2} - 56T_{2} + 80 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(207))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 4 T^{3} + \cdots + 80 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots - 4232 \) Copy content Toggle raw display
$7$ \( T^{4} + 14 T^{3} + \cdots + 64288 \) Copy content Toggle raw display
$11$ \( T^{4} + 70 T^{3} + \cdots + 73984 \) Copy content Toggle raw display
$13$ \( T^{4} + 12 T^{3} + \cdots + 277632 \) Copy content Toggle raw display
$17$ \( T^{4} + 178 T^{3} + \cdots - 19990000 \) Copy content Toggle raw display
$19$ \( T^{4} - 96 T^{3} + \cdots + 26764064 \) Copy content Toggle raw display
$23$ \( (T + 23)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 24 T^{3} + \cdots + 77040 \) Copy content Toggle raw display
$31$ \( T^{4} + 400 T^{3} + \cdots + 214004736 \) Copy content Toggle raw display
$37$ \( T^{4} + 358 T^{3} + \cdots - 89676928 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 1851640112 \) Copy content Toggle raw display
$43$ \( T^{4} + 196 T^{3} + \cdots - 66620160 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 1761689600 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 2541177224 \) Copy content Toggle raw display
$59$ \( T^{4} + 1236 T^{3} + \cdots - 895185728 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 25271105312 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 6404665408 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 93159882752 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 205893068432 \) Copy content Toggle raw display
$79$ \( T^{4} - 254 T^{3} + \cdots - 199673280 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 9163210624 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 477698056688 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 759203302672 \) Copy content Toggle raw display
show more
show less