Properties

Label 207.4.a.c.1.2
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.23607 q^{2} +9.94427 q^{4} +10.7639 q^{5} +10.6525 q^{7} +8.23607 q^{8} +45.5967 q^{10} +52.3607 q^{11} -79.0820 q^{13} +45.1246 q^{14} -44.6656 q^{16} +77.2361 q^{17} +50.7902 q^{19} +107.039 q^{20} +221.803 q^{22} +23.0000 q^{23} -9.13777 q^{25} -334.997 q^{26} +105.931 q^{28} -12.7477 q^{29} -12.4133 q^{31} -255.095 q^{32} +327.177 q^{34} +114.663 q^{35} -73.1084 q^{37} +215.151 q^{38} +88.6525 q^{40} +38.8916 q^{41} +171.787 q^{43} +520.689 q^{44} +97.4296 q^{46} -614.545 q^{47} -229.525 q^{49} -38.7082 q^{50} -786.413 q^{52} -269.597 q^{53} +563.607 q^{55} +87.7345 q^{56} -54.0000 q^{58} +534.768 q^{59} -838.604 q^{61} -52.5836 q^{62} -723.276 q^{64} -851.234 q^{65} -448.180 q^{67} +768.056 q^{68} +485.718 q^{70} -628.604 q^{71} +925.266 q^{73} -309.692 q^{74} +505.072 q^{76} +557.771 q^{77} -963.479 q^{79} -480.778 q^{80} +164.748 q^{82} -133.358 q^{83} +831.364 q^{85} +727.702 q^{86} +431.246 q^{88} +778.581 q^{89} -842.420 q^{91} +228.718 q^{92} -2603.25 q^{94} +546.703 q^{95} +1603.57 q^{97} -972.282 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 2 q^{4} + 26 q^{5} - 10 q^{7} + 12 q^{8} + 42 q^{10} + 60 q^{11} - 24 q^{13} + 50 q^{14} + 18 q^{16} + 150 q^{17} - 46 q^{19} - 14 q^{20} + 220 q^{22} + 46 q^{23} + 98 q^{25} - 348 q^{26}+ \cdots - 992 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.23607 1.49768 0.748838 0.662753i \(-0.230612\pi\)
0.748838 + 0.662753i \(0.230612\pi\)
\(3\) 0 0
\(4\) 9.94427 1.24303
\(5\) 10.7639 0.962755 0.481378 0.876513i \(-0.340137\pi\)
0.481378 + 0.876513i \(0.340137\pi\)
\(6\) 0 0
\(7\) 10.6525 0.575180 0.287590 0.957754i \(-0.407146\pi\)
0.287590 + 0.957754i \(0.407146\pi\)
\(8\) 8.23607 0.363986
\(9\) 0 0
\(10\) 45.5967 1.44190
\(11\) 52.3607 1.43521 0.717606 0.696449i \(-0.245238\pi\)
0.717606 + 0.696449i \(0.245238\pi\)
\(12\) 0 0
\(13\) −79.0820 −1.68719 −0.843593 0.536984i \(-0.819564\pi\)
−0.843593 + 0.536984i \(0.819564\pi\)
\(14\) 45.1246 0.861433
\(15\) 0 0
\(16\) −44.6656 −0.697900
\(17\) 77.2361 1.10191 0.550956 0.834534i \(-0.314263\pi\)
0.550956 + 0.834534i \(0.314263\pi\)
\(18\) 0 0
\(19\) 50.7902 0.613267 0.306634 0.951828i \(-0.400797\pi\)
0.306634 + 0.951828i \(0.400797\pi\)
\(20\) 107.039 1.19674
\(21\) 0 0
\(22\) 221.803 2.14948
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) −9.13777 −0.0731021
\(26\) −334.997 −2.52686
\(27\) 0 0
\(28\) 105.931 0.714968
\(29\) −12.7477 −0.0816270 −0.0408135 0.999167i \(-0.512995\pi\)
−0.0408135 + 0.999167i \(0.512995\pi\)
\(30\) 0 0
\(31\) −12.4133 −0.0719192 −0.0359596 0.999353i \(-0.511449\pi\)
−0.0359596 + 0.999353i \(0.511449\pi\)
\(32\) −255.095 −1.40922
\(33\) 0 0
\(34\) 327.177 1.65031
\(35\) 114.663 0.553757
\(36\) 0 0
\(37\) −73.1084 −0.324836 −0.162418 0.986722i \(-0.551929\pi\)
−0.162418 + 0.986722i \(0.551929\pi\)
\(38\) 215.151 0.918476
\(39\) 0 0
\(40\) 88.6525 0.350430
\(41\) 38.8916 0.148143 0.0740714 0.997253i \(-0.476401\pi\)
0.0740714 + 0.997253i \(0.476401\pi\)
\(42\) 0 0
\(43\) 171.787 0.609239 0.304620 0.952474i \(-0.401471\pi\)
0.304620 + 0.952474i \(0.401471\pi\)
\(44\) 520.689 1.78402
\(45\) 0 0
\(46\) 97.4296 0.312287
\(47\) −614.545 −1.90725 −0.953623 0.301003i \(-0.902679\pi\)
−0.953623 + 0.301003i \(0.902679\pi\)
\(48\) 0 0
\(49\) −229.525 −0.669168
\(50\) −38.7082 −0.109483
\(51\) 0 0
\(52\) −786.413 −2.09723
\(53\) −269.597 −0.698716 −0.349358 0.936989i \(-0.613600\pi\)
−0.349358 + 0.936989i \(0.613600\pi\)
\(54\) 0 0
\(55\) 563.607 1.38176
\(56\) 87.7345 0.209357
\(57\) 0 0
\(58\) −54.0000 −0.122251
\(59\) 534.768 1.18001 0.590007 0.807398i \(-0.299125\pi\)
0.590007 + 0.807398i \(0.299125\pi\)
\(60\) 0 0
\(61\) −838.604 −1.76020 −0.880100 0.474788i \(-0.842525\pi\)
−0.880100 + 0.474788i \(0.842525\pi\)
\(62\) −52.5836 −0.107712
\(63\) 0 0
\(64\) −723.276 −1.41265
\(65\) −851.234 −1.62435
\(66\) 0 0
\(67\) −448.180 −0.817223 −0.408612 0.912708i \(-0.633987\pi\)
−0.408612 + 0.912708i \(0.633987\pi\)
\(68\) 768.056 1.36971
\(69\) 0 0
\(70\) 485.718 0.829349
\(71\) −628.604 −1.05073 −0.525363 0.850878i \(-0.676070\pi\)
−0.525363 + 0.850878i \(0.676070\pi\)
\(72\) 0 0
\(73\) 925.266 1.48348 0.741741 0.670686i \(-0.234000\pi\)
0.741741 + 0.670686i \(0.234000\pi\)
\(74\) −309.692 −0.486499
\(75\) 0 0
\(76\) 505.072 0.762312
\(77\) 557.771 0.825505
\(78\) 0 0
\(79\) −963.479 −1.37215 −0.686075 0.727531i \(-0.740668\pi\)
−0.686075 + 0.727531i \(0.740668\pi\)
\(80\) −480.778 −0.671907
\(81\) 0 0
\(82\) 164.748 0.221870
\(83\) −133.358 −0.176360 −0.0881801 0.996105i \(-0.528105\pi\)
−0.0881801 + 0.996105i \(0.528105\pi\)
\(84\) 0 0
\(85\) 831.364 1.06087
\(86\) 727.702 0.912443
\(87\) 0 0
\(88\) 431.246 0.522398
\(89\) 778.581 0.927297 0.463649 0.886019i \(-0.346540\pi\)
0.463649 + 0.886019i \(0.346540\pi\)
\(90\) 0 0
\(91\) −842.420 −0.970435
\(92\) 228.718 0.259191
\(93\) 0 0
\(94\) −2603.25 −2.85644
\(95\) 546.703 0.590426
\(96\) 0 0
\(97\) 1603.57 1.67853 0.839266 0.543721i \(-0.182985\pi\)
0.839266 + 0.543721i \(0.182985\pi\)
\(98\) −972.282 −1.00220
\(99\) 0 0
\(100\) −90.8684 −0.0908684
\(101\) −1229.04 −1.21084 −0.605418 0.795908i \(-0.706994\pi\)
−0.605418 + 0.795908i \(0.706994\pi\)
\(102\) 0 0
\(103\) 215.066 0.205738 0.102869 0.994695i \(-0.467198\pi\)
0.102869 + 0.994695i \(0.467198\pi\)
\(104\) −651.325 −0.614112
\(105\) 0 0
\(106\) −1142.03 −1.04645
\(107\) 1586.58 1.43346 0.716730 0.697351i \(-0.245638\pi\)
0.716730 + 0.697351i \(0.245638\pi\)
\(108\) 0 0
\(109\) 822.255 0.722549 0.361274 0.932460i \(-0.382342\pi\)
0.361274 + 0.932460i \(0.382342\pi\)
\(110\) 2387.48 2.06943
\(111\) 0 0
\(112\) −475.800 −0.401418
\(113\) −19.7005 −0.0164006 −0.00820031 0.999966i \(-0.502610\pi\)
−0.00820031 + 0.999966i \(0.502610\pi\)
\(114\) 0 0
\(115\) 247.570 0.200748
\(116\) −126.766 −0.101465
\(117\) 0 0
\(118\) 2265.31 1.76728
\(119\) 822.755 0.633797
\(120\) 0 0
\(121\) 1410.64 1.05984
\(122\) −3552.38 −2.63621
\(123\) 0 0
\(124\) −123.441 −0.0893980
\(125\) −1443.85 −1.03313
\(126\) 0 0
\(127\) 1143.23 0.798784 0.399392 0.916780i \(-0.369221\pi\)
0.399392 + 0.916780i \(0.369221\pi\)
\(128\) −1023.08 −0.706473
\(129\) 0 0
\(130\) −3605.88 −2.43275
\(131\) −1154.64 −0.770085 −0.385043 0.922899i \(-0.625813\pi\)
−0.385043 + 0.922899i \(0.625813\pi\)
\(132\) 0 0
\(133\) 541.042 0.352739
\(134\) −1898.52 −1.22394
\(135\) 0 0
\(136\) 636.122 0.401081
\(137\) 2153.10 1.34271 0.671356 0.741135i \(-0.265712\pi\)
0.671356 + 0.741135i \(0.265712\pi\)
\(138\) 0 0
\(139\) −2392.16 −1.45971 −0.729857 0.683600i \(-0.760413\pi\)
−0.729857 + 0.683600i \(0.760413\pi\)
\(140\) 1140.24 0.688339
\(141\) 0 0
\(142\) −2662.81 −1.57365
\(143\) −4140.79 −2.42147
\(144\) 0 0
\(145\) −137.215 −0.0785868
\(146\) 3919.49 2.22178
\(147\) 0 0
\(148\) −727.009 −0.403782
\(149\) 2259.80 1.24248 0.621242 0.783619i \(-0.286628\pi\)
0.621242 + 0.783619i \(0.286628\pi\)
\(150\) 0 0
\(151\) −2410.84 −1.29928 −0.649639 0.760243i \(-0.725080\pi\)
−0.649639 + 0.760243i \(0.725080\pi\)
\(152\) 418.312 0.223221
\(153\) 0 0
\(154\) 2362.76 1.23634
\(155\) −133.616 −0.0692406
\(156\) 0 0
\(157\) −614.960 −0.312606 −0.156303 0.987709i \(-0.549958\pi\)
−0.156303 + 0.987709i \(0.549958\pi\)
\(158\) −4081.36 −2.05504
\(159\) 0 0
\(160\) −2745.83 −1.35673
\(161\) 245.007 0.119933
\(162\) 0 0
\(163\) −50.8127 −0.0244169 −0.0122085 0.999925i \(-0.503886\pi\)
−0.0122085 + 0.999925i \(0.503886\pi\)
\(164\) 386.749 0.184147
\(165\) 0 0
\(166\) −564.912 −0.264130
\(167\) 2000.84 0.927125 0.463562 0.886064i \(-0.346571\pi\)
0.463562 + 0.886064i \(0.346571\pi\)
\(168\) 0 0
\(169\) 4056.97 1.84659
\(170\) 3521.71 1.58884
\(171\) 0 0
\(172\) 1708.30 0.757305
\(173\) 3796.78 1.66858 0.834288 0.551330i \(-0.185879\pi\)
0.834288 + 0.551330i \(0.185879\pi\)
\(174\) 0 0
\(175\) −97.3398 −0.0420469
\(176\) −2338.72 −1.00164
\(177\) 0 0
\(178\) 3298.12 1.38879
\(179\) 3084.16 1.28783 0.643913 0.765099i \(-0.277310\pi\)
0.643913 + 0.765099i \(0.277310\pi\)
\(180\) 0 0
\(181\) 4733.12 1.94370 0.971851 0.235597i \(-0.0757047\pi\)
0.971851 + 0.235597i \(0.0757047\pi\)
\(182\) −3568.55 −1.45340
\(183\) 0 0
\(184\) 189.430 0.0758964
\(185\) −786.933 −0.312738
\(186\) 0 0
\(187\) 4044.13 1.58148
\(188\) −6111.20 −2.37077
\(189\) 0 0
\(190\) 2315.87 0.884268
\(191\) 1293.13 0.489885 0.244942 0.969538i \(-0.421231\pi\)
0.244942 + 0.969538i \(0.421231\pi\)
\(192\) 0 0
\(193\) −1171.75 −0.437019 −0.218510 0.975835i \(-0.570119\pi\)
−0.218510 + 0.975835i \(0.570119\pi\)
\(194\) 6792.82 2.51390
\(195\) 0 0
\(196\) −2282.46 −0.831799
\(197\) −4559.19 −1.64888 −0.824438 0.565952i \(-0.808509\pi\)
−0.824438 + 0.565952i \(0.808509\pi\)
\(198\) 0 0
\(199\) −473.721 −0.168750 −0.0843748 0.996434i \(-0.526889\pi\)
−0.0843748 + 0.996434i \(0.526889\pi\)
\(200\) −75.2593 −0.0266082
\(201\) 0 0
\(202\) −5206.31 −1.81344
\(203\) −135.794 −0.0469502
\(204\) 0 0
\(205\) 418.627 0.142625
\(206\) 911.033 0.308130
\(207\) 0 0
\(208\) 3532.25 1.17749
\(209\) 2659.41 0.880169
\(210\) 0 0
\(211\) −1423.56 −0.464465 −0.232232 0.972660i \(-0.574603\pi\)
−0.232232 + 0.972660i \(0.574603\pi\)
\(212\) −2680.94 −0.868528
\(213\) 0 0
\(214\) 6720.85 2.14686
\(215\) 1849.11 0.586548
\(216\) 0 0
\(217\) −132.232 −0.0413665
\(218\) 3483.13 1.08214
\(219\) 0 0
\(220\) 5604.66 1.71757
\(221\) −6107.99 −1.85913
\(222\) 0 0
\(223\) 6088.63 1.82836 0.914181 0.405305i \(-0.132835\pi\)
0.914181 + 0.405305i \(0.132835\pi\)
\(224\) −2717.40 −0.810552
\(225\) 0 0
\(226\) −83.4528 −0.0245628
\(227\) 4463.66 1.30513 0.652563 0.757734i \(-0.273694\pi\)
0.652563 + 0.757734i \(0.273694\pi\)
\(228\) 0 0
\(229\) 1298.87 0.374812 0.187406 0.982283i \(-0.439992\pi\)
0.187406 + 0.982283i \(0.439992\pi\)
\(230\) 1048.73 0.300656
\(231\) 0 0
\(232\) −104.991 −0.0297111
\(233\) 1257.41 0.353544 0.176772 0.984252i \(-0.443434\pi\)
0.176772 + 0.984252i \(0.443434\pi\)
\(234\) 0 0
\(235\) −6614.92 −1.83621
\(236\) 5317.88 1.46680
\(237\) 0 0
\(238\) 3485.25 0.949223
\(239\) −3473.96 −0.940217 −0.470108 0.882609i \(-0.655785\pi\)
−0.470108 + 0.882609i \(0.655785\pi\)
\(240\) 0 0
\(241\) −2140.92 −0.572235 −0.286118 0.958195i \(-0.592365\pi\)
−0.286118 + 0.958195i \(0.592365\pi\)
\(242\) 5975.57 1.58729
\(243\) 0 0
\(244\) −8339.30 −2.18799
\(245\) −2470.59 −0.644245
\(246\) 0 0
\(247\) −4016.60 −1.03470
\(248\) −102.237 −0.0261776
\(249\) 0 0
\(250\) −6116.25 −1.54730
\(251\) 5613.17 1.41155 0.705777 0.708434i \(-0.250598\pi\)
0.705777 + 0.708434i \(0.250598\pi\)
\(252\) 0 0
\(253\) 1204.30 0.299263
\(254\) 4842.82 1.19632
\(255\) 0 0
\(256\) 1452.36 0.354579
\(257\) −1017.98 −0.247082 −0.123541 0.992339i \(-0.539425\pi\)
−0.123541 + 0.992339i \(0.539425\pi\)
\(258\) 0 0
\(259\) −778.785 −0.186839
\(260\) −8464.90 −2.01912
\(261\) 0 0
\(262\) −4891.12 −1.15334
\(263\) 995.531 0.233411 0.116705 0.993167i \(-0.462767\pi\)
0.116705 + 0.993167i \(0.462767\pi\)
\(264\) 0 0
\(265\) −2901.92 −0.672693
\(266\) 2291.89 0.528289
\(267\) 0 0
\(268\) −4456.83 −1.01584
\(269\) 3568.95 0.808932 0.404466 0.914553i \(-0.367457\pi\)
0.404466 + 0.914553i \(0.367457\pi\)
\(270\) 0 0
\(271\) −6294.26 −1.41088 −0.705441 0.708768i \(-0.749251\pi\)
−0.705441 + 0.708768i \(0.749251\pi\)
\(272\) −3449.80 −0.769025
\(273\) 0 0
\(274\) 9120.67 2.01095
\(275\) −478.460 −0.104917
\(276\) 0 0
\(277\) −2263.65 −0.491009 −0.245505 0.969395i \(-0.578954\pi\)
−0.245505 + 0.969395i \(0.578954\pi\)
\(278\) −10133.3 −2.18618
\(279\) 0 0
\(280\) 944.368 0.201560
\(281\) 505.900 0.107400 0.0537001 0.998557i \(-0.482898\pi\)
0.0537001 + 0.998557i \(0.482898\pi\)
\(282\) 0 0
\(283\) −7018.20 −1.47417 −0.737083 0.675802i \(-0.763797\pi\)
−0.737083 + 0.675802i \(0.763797\pi\)
\(284\) −6251.01 −1.30609
\(285\) 0 0
\(286\) −17540.7 −3.62658
\(287\) 414.292 0.0852087
\(288\) 0 0
\(289\) 1052.41 0.214209
\(290\) −581.252 −0.117698
\(291\) 0 0
\(292\) 9201.10 1.84402
\(293\) 9488.82 1.89196 0.945978 0.324232i \(-0.105106\pi\)
0.945978 + 0.324232i \(0.105106\pi\)
\(294\) 0 0
\(295\) 5756.20 1.13606
\(296\) −602.125 −0.118236
\(297\) 0 0
\(298\) 9572.67 1.86084
\(299\) −1818.89 −0.351802
\(300\) 0 0
\(301\) 1829.96 0.350422
\(302\) −10212.5 −1.94590
\(303\) 0 0
\(304\) −2268.58 −0.428000
\(305\) −9026.67 −1.69464
\(306\) 0 0
\(307\) 4660.58 0.866427 0.433214 0.901291i \(-0.357380\pi\)
0.433214 + 0.901291i \(0.357380\pi\)
\(308\) 5546.63 1.02613
\(309\) 0 0
\(310\) −566.006 −0.103700
\(311\) −4378.51 −0.798336 −0.399168 0.916878i \(-0.630701\pi\)
−0.399168 + 0.916878i \(0.630701\pi\)
\(312\) 0 0
\(313\) −4444.17 −0.802553 −0.401277 0.915957i \(-0.631433\pi\)
−0.401277 + 0.915957i \(0.631433\pi\)
\(314\) −2605.01 −0.468182
\(315\) 0 0
\(316\) −9581.10 −1.70563
\(317\) −7881.61 −1.39645 −0.698226 0.715878i \(-0.746027\pi\)
−0.698226 + 0.715878i \(0.746027\pi\)
\(318\) 0 0
\(319\) −667.477 −0.117152
\(320\) −7785.29 −1.36003
\(321\) 0 0
\(322\) 1037.87 0.179621
\(323\) 3922.84 0.675767
\(324\) 0 0
\(325\) 722.633 0.123337
\(326\) −215.246 −0.0365686
\(327\) 0 0
\(328\) 320.314 0.0539219
\(329\) −6546.42 −1.09701
\(330\) 0 0
\(331\) −127.060 −0.0210993 −0.0105497 0.999944i \(-0.503358\pi\)
−0.0105497 + 0.999944i \(0.503358\pi\)
\(332\) −1326.14 −0.219222
\(333\) 0 0
\(334\) 8475.70 1.38853
\(335\) −4824.18 −0.786786
\(336\) 0 0
\(337\) −1739.07 −0.281107 −0.140554 0.990073i \(-0.544888\pi\)
−0.140554 + 0.990073i \(0.544888\pi\)
\(338\) 17185.6 2.76560
\(339\) 0 0
\(340\) 8267.31 1.31870
\(341\) −649.969 −0.103219
\(342\) 0 0
\(343\) −6098.81 −0.960072
\(344\) 1414.85 0.221755
\(345\) 0 0
\(346\) 16083.4 2.49899
\(347\) −7551.30 −1.16823 −0.584114 0.811672i \(-0.698558\pi\)
−0.584114 + 0.811672i \(0.698558\pi\)
\(348\) 0 0
\(349\) −6237.28 −0.956659 −0.478329 0.878180i \(-0.658758\pi\)
−0.478329 + 0.878180i \(0.658758\pi\)
\(350\) −412.338 −0.0629726
\(351\) 0 0
\(352\) −13357.0 −2.02252
\(353\) −1788.57 −0.269678 −0.134839 0.990868i \(-0.543052\pi\)
−0.134839 + 0.990868i \(0.543052\pi\)
\(354\) 0 0
\(355\) −6766.25 −1.01159
\(356\) 7742.42 1.15266
\(357\) 0 0
\(358\) 13064.7 1.92875
\(359\) −2234.70 −0.328531 −0.164266 0.986416i \(-0.552525\pi\)
−0.164266 + 0.986416i \(0.552525\pi\)
\(360\) 0 0
\(361\) −4279.35 −0.623903
\(362\) 20049.8 2.91104
\(363\) 0 0
\(364\) −8377.25 −1.20628
\(365\) 9959.50 1.42823
\(366\) 0 0
\(367\) 10551.7 1.50080 0.750399 0.660985i \(-0.229861\pi\)
0.750399 + 0.660985i \(0.229861\pi\)
\(368\) −1027.31 −0.145522
\(369\) 0 0
\(370\) −3333.50 −0.468380
\(371\) −2871.87 −0.401887
\(372\) 0 0
\(373\) −996.068 −0.138269 −0.0691347 0.997607i \(-0.522024\pi\)
−0.0691347 + 0.997607i \(0.522024\pi\)
\(374\) 17131.2 2.36854
\(375\) 0 0
\(376\) −5061.43 −0.694211
\(377\) 1008.11 0.137720
\(378\) 0 0
\(379\) −11117.0 −1.50670 −0.753351 0.657619i \(-0.771564\pi\)
−0.753351 + 0.657619i \(0.771564\pi\)
\(380\) 5436.56 0.733920
\(381\) 0 0
\(382\) 5477.81 0.733688
\(383\) −5315.09 −0.709108 −0.354554 0.935035i \(-0.615367\pi\)
−0.354554 + 0.935035i \(0.615367\pi\)
\(384\) 0 0
\(385\) 6003.81 0.794759
\(386\) −4963.63 −0.654513
\(387\) 0 0
\(388\) 15946.3 2.08647
\(389\) 8438.06 1.09981 0.549906 0.835227i \(-0.314664\pi\)
0.549906 + 0.835227i \(0.314664\pi\)
\(390\) 0 0
\(391\) 1776.43 0.229764
\(392\) −1890.38 −0.243568
\(393\) 0 0
\(394\) −19313.0 −2.46948
\(395\) −10370.8 −1.32104
\(396\) 0 0
\(397\) 11582.0 1.46419 0.732094 0.681204i \(-0.238543\pi\)
0.732094 + 0.681204i \(0.238543\pi\)
\(398\) −2006.71 −0.252732
\(399\) 0 0
\(400\) 408.144 0.0510180
\(401\) −4267.85 −0.531487 −0.265744 0.964044i \(-0.585617\pi\)
−0.265744 + 0.964044i \(0.585617\pi\)
\(402\) 0 0
\(403\) 981.669 0.121341
\(404\) −12221.9 −1.50511
\(405\) 0 0
\(406\) −575.234 −0.0703162
\(407\) −3828.00 −0.466209
\(408\) 0 0
\(409\) 6902.51 0.834491 0.417246 0.908794i \(-0.362995\pi\)
0.417246 + 0.908794i \(0.362995\pi\)
\(410\) 1773.33 0.213606
\(411\) 0 0
\(412\) 2138.67 0.255740
\(413\) 5696.60 0.678720
\(414\) 0 0
\(415\) −1435.45 −0.169792
\(416\) 20173.4 2.37761
\(417\) 0 0
\(418\) 11265.4 1.31821
\(419\) 2241.24 0.261316 0.130658 0.991427i \(-0.458291\pi\)
0.130658 + 0.991427i \(0.458291\pi\)
\(420\) 0 0
\(421\) 9117.52 1.05549 0.527744 0.849403i \(-0.323038\pi\)
0.527744 + 0.849403i \(0.323038\pi\)
\(422\) −6030.30 −0.695618
\(423\) 0 0
\(424\) −2220.42 −0.254323
\(425\) −705.765 −0.0805521
\(426\) 0 0
\(427\) −8933.21 −1.01243
\(428\) 15777.4 1.78184
\(429\) 0 0
\(430\) 7832.93 0.878460
\(431\) 1366.55 0.152725 0.0763623 0.997080i \(-0.475669\pi\)
0.0763623 + 0.997080i \(0.475669\pi\)
\(432\) 0 0
\(433\) 3511.21 0.389695 0.194848 0.980834i \(-0.437579\pi\)
0.194848 + 0.980834i \(0.437579\pi\)
\(434\) −560.145 −0.0619536
\(435\) 0 0
\(436\) 8176.73 0.898152
\(437\) 1168.18 0.127875
\(438\) 0 0
\(439\) 7032.17 0.764526 0.382263 0.924054i \(-0.375145\pi\)
0.382263 + 0.924054i \(0.375145\pi\)
\(440\) 4641.90 0.502941
\(441\) 0 0
\(442\) −25873.8 −2.78437
\(443\) −8748.68 −0.938289 −0.469145 0.883121i \(-0.655438\pi\)
−0.469145 + 0.883121i \(0.655438\pi\)
\(444\) 0 0
\(445\) 8380.60 0.892760
\(446\) 25791.9 2.73830
\(447\) 0 0
\(448\) −7704.68 −0.812526
\(449\) 805.208 0.0846327 0.0423164 0.999104i \(-0.486526\pi\)
0.0423164 + 0.999104i \(0.486526\pi\)
\(450\) 0 0
\(451\) 2036.39 0.212616
\(452\) −195.907 −0.0203865
\(453\) 0 0
\(454\) 18908.4 1.95466
\(455\) −9067.75 −0.934291
\(456\) 0 0
\(457\) −10496.9 −1.07445 −0.537226 0.843438i \(-0.680528\pi\)
−0.537226 + 0.843438i \(0.680528\pi\)
\(458\) 5502.12 0.561348
\(459\) 0 0
\(460\) 2461.91 0.249537
\(461\) 3325.68 0.335992 0.167996 0.985788i \(-0.446270\pi\)
0.167996 + 0.985788i \(0.446270\pi\)
\(462\) 0 0
\(463\) −840.876 −0.0844035 −0.0422018 0.999109i \(-0.513437\pi\)
−0.0422018 + 0.999109i \(0.513437\pi\)
\(464\) 569.383 0.0569675
\(465\) 0 0
\(466\) 5326.48 0.529495
\(467\) −8450.82 −0.837382 −0.418691 0.908129i \(-0.637511\pi\)
−0.418691 + 0.908129i \(0.637511\pi\)
\(468\) 0 0
\(469\) −4774.23 −0.470050
\(470\) −28021.2 −2.75005
\(471\) 0 0
\(472\) 4404.38 0.429509
\(473\) 8994.89 0.874388
\(474\) 0 0
\(475\) −464.109 −0.0448312
\(476\) 8181.70 0.787831
\(477\) 0 0
\(478\) −14715.9 −1.40814
\(479\) 5686.86 0.542462 0.271231 0.962514i \(-0.412569\pi\)
0.271231 + 0.962514i \(0.412569\pi\)
\(480\) 0 0
\(481\) 5781.56 0.548059
\(482\) −9069.07 −0.857023
\(483\) 0 0
\(484\) 14027.8 1.31741
\(485\) 17260.7 1.61602
\(486\) 0 0
\(487\) −13768.2 −1.28110 −0.640551 0.767916i \(-0.721294\pi\)
−0.640551 + 0.767916i \(0.721294\pi\)
\(488\) −6906.80 −0.640689
\(489\) 0 0
\(490\) −10465.6 −0.964871
\(491\) −8480.14 −0.779436 −0.389718 0.920934i \(-0.627428\pi\)
−0.389718 + 0.920934i \(0.627428\pi\)
\(492\) 0 0
\(493\) −984.580 −0.0899457
\(494\) −17014.6 −1.54964
\(495\) 0 0
\(496\) 554.448 0.0501924
\(497\) −6696.19 −0.604356
\(498\) 0 0
\(499\) 12472.5 1.11893 0.559466 0.828853i \(-0.311006\pi\)
0.559466 + 0.828853i \(0.311006\pi\)
\(500\) −14358.0 −1.28422
\(501\) 0 0
\(502\) 23777.8 2.11405
\(503\) 4676.36 0.414530 0.207265 0.978285i \(-0.433544\pi\)
0.207265 + 0.978285i \(0.433544\pi\)
\(504\) 0 0
\(505\) −13229.3 −1.16574
\(506\) 5101.48 0.448198
\(507\) 0 0
\(508\) 11368.6 0.992916
\(509\) −5925.58 −0.516005 −0.258003 0.966144i \(-0.583064\pi\)
−0.258003 + 0.966144i \(0.583064\pi\)
\(510\) 0 0
\(511\) 9856.38 0.853269
\(512\) 14336.9 1.23752
\(513\) 0 0
\(514\) −4312.25 −0.370049
\(515\) 2314.95 0.198076
\(516\) 0 0
\(517\) −32178.0 −2.73730
\(518\) −3298.99 −0.279825
\(519\) 0 0
\(520\) −7010.82 −0.591240
\(521\) −2626.25 −0.220841 −0.110421 0.993885i \(-0.535220\pi\)
−0.110421 + 0.993885i \(0.535220\pi\)
\(522\) 0 0
\(523\) 372.504 0.0311443 0.0155721 0.999879i \(-0.495043\pi\)
0.0155721 + 0.999879i \(0.495043\pi\)
\(524\) −11482.0 −0.957242
\(525\) 0 0
\(526\) 4217.14 0.349574
\(527\) −958.755 −0.0792486
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −12292.7 −1.00748
\(531\) 0 0
\(532\) 5380.27 0.438466
\(533\) −3075.63 −0.249944
\(534\) 0 0
\(535\) 17077.8 1.38007
\(536\) −3691.24 −0.297458
\(537\) 0 0
\(538\) 15118.3 1.21152
\(539\) −12018.1 −0.960399
\(540\) 0 0
\(541\) 12899.2 1.02510 0.512550 0.858657i \(-0.328701\pi\)
0.512550 + 0.858657i \(0.328701\pi\)
\(542\) −26662.9 −2.11305
\(543\) 0 0
\(544\) −19702.5 −1.55283
\(545\) 8850.70 0.695637
\(546\) 0 0
\(547\) −22144.7 −1.73097 −0.865485 0.500936i \(-0.832989\pi\)
−0.865485 + 0.500936i \(0.832989\pi\)
\(548\) 21411.0 1.66904
\(549\) 0 0
\(550\) −2026.79 −0.157132
\(551\) −647.457 −0.0500592
\(552\) 0 0
\(553\) −10263.4 −0.789233
\(554\) −9588.98 −0.735373
\(555\) 0 0
\(556\) −23788.3 −1.81447
\(557\) 10236.7 0.778716 0.389358 0.921086i \(-0.372697\pi\)
0.389358 + 0.921086i \(0.372697\pi\)
\(558\) 0 0
\(559\) −13585.3 −1.02790
\(560\) −5121.47 −0.386467
\(561\) 0 0
\(562\) 2143.03 0.160851
\(563\) −5750.83 −0.430495 −0.215247 0.976560i \(-0.569056\pi\)
−0.215247 + 0.976560i \(0.569056\pi\)
\(564\) 0 0
\(565\) −212.055 −0.0157898
\(566\) −29729.6 −2.20782
\(567\) 0 0
\(568\) −5177.22 −0.382450
\(569\) 8285.10 0.610421 0.305210 0.952285i \(-0.401273\pi\)
0.305210 + 0.952285i \(0.401273\pi\)
\(570\) 0 0
\(571\) −19799.8 −1.45113 −0.725565 0.688154i \(-0.758421\pi\)
−0.725565 + 0.688154i \(0.758421\pi\)
\(572\) −41177.1 −3.00997
\(573\) 0 0
\(574\) 1754.97 0.127615
\(575\) −210.169 −0.0152428
\(576\) 0 0
\(577\) −250.868 −0.0181001 −0.00905006 0.999959i \(-0.502881\pi\)
−0.00905006 + 0.999959i \(0.502881\pi\)
\(578\) 4458.08 0.320816
\(579\) 0 0
\(580\) −1364.50 −0.0976861
\(581\) −1420.59 −0.101439
\(582\) 0 0
\(583\) −14116.3 −1.00281
\(584\) 7620.56 0.539967
\(585\) 0 0
\(586\) 40195.3 2.83354
\(587\) 9767.11 0.686766 0.343383 0.939195i \(-0.388427\pi\)
0.343383 + 0.939195i \(0.388427\pi\)
\(588\) 0 0
\(589\) −630.475 −0.0441057
\(590\) 24383.7 1.70146
\(591\) 0 0
\(592\) 3265.43 0.226703
\(593\) 18853.8 1.30562 0.652810 0.757521i \(-0.273590\pi\)
0.652810 + 0.757521i \(0.273590\pi\)
\(594\) 0 0
\(595\) 8856.08 0.610192
\(596\) 22472.1 1.54445
\(597\) 0 0
\(598\) −7704.93 −0.526886
\(599\) 11356.0 0.774615 0.387307 0.921951i \(-0.373405\pi\)
0.387307 + 0.921951i \(0.373405\pi\)
\(600\) 0 0
\(601\) 20359.1 1.38180 0.690902 0.722948i \(-0.257213\pi\)
0.690902 + 0.722948i \(0.257213\pi\)
\(602\) 7751.83 0.524819
\(603\) 0 0
\(604\) −23974.0 −1.61505
\(605\) 15184.0 1.02036
\(606\) 0 0
\(607\) 5975.14 0.399545 0.199772 0.979842i \(-0.435980\pi\)
0.199772 + 0.979842i \(0.435980\pi\)
\(608\) −12956.3 −0.864226
\(609\) 0 0
\(610\) −38237.6 −2.53802
\(611\) 48599.5 3.21788
\(612\) 0 0
\(613\) 16997.4 1.11993 0.559967 0.828515i \(-0.310814\pi\)
0.559967 + 0.828515i \(0.310814\pi\)
\(614\) 19742.5 1.29763
\(615\) 0 0
\(616\) 4593.84 0.300472
\(617\) 13096.0 0.854497 0.427249 0.904134i \(-0.359483\pi\)
0.427249 + 0.904134i \(0.359483\pi\)
\(618\) 0 0
\(619\) 702.058 0.0455866 0.0227933 0.999740i \(-0.492744\pi\)
0.0227933 + 0.999740i \(0.492744\pi\)
\(620\) −1328.71 −0.0860684
\(621\) 0 0
\(622\) −18547.7 −1.19565
\(623\) 8293.82 0.533362
\(624\) 0 0
\(625\) −14399.3 −0.921554
\(626\) −18825.8 −1.20196
\(627\) 0 0
\(628\) −6115.33 −0.388580
\(629\) −5646.60 −0.357941
\(630\) 0 0
\(631\) 23871.5 1.50604 0.753019 0.657999i \(-0.228597\pi\)
0.753019 + 0.657999i \(0.228597\pi\)
\(632\) −7935.28 −0.499444
\(633\) 0 0
\(634\) −33387.0 −2.09143
\(635\) 12305.7 0.769034
\(636\) 0 0
\(637\) 18151.3 1.12901
\(638\) −2827.48 −0.175456
\(639\) 0 0
\(640\) −11012.4 −0.680161
\(641\) −24172.6 −1.48949 −0.744743 0.667351i \(-0.767428\pi\)
−0.744743 + 0.667351i \(0.767428\pi\)
\(642\) 0 0
\(643\) 13648.6 0.837090 0.418545 0.908196i \(-0.362540\pi\)
0.418545 + 0.908196i \(0.362540\pi\)
\(644\) 2436.42 0.149081
\(645\) 0 0
\(646\) 16617.4 1.01208
\(647\) 7009.18 0.425903 0.212952 0.977063i \(-0.431692\pi\)
0.212952 + 0.977063i \(0.431692\pi\)
\(648\) 0 0
\(649\) 28000.8 1.69357
\(650\) 3061.12 0.184719
\(651\) 0 0
\(652\) −505.295 −0.0303511
\(653\) −4533.57 −0.271688 −0.135844 0.990730i \(-0.543375\pi\)
−0.135844 + 0.990730i \(0.543375\pi\)
\(654\) 0 0
\(655\) −12428.4 −0.741404
\(656\) −1737.12 −0.103389
\(657\) 0 0
\(658\) −27731.1 −1.64296
\(659\) 7112.62 0.420438 0.210219 0.977654i \(-0.432582\pi\)
0.210219 + 0.977654i \(0.432582\pi\)
\(660\) 0 0
\(661\) 16088.6 0.946709 0.473354 0.880872i \(-0.343043\pi\)
0.473354 + 0.880872i \(0.343043\pi\)
\(662\) −538.237 −0.0316000
\(663\) 0 0
\(664\) −1098.34 −0.0641927
\(665\) 5823.74 0.339601
\(666\) 0 0
\(667\) −293.196 −0.0170204
\(668\) 19896.9 1.15245
\(669\) 0 0
\(670\) −20435.6 −1.17835
\(671\) −43909.9 −2.52626
\(672\) 0 0
\(673\) 22629.7 1.29615 0.648076 0.761576i \(-0.275574\pi\)
0.648076 + 0.761576i \(0.275574\pi\)
\(674\) −7366.82 −0.421008
\(675\) 0 0
\(676\) 40343.6 2.29538
\(677\) 15444.0 0.876749 0.438375 0.898792i \(-0.355554\pi\)
0.438375 + 0.898792i \(0.355554\pi\)
\(678\) 0 0
\(679\) 17082.0 0.965458
\(680\) 6847.17 0.386143
\(681\) 0 0
\(682\) −2753.31 −0.154589
\(683\) −834.894 −0.0467736 −0.0233868 0.999726i \(-0.507445\pi\)
−0.0233868 + 0.999726i \(0.507445\pi\)
\(684\) 0 0
\(685\) 23175.8 1.29270
\(686\) −25835.0 −1.43788
\(687\) 0 0
\(688\) −7672.98 −0.425188
\(689\) 21320.3 1.17886
\(690\) 0 0
\(691\) 4982.99 0.274330 0.137165 0.990548i \(-0.456201\pi\)
0.137165 + 0.990548i \(0.456201\pi\)
\(692\) 37756.2 2.07410
\(693\) 0 0
\(694\) −31987.8 −1.74963
\(695\) −25749.0 −1.40535
\(696\) 0 0
\(697\) 3003.84 0.163240
\(698\) −26421.5 −1.43277
\(699\) 0 0
\(700\) −967.974 −0.0522657
\(701\) −21916.9 −1.18087 −0.590436 0.807084i \(-0.701044\pi\)
−0.590436 + 0.807084i \(0.701044\pi\)
\(702\) 0 0
\(703\) −3713.19 −0.199211
\(704\) −37871.2 −2.02745
\(705\) 0 0
\(706\) −7576.52 −0.403890
\(707\) −13092.4 −0.696448
\(708\) 0 0
\(709\) −30858.3 −1.63456 −0.817282 0.576237i \(-0.804520\pi\)
−0.817282 + 0.576237i \(0.804520\pi\)
\(710\) −28662.3 −1.51504
\(711\) 0 0
\(712\) 6412.45 0.337523
\(713\) −285.506 −0.0149962
\(714\) 0 0
\(715\) −44571.2 −2.33128
\(716\) 30669.7 1.60081
\(717\) 0 0
\(718\) −9466.32 −0.492033
\(719\) −19500.3 −1.01146 −0.505728 0.862693i \(-0.668776\pi\)
−0.505728 + 0.862693i \(0.668776\pi\)
\(720\) 0 0
\(721\) 2290.98 0.118337
\(722\) −18127.6 −0.934405
\(723\) 0 0
\(724\) 47067.4 2.41609
\(725\) 116.485 0.00596711
\(726\) 0 0
\(727\) 26922.8 1.37347 0.686735 0.726908i \(-0.259043\pi\)
0.686735 + 0.726908i \(0.259043\pi\)
\(728\) −6938.22 −0.353225
\(729\) 0 0
\(730\) 42189.1 2.13903
\(731\) 13268.2 0.671328
\(732\) 0 0
\(733\) −22120.5 −1.11465 −0.557326 0.830294i \(-0.688173\pi\)
−0.557326 + 0.830294i \(0.688173\pi\)
\(734\) 44697.6 2.24771
\(735\) 0 0
\(736\) −5867.19 −0.293842
\(737\) −23467.0 −1.17289
\(738\) 0 0
\(739\) −27225.8 −1.35523 −0.677617 0.735415i \(-0.736987\pi\)
−0.677617 + 0.735415i \(0.736987\pi\)
\(740\) −7825.48 −0.388744
\(741\) 0 0
\(742\) −12165.4 −0.601897
\(743\) 191.429 0.00945201 0.00472600 0.999989i \(-0.498496\pi\)
0.00472600 + 0.999989i \(0.498496\pi\)
\(744\) 0 0
\(745\) 24324.3 1.19621
\(746\) −4219.41 −0.207083
\(747\) 0 0
\(748\) 40216.0 1.96583
\(749\) 16901.0 0.824497
\(750\) 0 0
\(751\) −876.709 −0.0425986 −0.0212993 0.999773i \(-0.506780\pi\)
−0.0212993 + 0.999773i \(0.506780\pi\)
\(752\) 27449.0 1.33107
\(753\) 0 0
\(754\) 4270.43 0.206260
\(755\) −25950.1 −1.25089
\(756\) 0 0
\(757\) −26681.0 −1.28103 −0.640513 0.767948i \(-0.721278\pi\)
−0.640513 + 0.767948i \(0.721278\pi\)
\(758\) −47092.2 −2.25655
\(759\) 0 0
\(760\) 4502.68 0.214907
\(761\) 6947.99 0.330965 0.165483 0.986213i \(-0.447082\pi\)
0.165483 + 0.986213i \(0.447082\pi\)
\(762\) 0 0
\(763\) 8759.06 0.415595
\(764\) 12859.3 0.608943
\(765\) 0 0
\(766\) −22515.1 −1.06201
\(767\) −42290.5 −1.99090
\(768\) 0 0
\(769\) 7189.91 0.337159 0.168579 0.985688i \(-0.446082\pi\)
0.168579 + 0.985688i \(0.446082\pi\)
\(770\) 25432.5 1.19029
\(771\) 0 0
\(772\) −11652.2 −0.543230
\(773\) 27591.1 1.28381 0.641904 0.766785i \(-0.278145\pi\)
0.641904 + 0.766785i \(0.278145\pi\)
\(774\) 0 0
\(775\) 113.430 0.00525745
\(776\) 13207.1 0.610963
\(777\) 0 0
\(778\) 35744.2 1.64716
\(779\) 1975.32 0.0908512
\(780\) 0 0
\(781\) −32914.1 −1.50801
\(782\) 7525.08 0.344113
\(783\) 0 0
\(784\) 10251.9 0.467013
\(785\) −6619.38 −0.300963
\(786\) 0 0
\(787\) 10322.4 0.467541 0.233770 0.972292i \(-0.424894\pi\)
0.233770 + 0.972292i \(0.424894\pi\)
\(788\) −45337.8 −2.04961
\(789\) 0 0
\(790\) −43931.5 −1.97850
\(791\) −209.859 −0.00943330
\(792\) 0 0
\(793\) 66318.5 2.96978
\(794\) 49062.0 2.19288
\(795\) 0 0
\(796\) −4710.81 −0.209761
\(797\) −40205.9 −1.78691 −0.893455 0.449153i \(-0.851726\pi\)
−0.893455 + 0.449153i \(0.851726\pi\)
\(798\) 0 0
\(799\) −47465.0 −2.10162
\(800\) 2331.00 0.103017
\(801\) 0 0
\(802\) −18078.9 −0.795995
\(803\) 48447.6 2.12911
\(804\) 0 0
\(805\) 2637.24 0.115466
\(806\) 4158.42 0.181730
\(807\) 0 0
\(808\) −10122.5 −0.440727
\(809\) 42375.9 1.84160 0.920802 0.390031i \(-0.127536\pi\)
0.920802 + 0.390031i \(0.127536\pi\)
\(810\) 0 0
\(811\) 7082.68 0.306667 0.153333 0.988175i \(-0.450999\pi\)
0.153333 + 0.988175i \(0.450999\pi\)
\(812\) −1350.37 −0.0583607
\(813\) 0 0
\(814\) −16215.7 −0.698230
\(815\) −546.945 −0.0235075
\(816\) 0 0
\(817\) 8725.11 0.373627
\(818\) 29239.5 1.24980
\(819\) 0 0
\(820\) 4162.94 0.177288
\(821\) −18154.3 −0.771728 −0.385864 0.922556i \(-0.626097\pi\)
−0.385864 + 0.922556i \(0.626097\pi\)
\(822\) 0 0
\(823\) 10437.1 0.442058 0.221029 0.975267i \(-0.429059\pi\)
0.221029 + 0.975267i \(0.429059\pi\)
\(824\) 1771.30 0.0748860
\(825\) 0 0
\(826\) 24131.2 1.01650
\(827\) 1486.57 0.0625068 0.0312534 0.999511i \(-0.490050\pi\)
0.0312534 + 0.999511i \(0.490050\pi\)
\(828\) 0 0
\(829\) −9987.68 −0.418440 −0.209220 0.977869i \(-0.567092\pi\)
−0.209220 + 0.977869i \(0.567092\pi\)
\(830\) −6080.67 −0.254293
\(831\) 0 0
\(832\) 57198.1 2.38340
\(833\) −17727.6 −0.737364
\(834\) 0 0
\(835\) 21536.9 0.892594
\(836\) 26445.9 1.09408
\(837\) 0 0
\(838\) 9494.03 0.391367
\(839\) 2835.68 0.116685 0.0583424 0.998297i \(-0.481418\pi\)
0.0583424 + 0.998297i \(0.481418\pi\)
\(840\) 0 0
\(841\) −24226.5 −0.993337
\(842\) 38622.4 1.58078
\(843\) 0 0
\(844\) −14156.3 −0.577345
\(845\) 43668.9 1.77782
\(846\) 0 0
\(847\) 15026.8 0.609596
\(848\) 12041.7 0.487634
\(849\) 0 0
\(850\) −2989.67 −0.120641
\(851\) −1681.49 −0.0677330
\(852\) 0 0
\(853\) 17544.2 0.704223 0.352111 0.935958i \(-0.385464\pi\)
0.352111 + 0.935958i \(0.385464\pi\)
\(854\) −37841.7 −1.51629
\(855\) 0 0
\(856\) 13067.2 0.521760
\(857\) −12827.7 −0.511301 −0.255651 0.966769i \(-0.582290\pi\)
−0.255651 + 0.966769i \(0.582290\pi\)
\(858\) 0 0
\(859\) −35061.5 −1.39265 −0.696324 0.717728i \(-0.745182\pi\)
−0.696324 + 0.717728i \(0.745182\pi\)
\(860\) 18388.0 0.729100
\(861\) 0 0
\(862\) 5788.79 0.228732
\(863\) 4222.11 0.166538 0.0832691 0.996527i \(-0.473464\pi\)
0.0832691 + 0.996527i \(0.473464\pi\)
\(864\) 0 0
\(865\) 40868.2 1.60643
\(866\) 14873.7 0.583637
\(867\) 0 0
\(868\) −1314.95 −0.0514199
\(869\) −50448.4 −1.96933
\(870\) 0 0
\(871\) 35443.0 1.37881
\(872\) 6772.15 0.262998
\(873\) 0 0
\(874\) 4948.47 0.191515
\(875\) −15380.6 −0.594238
\(876\) 0 0
\(877\) 17535.0 0.675159 0.337579 0.941297i \(-0.390392\pi\)
0.337579 + 0.941297i \(0.390392\pi\)
\(878\) 29788.7 1.14501
\(879\) 0 0
\(880\) −25173.9 −0.964330
\(881\) −9116.63 −0.348634 −0.174317 0.984690i \(-0.555772\pi\)
−0.174317 + 0.984690i \(0.555772\pi\)
\(882\) 0 0
\(883\) −41050.4 −1.56450 −0.782251 0.622963i \(-0.785929\pi\)
−0.782251 + 0.622963i \(0.785929\pi\)
\(884\) −60739.5 −2.31096
\(885\) 0 0
\(886\) −37060.0 −1.40525
\(887\) −22519.5 −0.852461 −0.426230 0.904615i \(-0.640159\pi\)
−0.426230 + 0.904615i \(0.640159\pi\)
\(888\) 0 0
\(889\) 12178.3 0.459444
\(890\) 35500.8 1.33707
\(891\) 0 0
\(892\) 60547.0 2.27272
\(893\) −31212.9 −1.16965
\(894\) 0 0
\(895\) 33197.7 1.23986
\(896\) −10898.4 −0.406349
\(897\) 0 0
\(898\) 3410.91 0.126752
\(899\) 158.241 0.00587055
\(900\) 0 0
\(901\) −20822.6 −0.769924
\(902\) 8626.30 0.318431
\(903\) 0 0
\(904\) −162.255 −0.00596960
\(905\) 50947.0 1.87131
\(906\) 0 0
\(907\) −32037.9 −1.17288 −0.586439 0.809993i \(-0.699471\pi\)
−0.586439 + 0.809993i \(0.699471\pi\)
\(908\) 44387.9 1.62232
\(909\) 0 0
\(910\) −38411.6 −1.39927
\(911\) 12881.7 0.468485 0.234242 0.972178i \(-0.424739\pi\)
0.234242 + 0.972178i \(0.424739\pi\)
\(912\) 0 0
\(913\) −6982.69 −0.253114
\(914\) −44465.6 −1.60918
\(915\) 0 0
\(916\) 12916.4 0.465905
\(917\) −12299.8 −0.442937
\(918\) 0 0
\(919\) −7311.92 −0.262457 −0.131229 0.991352i \(-0.541892\pi\)
−0.131229 + 0.991352i \(0.541892\pi\)
\(920\) 2039.01 0.0730696
\(921\) 0 0
\(922\) 14087.8 0.503207
\(923\) 49711.3 1.77277
\(924\) 0 0
\(925\) 668.047 0.0237462
\(926\) −3562.01 −0.126409
\(927\) 0 0
\(928\) 3251.87 0.115030
\(929\) −35059.5 −1.23817 −0.619087 0.785322i \(-0.712497\pi\)
−0.619087 + 0.785322i \(0.712497\pi\)
\(930\) 0 0
\(931\) −11657.6 −0.410379
\(932\) 12504.0 0.439467
\(933\) 0 0
\(934\) −35798.2 −1.25413
\(935\) 43530.8 1.52258
\(936\) 0 0
\(937\) 25471.7 0.888072 0.444036 0.896009i \(-0.353546\pi\)
0.444036 + 0.896009i \(0.353546\pi\)
\(938\) −20224.0 −0.703983
\(939\) 0 0
\(940\) −65780.6 −2.28247
\(941\) −22426.5 −0.776923 −0.388461 0.921465i \(-0.626993\pi\)
−0.388461 + 0.921465i \(0.626993\pi\)
\(942\) 0 0
\(943\) 894.508 0.0308899
\(944\) −23885.7 −0.823532
\(945\) 0 0
\(946\) 38103.0 1.30955
\(947\) 36090.9 1.23843 0.619216 0.785220i \(-0.287450\pi\)
0.619216 + 0.785220i \(0.287450\pi\)
\(948\) 0 0
\(949\) −73171.9 −2.50291
\(950\) −1966.00 −0.0671426
\(951\) 0 0
\(952\) 6776.27 0.230693
\(953\) 16379.8 0.556762 0.278381 0.960471i \(-0.410202\pi\)
0.278381 + 0.960471i \(0.410202\pi\)
\(954\) 0 0
\(955\) 13919.2 0.471639
\(956\) −34546.0 −1.16872
\(957\) 0 0
\(958\) 24089.9 0.812432
\(959\) 22935.8 0.772301
\(960\) 0 0
\(961\) −29636.9 −0.994828
\(962\) 24491.1 0.820815
\(963\) 0 0
\(964\) −21289.9 −0.711308
\(965\) −12612.7 −0.420742
\(966\) 0 0
\(967\) −22686.2 −0.754434 −0.377217 0.926125i \(-0.623119\pi\)
−0.377217 + 0.926125i \(0.623119\pi\)
\(968\) 11618.1 0.385765
\(969\) 0 0
\(970\) 73117.5 2.42027
\(971\) −53773.7 −1.77722 −0.888610 0.458663i \(-0.848328\pi\)
−0.888610 + 0.458663i \(0.848328\pi\)
\(972\) 0 0
\(973\) −25482.4 −0.839597
\(974\) −58323.0 −1.91867
\(975\) 0 0
\(976\) 37456.8 1.22844
\(977\) 20398.6 0.667972 0.333986 0.942578i \(-0.391606\pi\)
0.333986 + 0.942578i \(0.391606\pi\)
\(978\) 0 0
\(979\) 40767.0 1.33087
\(980\) −24568.2 −0.800819
\(981\) 0 0
\(982\) −35922.4 −1.16734
\(983\) 12118.6 0.393208 0.196604 0.980483i \(-0.437009\pi\)
0.196604 + 0.980483i \(0.437009\pi\)
\(984\) 0 0
\(985\) −49074.8 −1.58746
\(986\) −4170.75 −0.134710
\(987\) 0 0
\(988\) −39942.1 −1.28616
\(989\) 3951.10 0.127035
\(990\) 0 0
\(991\) −26885.7 −0.861809 −0.430904 0.902398i \(-0.641805\pi\)
−0.430904 + 0.902398i \(0.641805\pi\)
\(992\) 3166.57 0.101350
\(993\) 0 0
\(994\) −28365.5 −0.905130
\(995\) −5099.10 −0.162465
\(996\) 0 0
\(997\) 21022.7 0.667797 0.333899 0.942609i \(-0.391636\pi\)
0.333899 + 0.942609i \(0.391636\pi\)
\(998\) 52834.5 1.67580
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.c.1.2 2
3.2 odd 2 69.4.a.a.1.1 2
12.11 even 2 1104.4.a.h.1.2 2
15.14 odd 2 1725.4.a.n.1.2 2
69.68 even 2 1587.4.a.b.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.a.1.1 2 3.2 odd 2
207.4.a.c.1.2 2 1.1 even 1 trivial
1104.4.a.h.1.2 2 12.11 even 2
1587.4.a.b.1.1 2 69.68 even 2
1725.4.a.n.1.2 2 15.14 odd 2