Properties

Label 207.4.a.c.1.1
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.236068 q^{2} -7.94427 q^{4} +15.2361 q^{5} -20.6525 q^{7} +3.76393 q^{8} -3.59675 q^{10} +7.63932 q^{11} +55.0820 q^{13} +4.87539 q^{14} +62.6656 q^{16} +72.7639 q^{17} -96.7902 q^{19} -121.039 q^{20} -1.80340 q^{22} +23.0000 q^{23} +107.138 q^{25} -13.0031 q^{26} +164.069 q^{28} +228.748 q^{29} +336.413 q^{31} -44.9048 q^{32} -17.1772 q^{34} -314.663 q^{35} +213.108 q^{37} +22.8491 q^{38} +57.3475 q^{40} +325.108 q^{41} -297.787 q^{43} -60.6888 q^{44} -5.42956 q^{46} +494.545 q^{47} +83.5248 q^{49} -25.2918 q^{50} -437.587 q^{52} -220.403 q^{53} +116.393 q^{55} -77.7345 q^{56} -54.0000 q^{58} -502.768 q^{59} -69.3963 q^{61} -79.4164 q^{62} -490.724 q^{64} +839.234 q^{65} -425.820 q^{67} -578.056 q^{68} +74.2817 q^{70} +140.604 q^{71} -273.266 q^{73} -50.3081 q^{74} +768.928 q^{76} -157.771 q^{77} -234.521 q^{79} +954.778 q^{80} -76.7477 q^{82} +233.358 q^{83} +1108.64 q^{85} +70.2980 q^{86} +28.7539 q^{88} -880.581 q^{89} -1137.58 q^{91} -182.718 q^{92} -116.746 q^{94} -1474.70 q^{95} +20.4319 q^{97} -19.7175 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 2 q^{4} + 26 q^{5} - 10 q^{7} + 12 q^{8} + 42 q^{10} + 60 q^{11} - 24 q^{13} + 50 q^{14} + 18 q^{16} + 150 q^{17} - 46 q^{19} - 14 q^{20} + 220 q^{22} + 46 q^{23} + 98 q^{25} - 348 q^{26}+ \cdots - 992 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.236068 −0.0834626 −0.0417313 0.999129i \(-0.513287\pi\)
−0.0417313 + 0.999129i \(0.513287\pi\)
\(3\) 0 0
\(4\) −7.94427 −0.993034
\(5\) 15.2361 1.36276 0.681378 0.731932i \(-0.261381\pi\)
0.681378 + 0.731932i \(0.261381\pi\)
\(6\) 0 0
\(7\) −20.6525 −1.11513 −0.557564 0.830134i \(-0.688264\pi\)
−0.557564 + 0.830134i \(0.688264\pi\)
\(8\) 3.76393 0.166344
\(9\) 0 0
\(10\) −3.59675 −0.113739
\(11\) 7.63932 0.209395 0.104697 0.994504i \(-0.466613\pi\)
0.104697 + 0.994504i \(0.466613\pi\)
\(12\) 0 0
\(13\) 55.0820 1.17515 0.587577 0.809168i \(-0.300082\pi\)
0.587577 + 0.809168i \(0.300082\pi\)
\(14\) 4.87539 0.0930716
\(15\) 0 0
\(16\) 62.6656 0.979150
\(17\) 72.7639 1.03811 0.519054 0.854741i \(-0.326284\pi\)
0.519054 + 0.854741i \(0.326284\pi\)
\(18\) 0 0
\(19\) −96.7902 −1.16869 −0.584347 0.811504i \(-0.698649\pi\)
−0.584347 + 0.811504i \(0.698649\pi\)
\(20\) −121.039 −1.35326
\(21\) 0 0
\(22\) −1.80340 −0.0174766
\(23\) 23.0000 0.208514
\(24\) 0 0
\(25\) 107.138 0.857102
\(26\) −13.0031 −0.0980815
\(27\) 0 0
\(28\) 164.069 1.10736
\(29\) 228.748 1.46474 0.732369 0.680908i \(-0.238415\pi\)
0.732369 + 0.680908i \(0.238415\pi\)
\(30\) 0 0
\(31\) 336.413 1.94908 0.974542 0.224204i \(-0.0719783\pi\)
0.974542 + 0.224204i \(0.0719783\pi\)
\(32\) −44.9048 −0.248066
\(33\) 0 0
\(34\) −17.1772 −0.0866433
\(35\) −314.663 −1.51965
\(36\) 0 0
\(37\) 213.108 0.946886 0.473443 0.880824i \(-0.343011\pi\)
0.473443 + 0.880824i \(0.343011\pi\)
\(38\) 22.8491 0.0975424
\(39\) 0 0
\(40\) 57.3475 0.226686
\(41\) 325.108 1.23838 0.619188 0.785243i \(-0.287462\pi\)
0.619188 + 0.785243i \(0.287462\pi\)
\(42\) 0 0
\(43\) −297.787 −1.05610 −0.528048 0.849215i \(-0.677076\pi\)
−0.528048 + 0.849215i \(0.677076\pi\)
\(44\) −60.6888 −0.207936
\(45\) 0 0
\(46\) −5.42956 −0.0174032
\(47\) 494.545 1.53483 0.767413 0.641154i \(-0.221544\pi\)
0.767413 + 0.641154i \(0.221544\pi\)
\(48\) 0 0
\(49\) 83.5248 0.243512
\(50\) −25.2918 −0.0715360
\(51\) 0 0
\(52\) −437.587 −1.16697
\(53\) −220.403 −0.571221 −0.285611 0.958346i \(-0.592196\pi\)
−0.285611 + 0.958346i \(0.592196\pi\)
\(54\) 0 0
\(55\) 116.393 0.285354
\(56\) −77.7345 −0.185495
\(57\) 0 0
\(58\) −54.0000 −0.122251
\(59\) −502.768 −1.10940 −0.554702 0.832049i \(-0.687168\pi\)
−0.554702 + 0.832049i \(0.687168\pi\)
\(60\) 0 0
\(61\) −69.3963 −0.145660 −0.0728302 0.997344i \(-0.523203\pi\)
−0.0728302 + 0.997344i \(0.523203\pi\)
\(62\) −79.4164 −0.162676
\(63\) 0 0
\(64\) −490.724 −0.958446
\(65\) 839.234 1.60145
\(66\) 0 0
\(67\) −425.820 −0.776450 −0.388225 0.921565i \(-0.626912\pi\)
−0.388225 + 0.921565i \(0.626912\pi\)
\(68\) −578.056 −1.03088
\(69\) 0 0
\(70\) 74.2817 0.126834
\(71\) 140.604 0.235022 0.117511 0.993072i \(-0.462508\pi\)
0.117511 + 0.993072i \(0.462508\pi\)
\(72\) 0 0
\(73\) −273.266 −0.438129 −0.219064 0.975710i \(-0.570300\pi\)
−0.219064 + 0.975710i \(0.570300\pi\)
\(74\) −50.3081 −0.0790296
\(75\) 0 0
\(76\) 768.928 1.16055
\(77\) −157.771 −0.233502
\(78\) 0 0
\(79\) −234.521 −0.333996 −0.166998 0.985957i \(-0.553407\pi\)
−0.166998 + 0.985957i \(0.553407\pi\)
\(80\) 954.778 1.33434
\(81\) 0 0
\(82\) −76.7477 −0.103358
\(83\) 233.358 0.308606 0.154303 0.988024i \(-0.450687\pi\)
0.154303 + 0.988024i \(0.450687\pi\)
\(84\) 0 0
\(85\) 1108.64 1.41469
\(86\) 70.2980 0.0881445
\(87\) 0 0
\(88\) 28.7539 0.0348315
\(89\) −880.581 −1.04878 −0.524390 0.851478i \(-0.675707\pi\)
−0.524390 + 0.851478i \(0.675707\pi\)
\(90\) 0 0
\(91\) −1137.58 −1.31045
\(92\) −182.718 −0.207062
\(93\) 0 0
\(94\) −116.746 −0.128101
\(95\) −1474.70 −1.59265
\(96\) 0 0
\(97\) 20.4319 0.0213871 0.0106936 0.999943i \(-0.496596\pi\)
0.0106936 + 0.999943i \(0.496596\pi\)
\(98\) −19.7175 −0.0203242
\(99\) 0 0
\(100\) −851.132 −0.851132
\(101\) 41.0433 0.0404353 0.0202176 0.999796i \(-0.493564\pi\)
0.0202176 + 0.999796i \(0.493564\pi\)
\(102\) 0 0
\(103\) −165.066 −0.157907 −0.0789535 0.996878i \(-0.525158\pi\)
−0.0789535 + 0.996878i \(0.525158\pi\)
\(104\) 207.325 0.195480
\(105\) 0 0
\(106\) 52.0301 0.0476756
\(107\) 969.423 0.875866 0.437933 0.899008i \(-0.355711\pi\)
0.437933 + 0.899008i \(0.355711\pi\)
\(108\) 0 0
\(109\) 1385.74 1.21771 0.608854 0.793282i \(-0.291629\pi\)
0.608854 + 0.793282i \(0.291629\pi\)
\(110\) −27.4767 −0.0238164
\(111\) 0 0
\(112\) −1294.20 −1.09188
\(113\) −2090.30 −1.74017 −0.870083 0.492905i \(-0.835935\pi\)
−0.870083 + 0.492905i \(0.835935\pi\)
\(114\) 0 0
\(115\) 350.430 0.284154
\(116\) −1817.23 −1.45453
\(117\) 0 0
\(118\) 118.687 0.0925937
\(119\) −1502.76 −1.15762
\(120\) 0 0
\(121\) −1272.64 −0.956154
\(122\) 16.3822 0.0121572
\(123\) 0 0
\(124\) −2672.56 −1.93551
\(125\) −272.150 −0.194735
\(126\) 0 0
\(127\) −547.234 −0.382355 −0.191178 0.981555i \(-0.561231\pi\)
−0.191178 + 0.981555i \(0.561231\pi\)
\(128\) 475.083 0.328061
\(129\) 0 0
\(130\) −198.116 −0.133661
\(131\) 1850.64 1.23428 0.617141 0.786853i \(-0.288291\pi\)
0.617141 + 0.786853i \(0.288291\pi\)
\(132\) 0 0
\(133\) 1998.96 1.30325
\(134\) 100.522 0.0648046
\(135\) 0 0
\(136\) 273.878 0.172683
\(137\) 2264.90 1.41244 0.706218 0.707995i \(-0.250400\pi\)
0.706218 + 0.707995i \(0.250400\pi\)
\(138\) 0 0
\(139\) −1479.84 −0.903011 −0.451506 0.892268i \(-0.649113\pi\)
−0.451506 + 0.892268i \(0.649113\pi\)
\(140\) 2499.76 1.50906
\(141\) 0 0
\(142\) −33.1920 −0.0196156
\(143\) 420.789 0.246071
\(144\) 0 0
\(145\) 3485.22 1.99608
\(146\) 64.5094 0.0365674
\(147\) 0 0
\(148\) −1692.99 −0.940290
\(149\) 350.199 0.192546 0.0962732 0.995355i \(-0.469308\pi\)
0.0962732 + 0.995355i \(0.469308\pi\)
\(150\) 0 0
\(151\) 3098.84 1.67006 0.835032 0.550201i \(-0.185449\pi\)
0.835032 + 0.550201i \(0.185449\pi\)
\(152\) −364.312 −0.194405
\(153\) 0 0
\(154\) 37.2447 0.0194887
\(155\) 5125.62 2.65613
\(156\) 0 0
\(157\) 3570.96 1.81525 0.907623 0.419786i \(-0.137895\pi\)
0.907623 + 0.419786i \(0.137895\pi\)
\(158\) 55.3629 0.0278762
\(159\) 0 0
\(160\) −684.173 −0.338054
\(161\) −475.007 −0.232520
\(162\) 0 0
\(163\) −793.187 −0.381149 −0.190574 0.981673i \(-0.561035\pi\)
−0.190574 + 0.981673i \(0.561035\pi\)
\(164\) −2582.75 −1.22975
\(165\) 0 0
\(166\) −55.0883 −0.0257571
\(167\) −2864.84 −1.32747 −0.663737 0.747966i \(-0.731031\pi\)
−0.663737 + 0.747966i \(0.731031\pi\)
\(168\) 0 0
\(169\) 837.031 0.380988
\(170\) −261.714 −0.118074
\(171\) 0 0
\(172\) 2365.70 1.04874
\(173\) 675.225 0.296742 0.148371 0.988932i \(-0.452597\pi\)
0.148371 + 0.988932i \(0.452597\pi\)
\(174\) 0 0
\(175\) −2212.66 −0.955779
\(176\) 478.723 0.205029
\(177\) 0 0
\(178\) 207.877 0.0875339
\(179\) 2171.84 0.906878 0.453439 0.891287i \(-0.350197\pi\)
0.453439 + 0.891287i \(0.350197\pi\)
\(180\) 0 0
\(181\) −3093.12 −1.27022 −0.635110 0.772422i \(-0.719045\pi\)
−0.635110 + 0.772422i \(0.719045\pi\)
\(182\) 268.546 0.109374
\(183\) 0 0
\(184\) 86.5704 0.0346851
\(185\) 3246.93 1.29037
\(186\) 0 0
\(187\) 555.867 0.217374
\(188\) −3928.80 −1.52413
\(189\) 0 0
\(190\) 348.130 0.132926
\(191\) 854.865 0.323853 0.161926 0.986803i \(-0.448229\pi\)
0.161926 + 0.986803i \(0.448229\pi\)
\(192\) 0 0
\(193\) 4203.75 1.56784 0.783919 0.620863i \(-0.213218\pi\)
0.783919 + 0.620863i \(0.213218\pi\)
\(194\) −4.82333 −0.00178502
\(195\) 0 0
\(196\) −663.543 −0.241816
\(197\) −3816.81 −1.38039 −0.690195 0.723624i \(-0.742475\pi\)
−0.690195 + 0.723624i \(0.742475\pi\)
\(198\) 0 0
\(199\) −1748.28 −0.622775 −0.311388 0.950283i \(-0.600794\pi\)
−0.311388 + 0.950283i \(0.600794\pi\)
\(200\) 403.259 0.142574
\(201\) 0 0
\(202\) −9.68901 −0.00337483
\(203\) −4724.21 −1.63337
\(204\) 0 0
\(205\) 4953.37 1.68760
\(206\) 38.9667 0.0131793
\(207\) 0 0
\(208\) 3451.75 1.15065
\(209\) −739.412 −0.244719
\(210\) 0 0
\(211\) 803.562 0.262178 0.131089 0.991371i \(-0.458153\pi\)
0.131089 + 0.991371i \(0.458153\pi\)
\(212\) 1750.94 0.567242
\(213\) 0 0
\(214\) −228.850 −0.0731021
\(215\) −4537.11 −1.43920
\(216\) 0 0
\(217\) −6947.77 −2.17348
\(218\) −327.130 −0.101633
\(219\) 0 0
\(220\) −924.659 −0.283366
\(221\) 4007.99 1.21994
\(222\) 0 0
\(223\) 2439.37 0.732521 0.366261 0.930512i \(-0.380638\pi\)
0.366261 + 0.930512i \(0.380638\pi\)
\(224\) 927.395 0.276626
\(225\) 0 0
\(226\) 493.453 0.145239
\(227\) −1743.66 −0.509828 −0.254914 0.966964i \(-0.582047\pi\)
−0.254914 + 0.966964i \(0.582047\pi\)
\(228\) 0 0
\(229\) −3074.87 −0.887308 −0.443654 0.896198i \(-0.646318\pi\)
−0.443654 + 0.896198i \(0.646318\pi\)
\(230\) −82.7252 −0.0237163
\(231\) 0 0
\(232\) 860.991 0.243650
\(233\) −2141.41 −0.602097 −0.301048 0.953609i \(-0.597337\pi\)
−0.301048 + 0.953609i \(0.597337\pi\)
\(234\) 0 0
\(235\) 7534.92 2.09159
\(236\) 3994.12 1.10168
\(237\) 0 0
\(238\) 354.752 0.0966184
\(239\) 6489.96 1.75649 0.878244 0.478213i \(-0.158715\pi\)
0.878244 + 0.478213i \(0.158715\pi\)
\(240\) 0 0
\(241\) −2275.08 −0.608095 −0.304048 0.952657i \(-0.598338\pi\)
−0.304048 + 0.952657i \(0.598338\pi\)
\(242\) 300.430 0.0798031
\(243\) 0 0
\(244\) 551.303 0.144646
\(245\) 1272.59 0.331848
\(246\) 0 0
\(247\) −5331.40 −1.37340
\(248\) 1266.24 0.324218
\(249\) 0 0
\(250\) 64.2459 0.0162531
\(251\) 5666.83 1.42505 0.712525 0.701647i \(-0.247552\pi\)
0.712525 + 0.701647i \(0.247552\pi\)
\(252\) 0 0
\(253\) 175.704 0.0436618
\(254\) 129.184 0.0319124
\(255\) 0 0
\(256\) 3813.64 0.931065
\(257\) −5186.02 −1.25873 −0.629367 0.777108i \(-0.716686\pi\)
−0.629367 + 0.777108i \(0.716686\pi\)
\(258\) 0 0
\(259\) −4401.22 −1.05590
\(260\) −6667.10 −1.59029
\(261\) 0 0
\(262\) −436.876 −0.103016
\(263\) 7104.47 1.66570 0.832852 0.553495i \(-0.186706\pi\)
0.832852 + 0.553495i \(0.186706\pi\)
\(264\) 0 0
\(265\) −3358.08 −0.778435
\(266\) −471.890 −0.108772
\(267\) 0 0
\(268\) 3382.83 0.771041
\(269\) −4632.95 −1.05010 −0.525048 0.851073i \(-0.675953\pi\)
−0.525048 + 0.851073i \(0.675953\pi\)
\(270\) 0 0
\(271\) −7501.74 −1.68154 −0.840771 0.541390i \(-0.817898\pi\)
−0.840771 + 0.541390i \(0.817898\pi\)
\(272\) 4559.80 1.01646
\(273\) 0 0
\(274\) −534.671 −0.117886
\(275\) 818.460 0.179473
\(276\) 0 0
\(277\) −6324.35 −1.37182 −0.685909 0.727688i \(-0.740595\pi\)
−0.685909 + 0.727688i \(0.740595\pi\)
\(278\) 349.343 0.0753677
\(279\) 0 0
\(280\) −1184.37 −0.252784
\(281\) −2655.90 −0.563835 −0.281918 0.959439i \(-0.590970\pi\)
−0.281918 + 0.959439i \(0.590970\pi\)
\(282\) 0 0
\(283\) 1984.20 0.416780 0.208390 0.978046i \(-0.433178\pi\)
0.208390 + 0.978046i \(0.433178\pi\)
\(284\) −1116.99 −0.233385
\(285\) 0 0
\(286\) −99.3349 −0.0205377
\(287\) −6714.29 −1.38095
\(288\) 0 0
\(289\) 381.590 0.0776694
\(290\) −822.748 −0.166598
\(291\) 0 0
\(292\) 2170.90 0.435077
\(293\) 1005.18 0.200420 0.100210 0.994966i \(-0.468048\pi\)
0.100210 + 0.994966i \(0.468048\pi\)
\(294\) 0 0
\(295\) −7660.20 −1.51185
\(296\) 802.125 0.157509
\(297\) 0 0
\(298\) −82.6708 −0.0160704
\(299\) 1266.89 0.245037
\(300\) 0 0
\(301\) 6150.04 1.17768
\(302\) −731.536 −0.139388
\(303\) 0 0
\(304\) −6065.42 −1.14433
\(305\) −1057.33 −0.198500
\(306\) 0 0
\(307\) −7512.58 −1.39663 −0.698315 0.715791i \(-0.746067\pi\)
−0.698315 + 0.715791i \(0.746067\pi\)
\(308\) 1253.37 0.231876
\(309\) 0 0
\(310\) −1209.99 −0.221687
\(311\) 594.508 0.108397 0.0541984 0.998530i \(-0.482740\pi\)
0.0541984 + 0.998530i \(0.482740\pi\)
\(312\) 0 0
\(313\) 1280.17 0.231180 0.115590 0.993297i \(-0.463124\pi\)
0.115590 + 0.993297i \(0.463124\pi\)
\(314\) −842.989 −0.151505
\(315\) 0 0
\(316\) 1863.10 0.331669
\(317\) 6849.61 1.21360 0.606802 0.794853i \(-0.292452\pi\)
0.606802 + 0.794853i \(0.292452\pi\)
\(318\) 0 0
\(319\) 1747.48 0.306708
\(320\) −7476.71 −1.30613
\(321\) 0 0
\(322\) 112.134 0.0194068
\(323\) −7042.84 −1.21323
\(324\) 0 0
\(325\) 5901.37 1.00723
\(326\) 187.246 0.0318117
\(327\) 0 0
\(328\) 1223.69 0.205996
\(329\) −10213.6 −1.71153
\(330\) 0 0
\(331\) −3516.94 −0.584014 −0.292007 0.956416i \(-0.594323\pi\)
−0.292007 + 0.956416i \(0.594323\pi\)
\(332\) −1853.86 −0.306457
\(333\) 0 0
\(334\) 676.297 0.110794
\(335\) −6487.82 −1.05811
\(336\) 0 0
\(337\) −316.930 −0.0512294 −0.0256147 0.999672i \(-0.508154\pi\)
−0.0256147 + 0.999672i \(0.508154\pi\)
\(338\) −197.596 −0.0317983
\(339\) 0 0
\(340\) −8807.31 −1.40483
\(341\) 2569.97 0.408128
\(342\) 0 0
\(343\) 5358.81 0.843581
\(344\) −1120.85 −0.175675
\(345\) 0 0
\(346\) −159.399 −0.0247669
\(347\) 7439.30 1.15090 0.575450 0.817837i \(-0.304827\pi\)
0.575450 + 0.817837i \(0.304827\pi\)
\(348\) 0 0
\(349\) 7957.28 1.22047 0.610234 0.792221i \(-0.291075\pi\)
0.610234 + 0.792221i \(0.291075\pi\)
\(350\) 522.338 0.0797719
\(351\) 0 0
\(352\) −343.042 −0.0519438
\(353\) −6627.43 −0.999270 −0.499635 0.866236i \(-0.666533\pi\)
−0.499635 + 0.866236i \(0.666533\pi\)
\(354\) 0 0
\(355\) 2142.25 0.320278
\(356\) 6995.58 1.04147
\(357\) 0 0
\(358\) −512.702 −0.0756904
\(359\) −2297.30 −0.337736 −0.168868 0.985639i \(-0.554011\pi\)
−0.168868 + 0.985639i \(0.554011\pi\)
\(360\) 0 0
\(361\) 2509.35 0.365848
\(362\) 730.186 0.106016
\(363\) 0 0
\(364\) 9037.25 1.30132
\(365\) −4163.50 −0.597062
\(366\) 0 0
\(367\) 3946.33 0.561299 0.280649 0.959810i \(-0.409450\pi\)
0.280649 + 0.959810i \(0.409450\pi\)
\(368\) 1441.31 0.204167
\(369\) 0 0
\(370\) −766.497 −0.107698
\(371\) 4551.87 0.636985
\(372\) 0 0
\(373\) −8079.93 −1.12162 −0.560808 0.827946i \(-0.689510\pi\)
−0.560808 + 0.827946i \(0.689510\pi\)
\(374\) −131.222 −0.0181426
\(375\) 0 0
\(376\) 1861.43 0.255309
\(377\) 12599.9 1.72129
\(378\) 0 0
\(379\) −14073.0 −1.90734 −0.953672 0.300848i \(-0.902730\pi\)
−0.953672 + 0.300848i \(0.902730\pi\)
\(380\) 11715.4 1.58155
\(381\) 0 0
\(382\) −201.806 −0.0270296
\(383\) −368.909 −0.0492177 −0.0246088 0.999697i \(-0.507834\pi\)
−0.0246088 + 0.999697i \(0.507834\pi\)
\(384\) 0 0
\(385\) −2403.81 −0.318206
\(386\) −992.372 −0.130856
\(387\) 0 0
\(388\) −162.317 −0.0212381
\(389\) 13191.9 1.71943 0.859715 0.510775i \(-0.170641\pi\)
0.859715 + 0.510775i \(0.170641\pi\)
\(390\) 0 0
\(391\) 1673.57 0.216461
\(392\) 314.382 0.0405068
\(393\) 0 0
\(394\) 901.027 0.115211
\(395\) −3573.18 −0.455155
\(396\) 0 0
\(397\) 9006.02 1.13854 0.569269 0.822151i \(-0.307226\pi\)
0.569269 + 0.822151i \(0.307226\pi\)
\(398\) 412.713 0.0519784
\(399\) 0 0
\(400\) 6713.86 0.839232
\(401\) −7510.15 −0.935259 −0.467630 0.883925i \(-0.654892\pi\)
−0.467630 + 0.883925i \(0.654892\pi\)
\(402\) 0 0
\(403\) 18530.3 2.29048
\(404\) −326.059 −0.0401536
\(405\) 0 0
\(406\) 1115.23 0.136325
\(407\) 1628.00 0.198273
\(408\) 0 0
\(409\) 4657.49 0.563076 0.281538 0.959550i \(-0.409155\pi\)
0.281538 + 0.959550i \(0.409155\pi\)
\(410\) −1169.33 −0.140852
\(411\) 0 0
\(412\) 1311.33 0.156807
\(413\) 10383.4 1.23713
\(414\) 0 0
\(415\) 3555.45 0.420555
\(416\) −2473.45 −0.291516
\(417\) 0 0
\(418\) 174.551 0.0204249
\(419\) −16461.2 −1.91929 −0.959647 0.281208i \(-0.909265\pi\)
−0.959647 + 0.281208i \(0.909265\pi\)
\(420\) 0 0
\(421\) −14629.5 −1.69358 −0.846792 0.531923i \(-0.821469\pi\)
−0.846792 + 0.531923i \(0.821469\pi\)
\(422\) −189.695 −0.0218820
\(423\) 0 0
\(424\) −829.583 −0.0950191
\(425\) 7795.77 0.889765
\(426\) 0 0
\(427\) 1433.21 0.162430
\(428\) −7701.36 −0.869764
\(429\) 0 0
\(430\) 1071.07 0.120119
\(431\) −5198.55 −0.580987 −0.290493 0.956877i \(-0.593819\pi\)
−0.290493 + 0.956877i \(0.593819\pi\)
\(432\) 0 0
\(433\) −3483.21 −0.386588 −0.193294 0.981141i \(-0.561917\pi\)
−0.193294 + 0.981141i \(0.561917\pi\)
\(434\) 1640.15 0.181404
\(435\) 0 0
\(436\) −11008.7 −1.20923
\(437\) −2226.18 −0.243690
\(438\) 0 0
\(439\) −10248.2 −1.11416 −0.557082 0.830457i \(-0.688079\pi\)
−0.557082 + 0.830457i \(0.688079\pi\)
\(440\) 438.096 0.0474668
\(441\) 0 0
\(442\) −946.157 −0.101819
\(443\) 7404.68 0.794146 0.397073 0.917787i \(-0.370026\pi\)
0.397073 + 0.917787i \(0.370026\pi\)
\(444\) 0 0
\(445\) −13416.6 −1.42923
\(446\) −575.857 −0.0611381
\(447\) 0 0
\(448\) 10134.7 1.06879
\(449\) 10822.8 1.13755 0.568774 0.822494i \(-0.307418\pi\)
0.568774 + 0.822494i \(0.307418\pi\)
\(450\) 0 0
\(451\) 2483.61 0.259309
\(452\) 16605.9 1.72804
\(453\) 0 0
\(454\) 411.623 0.0425516
\(455\) −17332.3 −1.78582
\(456\) 0 0
\(457\) 8312.90 0.850900 0.425450 0.904982i \(-0.360116\pi\)
0.425450 + 0.904982i \(0.360116\pi\)
\(458\) 725.879 0.0740570
\(459\) 0 0
\(460\) −2783.91 −0.282175
\(461\) 7234.32 0.730881 0.365440 0.930835i \(-0.380918\pi\)
0.365440 + 0.930835i \(0.380918\pi\)
\(462\) 0 0
\(463\) −5295.12 −0.531502 −0.265751 0.964042i \(-0.585620\pi\)
−0.265751 + 0.964042i \(0.585620\pi\)
\(464\) 14334.6 1.43420
\(465\) 0 0
\(466\) 505.519 0.0502526
\(467\) −12565.2 −1.24507 −0.622535 0.782592i \(-0.713897\pi\)
−0.622535 + 0.782592i \(0.713897\pi\)
\(468\) 0 0
\(469\) 8794.23 0.865842
\(470\) −1778.75 −0.174570
\(471\) 0 0
\(472\) −1892.38 −0.184542
\(473\) −2274.89 −0.221141
\(474\) 0 0
\(475\) −10369.9 −1.00169
\(476\) 11938.3 1.14956
\(477\) 0 0
\(478\) −1532.07 −0.146601
\(479\) −20358.9 −1.94200 −0.971002 0.239071i \(-0.923157\pi\)
−0.971002 + 0.239071i \(0.923157\pi\)
\(480\) 0 0
\(481\) 11738.4 1.11274
\(482\) 537.074 0.0507532
\(483\) 0 0
\(484\) 10110.2 0.949493
\(485\) 311.302 0.0291454
\(486\) 0 0
\(487\) 936.192 0.0871107 0.0435553 0.999051i \(-0.486132\pi\)
0.0435553 + 0.999051i \(0.486132\pi\)
\(488\) −261.203 −0.0242297
\(489\) 0 0
\(490\) −300.417 −0.0276969
\(491\) 464.136 0.0426602 0.0213301 0.999772i \(-0.493210\pi\)
0.0213301 + 0.999772i \(0.493210\pi\)
\(492\) 0 0
\(493\) 16644.6 1.52056
\(494\) 1258.57 0.114627
\(495\) 0 0
\(496\) 21081.6 1.90845
\(497\) −2903.81 −0.262080
\(498\) 0 0
\(499\) −10308.5 −0.924796 −0.462398 0.886672i \(-0.653011\pi\)
−0.462398 + 0.886672i \(0.653011\pi\)
\(500\) 2162.04 0.193378
\(501\) 0 0
\(502\) −1337.76 −0.118938
\(503\) −4196.36 −0.371981 −0.185990 0.982552i \(-0.559549\pi\)
−0.185990 + 0.982552i \(0.559549\pi\)
\(504\) 0 0
\(505\) 625.339 0.0551034
\(506\) −41.4782 −0.00364413
\(507\) 0 0
\(508\) 4347.37 0.379692
\(509\) 5925.58 0.516005 0.258003 0.966144i \(-0.416936\pi\)
0.258003 + 0.966144i \(0.416936\pi\)
\(510\) 0 0
\(511\) 5643.62 0.488570
\(512\) −4700.94 −0.405770
\(513\) 0 0
\(514\) 1224.25 0.105057
\(515\) −2514.95 −0.215189
\(516\) 0 0
\(517\) 3777.99 0.321384
\(518\) 1038.99 0.0881282
\(519\) 0 0
\(520\) 3158.82 0.266391
\(521\) −15787.7 −1.32759 −0.663794 0.747915i \(-0.731055\pi\)
−0.663794 + 0.747915i \(0.731055\pi\)
\(522\) 0 0
\(523\) −3558.50 −0.297519 −0.148760 0.988873i \(-0.547528\pi\)
−0.148760 + 0.988873i \(0.547528\pi\)
\(524\) −14702.0 −1.22568
\(525\) 0 0
\(526\) −1677.14 −0.139024
\(527\) 24478.8 2.02336
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 792.735 0.0649702
\(531\) 0 0
\(532\) −15880.3 −1.29417
\(533\) 17907.6 1.45528
\(534\) 0 0
\(535\) 14770.2 1.19359
\(536\) −1602.76 −0.129158
\(537\) 0 0
\(538\) 1093.69 0.0876438
\(539\) 638.072 0.0509902
\(540\) 0 0
\(541\) 5412.82 0.430158 0.215079 0.976597i \(-0.430999\pi\)
0.215079 + 0.976597i \(0.430999\pi\)
\(542\) 1770.92 0.140346
\(543\) 0 0
\(544\) −3267.45 −0.257520
\(545\) 21113.3 1.65944
\(546\) 0 0
\(547\) −2315.27 −0.180976 −0.0904881 0.995898i \(-0.528843\pi\)
−0.0904881 + 0.995898i \(0.528843\pi\)
\(548\) −17993.0 −1.40260
\(549\) 0 0
\(550\) −193.212 −0.0149793
\(551\) −22140.5 −1.71183
\(552\) 0 0
\(553\) 4843.44 0.372448
\(554\) 1492.98 0.114495
\(555\) 0 0
\(556\) 11756.3 0.896721
\(557\) −11430.7 −0.869545 −0.434772 0.900540i \(-0.643171\pi\)
−0.434772 + 0.900540i \(0.643171\pi\)
\(558\) 0 0
\(559\) −16402.7 −1.24108
\(560\) −19718.5 −1.48796
\(561\) 0 0
\(562\) 626.973 0.0470592
\(563\) 17414.8 1.30364 0.651819 0.758375i \(-0.274006\pi\)
0.651819 + 0.758375i \(0.274006\pi\)
\(564\) 0 0
\(565\) −31847.9 −2.37142
\(566\) −468.407 −0.0347856
\(567\) 0 0
\(568\) 529.223 0.0390945
\(569\) 17224.9 1.26908 0.634539 0.772891i \(-0.281190\pi\)
0.634539 + 0.772891i \(0.281190\pi\)
\(570\) 0 0
\(571\) −18042.2 −1.32232 −0.661159 0.750246i \(-0.729935\pi\)
−0.661159 + 0.750246i \(0.729935\pi\)
\(572\) −3342.86 −0.244357
\(573\) 0 0
\(574\) 1585.03 0.115258
\(575\) 2464.17 0.178718
\(576\) 0 0
\(577\) 16322.9 1.17769 0.588847 0.808244i \(-0.299582\pi\)
0.588847 + 0.808244i \(0.299582\pi\)
\(578\) −90.0811 −0.00648249
\(579\) 0 0
\(580\) −27687.5 −1.98217
\(581\) −4819.41 −0.344136
\(582\) 0 0
\(583\) −1683.73 −0.119611
\(584\) −1028.56 −0.0728800
\(585\) 0 0
\(586\) −237.291 −0.0167276
\(587\) −13631.1 −0.958460 −0.479230 0.877689i \(-0.659084\pi\)
−0.479230 + 0.877689i \(0.659084\pi\)
\(588\) 0 0
\(589\) −32561.5 −2.27789
\(590\) 1808.33 0.126183
\(591\) 0 0
\(592\) 13354.6 0.927144
\(593\) 4990.19 0.345569 0.172785 0.984960i \(-0.444724\pi\)
0.172785 + 0.984960i \(0.444724\pi\)
\(594\) 0 0
\(595\) −22896.1 −1.57756
\(596\) −2782.08 −0.191205
\(597\) 0 0
\(598\) −299.071 −0.0204514
\(599\) −15924.0 −1.08621 −0.543103 0.839666i \(-0.682751\pi\)
−0.543103 + 0.839666i \(0.682751\pi\)
\(600\) 0 0
\(601\) −1599.09 −0.108533 −0.0542666 0.998526i \(-0.517282\pi\)
−0.0542666 + 0.998526i \(0.517282\pi\)
\(602\) −1451.83 −0.0982925
\(603\) 0 0
\(604\) −24618.0 −1.65843
\(605\) −19390.0 −1.30300
\(606\) 0 0
\(607\) 15008.9 1.00361 0.501805 0.864981i \(-0.332670\pi\)
0.501805 + 0.864981i \(0.332670\pi\)
\(608\) 4346.35 0.289914
\(609\) 0 0
\(610\) 249.601 0.0165673
\(611\) 27240.5 1.80366
\(612\) 0 0
\(613\) 25798.6 1.69983 0.849914 0.526921i \(-0.176654\pi\)
0.849914 + 0.526921i \(0.176654\pi\)
\(614\) 1773.48 0.116566
\(615\) 0 0
\(616\) −593.839 −0.0388416
\(617\) 14138.0 0.922487 0.461244 0.887274i \(-0.347403\pi\)
0.461244 + 0.887274i \(0.347403\pi\)
\(618\) 0 0
\(619\) −14928.1 −0.969320 −0.484660 0.874703i \(-0.661057\pi\)
−0.484660 + 0.874703i \(0.661057\pi\)
\(620\) −40719.3 −2.63762
\(621\) 0 0
\(622\) −140.344 −0.00904709
\(623\) 18186.2 1.16952
\(624\) 0 0
\(625\) −17538.7 −1.12248
\(626\) −302.206 −0.0192949
\(627\) 0 0
\(628\) −28368.7 −1.80260
\(629\) 15506.6 0.982971
\(630\) 0 0
\(631\) −15845.5 −0.999683 −0.499842 0.866117i \(-0.666608\pi\)
−0.499842 + 0.866117i \(0.666608\pi\)
\(632\) −882.721 −0.0555581
\(633\) 0 0
\(634\) −1616.97 −0.101291
\(635\) −8337.69 −0.521057
\(636\) 0 0
\(637\) 4600.71 0.286165
\(638\) −412.523 −0.0255987
\(639\) 0 0
\(640\) 7238.39 0.447067
\(641\) −18989.4 −1.17010 −0.585052 0.810996i \(-0.698926\pi\)
−0.585052 + 0.810996i \(0.698926\pi\)
\(642\) 0 0
\(643\) 17937.4 1.10013 0.550063 0.835123i \(-0.314604\pi\)
0.550063 + 0.835123i \(0.314604\pi\)
\(644\) 3773.58 0.230901
\(645\) 0 0
\(646\) 1662.59 0.101260
\(647\) 8350.82 0.507426 0.253713 0.967280i \(-0.418348\pi\)
0.253713 + 0.967280i \(0.418348\pi\)
\(648\) 0 0
\(649\) −3840.80 −0.232303
\(650\) −1393.12 −0.0840659
\(651\) 0 0
\(652\) 6301.30 0.378494
\(653\) −222.430 −0.0133298 −0.00666491 0.999978i \(-0.502122\pi\)
−0.00666491 + 0.999978i \(0.502122\pi\)
\(654\) 0 0
\(655\) 28196.4 1.68202
\(656\) 20373.1 1.21256
\(657\) 0 0
\(658\) 2411.10 0.142849
\(659\) −8736.62 −0.516435 −0.258217 0.966087i \(-0.583135\pi\)
−0.258217 + 0.966087i \(0.583135\pi\)
\(660\) 0 0
\(661\) 5051.38 0.297241 0.148620 0.988894i \(-0.452517\pi\)
0.148620 + 0.988894i \(0.452517\pi\)
\(662\) 830.237 0.0487433
\(663\) 0 0
\(664\) 878.342 0.0513348
\(665\) 30456.3 1.77600
\(666\) 0 0
\(667\) 5261.20 0.305419
\(668\) 22759.1 1.31823
\(669\) 0 0
\(670\) 1531.57 0.0883128
\(671\) −530.141 −0.0305005
\(672\) 0 0
\(673\) −741.691 −0.0424816 −0.0212408 0.999774i \(-0.506762\pi\)
−0.0212408 + 0.999774i \(0.506762\pi\)
\(674\) 74.8171 0.00427574
\(675\) 0 0
\(676\) −6649.60 −0.378334
\(677\) −28146.0 −1.59784 −0.798919 0.601438i \(-0.794595\pi\)
−0.798919 + 0.601438i \(0.794595\pi\)
\(678\) 0 0
\(679\) −421.970 −0.0238494
\(680\) 4172.83 0.235325
\(681\) 0 0
\(682\) −606.687 −0.0340634
\(683\) 15890.9 0.890261 0.445130 0.895466i \(-0.353157\pi\)
0.445130 + 0.895466i \(0.353157\pi\)
\(684\) 0 0
\(685\) 34508.2 1.92480
\(686\) −1265.04 −0.0704075
\(687\) 0 0
\(688\) −18661.0 −1.03408
\(689\) −12140.3 −0.671273
\(690\) 0 0
\(691\) −10267.0 −0.565231 −0.282616 0.959233i \(-0.591202\pi\)
−0.282616 + 0.959233i \(0.591202\pi\)
\(692\) −5364.17 −0.294675
\(693\) 0 0
\(694\) −1756.18 −0.0960572
\(695\) −22547.0 −1.23058
\(696\) 0 0
\(697\) 23656.2 1.28557
\(698\) −1878.46 −0.101863
\(699\) 0 0
\(700\) 17578.0 0.949121
\(701\) 2254.95 0.121495 0.0607476 0.998153i \(-0.480652\pi\)
0.0607476 + 0.998153i \(0.480652\pi\)
\(702\) 0 0
\(703\) −20626.8 −1.10662
\(704\) −3748.80 −0.200694
\(705\) 0 0
\(706\) 1564.52 0.0834017
\(707\) −847.646 −0.0450905
\(708\) 0 0
\(709\) −20509.7 −1.08640 −0.543201 0.839603i \(-0.682788\pi\)
−0.543201 + 0.839603i \(0.682788\pi\)
\(710\) −505.716 −0.0267312
\(711\) 0 0
\(712\) −3314.45 −0.174458
\(713\) 7737.51 0.406412
\(714\) 0 0
\(715\) 6411.17 0.335335
\(716\) −17253.7 −0.900560
\(717\) 0 0
\(718\) 542.320 0.0281883
\(719\) −16691.7 −0.865782 −0.432891 0.901446i \(-0.642506\pi\)
−0.432891 + 0.901446i \(0.642506\pi\)
\(720\) 0 0
\(721\) 3409.02 0.176087
\(722\) −592.377 −0.0305346
\(723\) 0 0
\(724\) 24572.6 1.26137
\(725\) 24507.5 1.25543
\(726\) 0 0
\(727\) 23099.2 1.17841 0.589203 0.807985i \(-0.299442\pi\)
0.589203 + 0.807985i \(0.299442\pi\)
\(728\) −4281.78 −0.217985
\(729\) 0 0
\(730\) 982.870 0.0498324
\(731\) −21668.2 −1.09634
\(732\) 0 0
\(733\) 12216.5 0.615590 0.307795 0.951453i \(-0.400409\pi\)
0.307795 + 0.951453i \(0.400409\pi\)
\(734\) −931.602 −0.0468475
\(735\) 0 0
\(736\) −1032.81 −0.0517254
\(737\) −3252.97 −0.162585
\(738\) 0 0
\(739\) −3094.18 −0.154020 −0.0770102 0.997030i \(-0.524537\pi\)
−0.0770102 + 0.997030i \(0.524537\pi\)
\(740\) −25794.5 −1.28139
\(741\) 0 0
\(742\) −1074.55 −0.0531645
\(743\) 1452.57 0.0717223 0.0358611 0.999357i \(-0.488583\pi\)
0.0358611 + 0.999357i \(0.488583\pi\)
\(744\) 0 0
\(745\) 5335.66 0.262394
\(746\) 1907.41 0.0936131
\(747\) 0 0
\(748\) −4415.96 −0.215860
\(749\) −20021.0 −0.976703
\(750\) 0 0
\(751\) 30754.7 1.49435 0.747174 0.664629i \(-0.231410\pi\)
0.747174 + 0.664629i \(0.231410\pi\)
\(752\) 30991.0 1.50282
\(753\) 0 0
\(754\) −2974.43 −0.143664
\(755\) 47214.1 2.27589
\(756\) 0 0
\(757\) 14257.0 0.684516 0.342258 0.939606i \(-0.388808\pi\)
0.342258 + 0.939606i \(0.388808\pi\)
\(758\) 3322.19 0.159192
\(759\) 0 0
\(760\) −5550.68 −0.264927
\(761\) −31092.0 −1.48106 −0.740528 0.672025i \(-0.765425\pi\)
−0.740528 + 0.672025i \(0.765425\pi\)
\(762\) 0 0
\(763\) −28619.1 −1.35790
\(764\) −6791.28 −0.321597
\(765\) 0 0
\(766\) 87.0876 0.00410783
\(767\) −27693.5 −1.30372
\(768\) 0 0
\(769\) −1825.91 −0.0856230 −0.0428115 0.999083i \(-0.513631\pi\)
−0.0428115 + 0.999083i \(0.513631\pi\)
\(770\) 567.462 0.0265583
\(771\) 0 0
\(772\) −33395.8 −1.55692
\(773\) 7810.87 0.363438 0.181719 0.983351i \(-0.441834\pi\)
0.181719 + 0.983351i \(0.441834\pi\)
\(774\) 0 0
\(775\) 36042.6 1.67056
\(776\) 76.9044 0.00355761
\(777\) 0 0
\(778\) −3114.19 −0.143508
\(779\) −31467.3 −1.44728
\(780\) 0 0
\(781\) 1074.12 0.0492124
\(782\) −395.076 −0.0180664
\(783\) 0 0
\(784\) 5234.13 0.238435
\(785\) 54407.4 2.47374
\(786\) 0 0
\(787\) 6847.58 0.310152 0.155076 0.987903i \(-0.450438\pi\)
0.155076 + 0.987903i \(0.450438\pi\)
\(788\) 30321.8 1.37077
\(789\) 0 0
\(790\) 843.513 0.0379884
\(791\) 43169.9 1.94051
\(792\) 0 0
\(793\) −3822.49 −0.171174
\(794\) −2126.03 −0.0950253
\(795\) 0 0
\(796\) 13888.8 0.618437
\(797\) 12059.9 0.535991 0.267995 0.963420i \(-0.413639\pi\)
0.267995 + 0.963420i \(0.413639\pi\)
\(798\) 0 0
\(799\) 35985.0 1.59332
\(800\) −4811.00 −0.212618
\(801\) 0 0
\(802\) 1772.91 0.0780592
\(803\) −2087.57 −0.0917418
\(804\) 0 0
\(805\) −7237.24 −0.316868
\(806\) −4374.42 −0.191169
\(807\) 0 0
\(808\) 154.484 0.00672616
\(809\) 17144.1 0.745061 0.372531 0.928020i \(-0.378490\pi\)
0.372531 + 0.928020i \(0.378490\pi\)
\(810\) 0 0
\(811\) 5857.32 0.253611 0.126805 0.991928i \(-0.459528\pi\)
0.126805 + 0.991928i \(0.459528\pi\)
\(812\) 37530.4 1.62199
\(813\) 0 0
\(814\) −384.319 −0.0165484
\(815\) −12085.1 −0.519412
\(816\) 0 0
\(817\) 28822.9 1.23425
\(818\) −1099.49 −0.0469958
\(819\) 0 0
\(820\) −39350.9 −1.67585
\(821\) 9358.29 0.397816 0.198908 0.980018i \(-0.436261\pi\)
0.198908 + 0.980018i \(0.436261\pi\)
\(822\) 0 0
\(823\) 9014.93 0.381823 0.190912 0.981607i \(-0.438856\pi\)
0.190912 + 0.981607i \(0.438856\pi\)
\(824\) −621.296 −0.0262669
\(825\) 0 0
\(826\) −2451.19 −0.103254
\(827\) 2953.43 0.124185 0.0620924 0.998070i \(-0.480223\pi\)
0.0620924 + 0.998070i \(0.480223\pi\)
\(828\) 0 0
\(829\) −37652.3 −1.57747 −0.788733 0.614736i \(-0.789262\pi\)
−0.788733 + 0.614736i \(0.789262\pi\)
\(830\) −839.328 −0.0351006
\(831\) 0 0
\(832\) −27030.1 −1.12632
\(833\) 6077.59 0.252792
\(834\) 0 0
\(835\) −43648.9 −1.80902
\(836\) 5874.09 0.243014
\(837\) 0 0
\(838\) 3885.97 0.160189
\(839\) −4167.68 −0.171495 −0.0857475 0.996317i \(-0.527328\pi\)
−0.0857475 + 0.996317i \(0.527328\pi\)
\(840\) 0 0
\(841\) 27936.5 1.14545
\(842\) 3453.56 0.141351
\(843\) 0 0
\(844\) −6383.71 −0.260351
\(845\) 12753.1 0.519194
\(846\) 0 0
\(847\) 26283.2 1.06623
\(848\) −13811.7 −0.559311
\(849\) 0 0
\(850\) −1840.33 −0.0742621
\(851\) 4901.49 0.197439
\(852\) 0 0
\(853\) −30540.2 −1.22588 −0.612941 0.790129i \(-0.710014\pi\)
−0.612941 + 0.790129i \(0.710014\pi\)
\(854\) −338.334 −0.0135568
\(855\) 0 0
\(856\) 3648.84 0.145695
\(857\) −42576.3 −1.69706 −0.848529 0.529148i \(-0.822512\pi\)
−0.848529 + 0.529148i \(0.822512\pi\)
\(858\) 0 0
\(859\) −3130.47 −0.124343 −0.0621714 0.998065i \(-0.519803\pi\)
−0.0621714 + 0.998065i \(0.519803\pi\)
\(860\) 36044.0 1.42917
\(861\) 0 0
\(862\) 1227.21 0.0484907
\(863\) −1198.11 −0.0472587 −0.0236294 0.999721i \(-0.507522\pi\)
−0.0236294 + 0.999721i \(0.507522\pi\)
\(864\) 0 0
\(865\) 10287.8 0.404387
\(866\) 822.274 0.0322656
\(867\) 0 0
\(868\) 55195.0 2.15834
\(869\) −1791.58 −0.0699369
\(870\) 0 0
\(871\) −23455.0 −0.912449
\(872\) 5215.85 0.202558
\(873\) 0 0
\(874\) 525.529 0.0203390
\(875\) 5620.58 0.217154
\(876\) 0 0
\(877\) 3725.02 0.143427 0.0717133 0.997425i \(-0.477153\pi\)
0.0717133 + 0.997425i \(0.477153\pi\)
\(878\) 2419.26 0.0929911
\(879\) 0 0
\(880\) 7293.85 0.279404
\(881\) −20793.4 −0.795172 −0.397586 0.917565i \(-0.630152\pi\)
−0.397586 + 0.917565i \(0.630152\pi\)
\(882\) 0 0
\(883\) −4745.60 −0.180863 −0.0904316 0.995903i \(-0.528825\pi\)
−0.0904316 + 0.995903i \(0.528825\pi\)
\(884\) −31840.5 −1.21144
\(885\) 0 0
\(886\) −1748.01 −0.0662815
\(887\) 18391.5 0.696198 0.348099 0.937458i \(-0.386827\pi\)
0.348099 + 0.937458i \(0.386827\pi\)
\(888\) 0 0
\(889\) 11301.7 0.426376
\(890\) 3167.23 0.119287
\(891\) 0 0
\(892\) −19379.0 −0.727418
\(893\) −47867.1 −1.79374
\(894\) 0 0
\(895\) 33090.3 1.23585
\(896\) −9811.64 −0.365830
\(897\) 0 0
\(898\) −2554.91 −0.0949428
\(899\) 76953.8 2.85490
\(900\) 0 0
\(901\) −16037.4 −0.592989
\(902\) −586.300 −0.0216426
\(903\) 0 0
\(904\) −7867.75 −0.289466
\(905\) −47127.0 −1.73100
\(906\) 0 0
\(907\) −8492.10 −0.310888 −0.155444 0.987845i \(-0.549681\pi\)
−0.155444 + 0.987845i \(0.549681\pi\)
\(908\) 13852.1 0.506276
\(909\) 0 0
\(910\) 4091.59 0.149049
\(911\) −29585.7 −1.07598 −0.537990 0.842951i \(-0.680816\pi\)
−0.537990 + 0.842951i \(0.680816\pi\)
\(912\) 0 0
\(913\) 1782.69 0.0646205
\(914\) −1962.41 −0.0710183
\(915\) 0 0
\(916\) 24427.6 0.881127
\(917\) −38220.2 −1.37638
\(918\) 0 0
\(919\) −12182.1 −0.437268 −0.218634 0.975807i \(-0.570160\pi\)
−0.218634 + 0.975807i \(0.570160\pi\)
\(920\) 1318.99 0.0472673
\(921\) 0 0
\(922\) −1707.79 −0.0610012
\(923\) 7744.74 0.276188
\(924\) 0 0
\(925\) 22832.0 0.811578
\(926\) 1250.01 0.0443605
\(927\) 0 0
\(928\) −10271.9 −0.363352
\(929\) −4720.51 −0.166712 −0.0833558 0.996520i \(-0.526564\pi\)
−0.0833558 + 0.996520i \(0.526564\pi\)
\(930\) 0 0
\(931\) −8084.38 −0.284592
\(932\) 17012.0 0.597903
\(933\) 0 0
\(934\) 2966.24 0.103917
\(935\) 8469.23 0.296228
\(936\) 0 0
\(937\) −14115.7 −0.492144 −0.246072 0.969252i \(-0.579140\pi\)
−0.246072 + 0.969252i \(0.579140\pi\)
\(938\) −2076.04 −0.0722654
\(939\) 0 0
\(940\) −59859.4 −2.07702
\(941\) 49060.5 1.69960 0.849802 0.527101i \(-0.176721\pi\)
0.849802 + 0.527101i \(0.176721\pi\)
\(942\) 0 0
\(943\) 7477.49 0.258219
\(944\) −31506.3 −1.08627
\(945\) 0 0
\(946\) 537.029 0.0184570
\(947\) −6322.87 −0.216965 −0.108482 0.994098i \(-0.534599\pi\)
−0.108482 + 0.994098i \(0.534599\pi\)
\(948\) 0 0
\(949\) −15052.1 −0.514869
\(950\) 2448.00 0.0836038
\(951\) 0 0
\(952\) −5656.27 −0.192564
\(953\) −44749.8 −1.52108 −0.760540 0.649291i \(-0.775066\pi\)
−0.760540 + 0.649291i \(0.775066\pi\)
\(954\) 0 0
\(955\) 13024.8 0.441332
\(956\) −51558.0 −1.74425
\(957\) 0 0
\(958\) 4806.07 0.162085
\(959\) −46775.8 −1.57505
\(960\) 0 0
\(961\) 83382.9 2.79893
\(962\) −2771.07 −0.0928720
\(963\) 0 0
\(964\) 18073.9 0.603859
\(965\) 64048.7 2.13658
\(966\) 0 0
\(967\) −13589.8 −0.451934 −0.225967 0.974135i \(-0.572554\pi\)
−0.225967 + 0.974135i \(0.572554\pi\)
\(968\) −4790.13 −0.159050
\(969\) 0 0
\(970\) −73.4885 −0.00243255
\(971\) 32341.7 1.06889 0.534447 0.845202i \(-0.320520\pi\)
0.534447 + 0.845202i \(0.320520\pi\)
\(972\) 0 0
\(973\) 30562.4 1.00697
\(974\) −221.005 −0.00727048
\(975\) 0 0
\(976\) −4348.76 −0.142623
\(977\) −50596.6 −1.65684 −0.828418 0.560111i \(-0.810758\pi\)
−0.828418 + 0.560111i \(0.810758\pi\)
\(978\) 0 0
\(979\) −6727.04 −0.219609
\(980\) −10109.8 −0.329536
\(981\) 0 0
\(982\) −109.568 −0.00356053
\(983\) 50185.4 1.62835 0.814174 0.580621i \(-0.197190\pi\)
0.814174 + 0.580621i \(0.197190\pi\)
\(984\) 0 0
\(985\) −58153.2 −1.88113
\(986\) −3929.25 −0.126910
\(987\) 0 0
\(988\) 42354.1 1.36383
\(989\) −6849.10 −0.220211
\(990\) 0 0
\(991\) −4158.30 −0.133292 −0.0666462 0.997777i \(-0.521230\pi\)
−0.0666462 + 0.997777i \(0.521230\pi\)
\(992\) −15106.6 −0.483502
\(993\) 0 0
\(994\) 685.498 0.0218739
\(995\) −26636.9 −0.848690
\(996\) 0 0
\(997\) −6534.65 −0.207577 −0.103789 0.994599i \(-0.533097\pi\)
−0.103789 + 0.994599i \(0.533097\pi\)
\(998\) 2433.51 0.0771859
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.c.1.1 2
3.2 odd 2 69.4.a.a.1.2 2
12.11 even 2 1104.4.a.h.1.1 2
15.14 odd 2 1725.4.a.n.1.1 2
69.68 even 2 1587.4.a.b.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.a.1.2 2 3.2 odd 2
207.4.a.c.1.1 2 1.1 even 1 trivial
1104.4.a.h.1.1 2 12.11 even 2
1587.4.a.b.1.2 2 69.68 even 2
1725.4.a.n.1.1 2 15.14 odd 2