Properties

Label 207.4.a.b.1.2
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.82843 q^{2} +6.65685 q^{4} -15.3137 q^{5} -16.8284 q^{7} -5.14214 q^{8} -58.6274 q^{10} +55.7990 q^{11} -46.9706 q^{13} -64.4264 q^{14} -72.9411 q^{16} -62.1421 q^{17} -141.882 q^{19} -101.941 q^{20} +213.622 q^{22} -23.0000 q^{23} +109.510 q^{25} -179.823 q^{26} -112.024 q^{28} +288.676 q^{29} +68.7351 q^{31} -238.113 q^{32} -237.907 q^{34} +257.706 q^{35} +179.622 q^{37} -543.186 q^{38} +78.7452 q^{40} +71.5391 q^{41} -159.088 q^{43} +371.446 q^{44} -88.0538 q^{46} +272.902 q^{47} -59.8040 q^{49} +419.250 q^{50} -312.676 q^{52} +12.2843 q^{53} -854.489 q^{55} +86.5341 q^{56} +1105.18 q^{58} -426.891 q^{59} -243.407 q^{61} +263.147 q^{62} -328.068 q^{64} +719.294 q^{65} -81.0496 q^{67} -413.671 q^{68} +986.607 q^{70} -696.930 q^{71} +568.392 q^{73} +687.671 q^{74} -944.489 q^{76} -939.009 q^{77} +719.123 q^{79} +1117.00 q^{80} +273.882 q^{82} -1336.80 q^{83} +951.627 q^{85} -609.058 q^{86} -286.926 q^{88} +337.935 q^{89} +790.441 q^{91} -153.108 q^{92} +1044.78 q^{94} +2172.74 q^{95} -1419.76 q^{97} -228.955 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 8 q^{5} - 28 q^{7} + 18 q^{8} - 72 q^{10} + 72 q^{11} - 60 q^{13} - 44 q^{14} - 78 q^{16} - 96 q^{17} - 148 q^{19} - 136 q^{20} + 184 q^{22} - 46 q^{23} + 38 q^{25} - 156 q^{26}+ \cdots + 170 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.82843 1.35355 0.676777 0.736188i \(-0.263376\pi\)
0.676777 + 0.736188i \(0.263376\pi\)
\(3\) 0 0
\(4\) 6.65685 0.832107
\(5\) −15.3137 −1.36970 −0.684850 0.728684i \(-0.740132\pi\)
−0.684850 + 0.728684i \(0.740132\pi\)
\(6\) 0 0
\(7\) −16.8284 −0.908650 −0.454325 0.890836i \(-0.650119\pi\)
−0.454325 + 0.890836i \(0.650119\pi\)
\(8\) −5.14214 −0.227252
\(9\) 0 0
\(10\) −58.6274 −1.85396
\(11\) 55.7990 1.52946 0.764729 0.644353i \(-0.222873\pi\)
0.764729 + 0.644353i \(0.222873\pi\)
\(12\) 0 0
\(13\) −46.9706 −1.00210 −0.501050 0.865419i \(-0.667053\pi\)
−0.501050 + 0.865419i \(0.667053\pi\)
\(14\) −64.4264 −1.22991
\(15\) 0 0
\(16\) −72.9411 −1.13971
\(17\) −62.1421 −0.886570 −0.443285 0.896381i \(-0.646187\pi\)
−0.443285 + 0.896381i \(0.646187\pi\)
\(18\) 0 0
\(19\) −141.882 −1.71316 −0.856579 0.516015i \(-0.827415\pi\)
−0.856579 + 0.516015i \(0.827415\pi\)
\(20\) −101.941 −1.13974
\(21\) 0 0
\(22\) 213.622 2.07020
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 109.510 0.876077
\(26\) −179.823 −1.35639
\(27\) 0 0
\(28\) −112.024 −0.756094
\(29\) 288.676 1.84848 0.924238 0.381816i \(-0.124701\pi\)
0.924238 + 0.381816i \(0.124701\pi\)
\(30\) 0 0
\(31\) 68.7351 0.398232 0.199116 0.979976i \(-0.436193\pi\)
0.199116 + 0.979976i \(0.436193\pi\)
\(32\) −238.113 −1.31540
\(33\) 0 0
\(34\) −237.907 −1.20002
\(35\) 257.706 1.24458
\(36\) 0 0
\(37\) 179.622 0.798101 0.399050 0.916929i \(-0.369340\pi\)
0.399050 + 0.916929i \(0.369340\pi\)
\(38\) −543.186 −2.31885
\(39\) 0 0
\(40\) 78.7452 0.311268
\(41\) 71.5391 0.272501 0.136250 0.990674i \(-0.456495\pi\)
0.136250 + 0.990674i \(0.456495\pi\)
\(42\) 0 0
\(43\) −159.088 −0.564203 −0.282102 0.959385i \(-0.591032\pi\)
−0.282102 + 0.959385i \(0.591032\pi\)
\(44\) 371.446 1.27267
\(45\) 0 0
\(46\) −88.0538 −0.282235
\(47\) 272.902 0.846953 0.423476 0.905907i \(-0.360810\pi\)
0.423476 + 0.905907i \(0.360810\pi\)
\(48\) 0 0
\(49\) −59.8040 −0.174356
\(50\) 419.250 1.18582
\(51\) 0 0
\(52\) −312.676 −0.833854
\(53\) 12.2843 0.0318373 0.0159186 0.999873i \(-0.494933\pi\)
0.0159186 + 0.999873i \(0.494933\pi\)
\(54\) 0 0
\(55\) −854.489 −2.09490
\(56\) 86.5341 0.206493
\(57\) 0 0
\(58\) 1105.18 2.50201
\(59\) −426.891 −0.941975 −0.470988 0.882140i \(-0.656102\pi\)
−0.470988 + 0.882140i \(0.656102\pi\)
\(60\) 0 0
\(61\) −243.407 −0.510903 −0.255451 0.966822i \(-0.582224\pi\)
−0.255451 + 0.966822i \(0.582224\pi\)
\(62\) 263.147 0.539028
\(63\) 0 0
\(64\) −328.068 −0.640758
\(65\) 719.294 1.37258
\(66\) 0 0
\(67\) −81.0496 −0.147788 −0.0738940 0.997266i \(-0.523543\pi\)
−0.0738940 + 0.997266i \(0.523543\pi\)
\(68\) −413.671 −0.737721
\(69\) 0 0
\(70\) 986.607 1.68460
\(71\) −696.930 −1.16494 −0.582468 0.812854i \(-0.697913\pi\)
−0.582468 + 0.812854i \(0.697913\pi\)
\(72\) 0 0
\(73\) 568.392 0.911305 0.455652 0.890158i \(-0.349406\pi\)
0.455652 + 0.890158i \(0.349406\pi\)
\(74\) 687.671 1.08027
\(75\) 0 0
\(76\) −944.489 −1.42553
\(77\) −939.009 −1.38974
\(78\) 0 0
\(79\) 719.123 1.02415 0.512074 0.858942i \(-0.328877\pi\)
0.512074 + 0.858942i \(0.328877\pi\)
\(80\) 1117.00 1.56105
\(81\) 0 0
\(82\) 273.882 0.368844
\(83\) −1336.80 −1.76786 −0.883932 0.467616i \(-0.845113\pi\)
−0.883932 + 0.467616i \(0.845113\pi\)
\(84\) 0 0
\(85\) 951.627 1.21433
\(86\) −609.058 −0.763679
\(87\) 0 0
\(88\) −286.926 −0.347573
\(89\) 337.935 0.402484 0.201242 0.979542i \(-0.435502\pi\)
0.201242 + 0.979542i \(0.435502\pi\)
\(90\) 0 0
\(91\) 790.441 0.910557
\(92\) −153.108 −0.173506
\(93\) 0 0
\(94\) 1044.78 1.14640
\(95\) 2172.74 2.34651
\(96\) 0 0
\(97\) −1419.76 −1.48613 −0.743067 0.669217i \(-0.766630\pi\)
−0.743067 + 0.669217i \(0.766630\pi\)
\(98\) −228.955 −0.236000
\(99\) 0 0
\(100\) 728.990 0.728990
\(101\) −471.275 −0.464293 −0.232147 0.972681i \(-0.574575\pi\)
−0.232147 + 0.972681i \(0.574575\pi\)
\(102\) 0 0
\(103\) −1129.00 −1.08004 −0.540019 0.841653i \(-0.681583\pi\)
−0.540019 + 0.841653i \(0.681583\pi\)
\(104\) 241.529 0.227729
\(105\) 0 0
\(106\) 47.0294 0.0430934
\(107\) −203.543 −0.183900 −0.0919499 0.995764i \(-0.529310\pi\)
−0.0919499 + 0.995764i \(0.529310\pi\)
\(108\) 0 0
\(109\) −1938.34 −1.70329 −0.851646 0.524117i \(-0.824395\pi\)
−0.851646 + 0.524117i \(0.824395\pi\)
\(110\) −3271.35 −2.83555
\(111\) 0 0
\(112\) 1227.48 1.03559
\(113\) −1663.79 −1.38510 −0.692548 0.721371i \(-0.743512\pi\)
−0.692548 + 0.721371i \(0.743512\pi\)
\(114\) 0 0
\(115\) 352.215 0.285602
\(116\) 1921.68 1.53813
\(117\) 0 0
\(118\) −1634.32 −1.27501
\(119\) 1045.75 0.805581
\(120\) 0 0
\(121\) 1782.53 1.33924
\(122\) −931.866 −0.691534
\(123\) 0 0
\(124\) 457.559 0.331371
\(125\) 237.214 0.169737
\(126\) 0 0
\(127\) −734.676 −0.513323 −0.256661 0.966501i \(-0.582622\pi\)
−0.256661 + 0.966501i \(0.582622\pi\)
\(128\) 648.917 0.448099
\(129\) 0 0
\(130\) 2753.76 1.85785
\(131\) 2855.44 1.90443 0.952217 0.305421i \(-0.0987973\pi\)
0.952217 + 0.305421i \(0.0987973\pi\)
\(132\) 0 0
\(133\) 2387.66 1.55666
\(134\) −310.293 −0.200039
\(135\) 0 0
\(136\) 319.543 0.201475
\(137\) −1430.56 −0.892127 −0.446063 0.895001i \(-0.647174\pi\)
−0.446063 + 0.895001i \(0.647174\pi\)
\(138\) 0 0
\(139\) 288.410 0.175990 0.0879951 0.996121i \(-0.471954\pi\)
0.0879951 + 0.996121i \(0.471954\pi\)
\(140\) 1715.51 1.03562
\(141\) 0 0
\(142\) −2668.15 −1.57680
\(143\) −2620.91 −1.53267
\(144\) 0 0
\(145\) −4420.70 −2.53186
\(146\) 2176.05 1.23350
\(147\) 0 0
\(148\) 1195.72 0.664105
\(149\) 1937.08 1.06504 0.532522 0.846416i \(-0.321244\pi\)
0.532522 + 0.846416i \(0.321244\pi\)
\(150\) 0 0
\(151\) 1847.98 0.995935 0.497967 0.867196i \(-0.334080\pi\)
0.497967 + 0.867196i \(0.334080\pi\)
\(152\) 729.578 0.389320
\(153\) 0 0
\(154\) −3594.93 −1.88109
\(155\) −1052.59 −0.545458
\(156\) 0 0
\(157\) 51.2489 0.0260516 0.0130258 0.999915i \(-0.495854\pi\)
0.0130258 + 0.999915i \(0.495854\pi\)
\(158\) 2753.11 1.38624
\(159\) 0 0
\(160\) 3646.39 1.80170
\(161\) 387.054 0.189467
\(162\) 0 0
\(163\) −607.960 −0.292142 −0.146071 0.989274i \(-0.546663\pi\)
−0.146071 + 0.989274i \(0.546663\pi\)
\(164\) 476.225 0.226750
\(165\) 0 0
\(166\) −5117.83 −2.39290
\(167\) 3253.06 1.50736 0.753682 0.657240i \(-0.228276\pi\)
0.753682 + 0.657240i \(0.228276\pi\)
\(168\) 0 0
\(169\) 9.23376 0.00420290
\(170\) 3643.23 1.64367
\(171\) 0 0
\(172\) −1059.03 −0.469477
\(173\) −1975.75 −0.868288 −0.434144 0.900843i \(-0.642949\pi\)
−0.434144 + 0.900843i \(0.642949\pi\)
\(174\) 0 0
\(175\) −1842.88 −0.796047
\(176\) −4070.04 −1.74313
\(177\) 0 0
\(178\) 1293.76 0.544783
\(179\) −4261.58 −1.77947 −0.889737 0.456474i \(-0.849112\pi\)
−0.889737 + 0.456474i \(0.849112\pi\)
\(180\) 0 0
\(181\) 2043.29 0.839095 0.419548 0.907733i \(-0.362189\pi\)
0.419548 + 0.907733i \(0.362189\pi\)
\(182\) 3026.14 1.23249
\(183\) 0 0
\(184\) 118.269 0.0473854
\(185\) −2750.68 −1.09316
\(186\) 0 0
\(187\) −3467.47 −1.35597
\(188\) 1816.67 0.704755
\(189\) 0 0
\(190\) 8318.19 3.17613
\(191\) 73.1001 0.0276929 0.0138464 0.999904i \(-0.495592\pi\)
0.0138464 + 0.999904i \(0.495592\pi\)
\(192\) 0 0
\(193\) −227.901 −0.0849982 −0.0424991 0.999097i \(-0.513532\pi\)
−0.0424991 + 0.999097i \(0.513532\pi\)
\(194\) −5435.46 −2.01156
\(195\) 0 0
\(196\) −398.107 −0.145083
\(197\) −577.781 −0.208960 −0.104480 0.994527i \(-0.533318\pi\)
−0.104480 + 0.994527i \(0.533318\pi\)
\(198\) 0 0
\(199\) −4569.01 −1.62758 −0.813790 0.581159i \(-0.802599\pi\)
−0.813790 + 0.581159i \(0.802599\pi\)
\(200\) −563.114 −0.199091
\(201\) 0 0
\(202\) −1804.24 −0.628446
\(203\) −4857.97 −1.67962
\(204\) 0 0
\(205\) −1095.53 −0.373244
\(206\) −4322.31 −1.46189
\(207\) 0 0
\(208\) 3426.09 1.14210
\(209\) −7916.89 −2.62020
\(210\) 0 0
\(211\) −1816.71 −0.592736 −0.296368 0.955074i \(-0.595775\pi\)
−0.296368 + 0.955074i \(0.595775\pi\)
\(212\) 81.7746 0.0264920
\(213\) 0 0
\(214\) −779.251 −0.248918
\(215\) 2436.23 0.772789
\(216\) 0 0
\(217\) −1156.70 −0.361853
\(218\) −7420.78 −2.30550
\(219\) 0 0
\(220\) −5688.21 −1.74318
\(221\) 2918.85 0.888431
\(222\) 0 0
\(223\) 3494.47 1.04936 0.524679 0.851300i \(-0.324185\pi\)
0.524679 + 0.851300i \(0.324185\pi\)
\(224\) 4007.06 1.19524
\(225\) 0 0
\(226\) −6369.69 −1.87480
\(227\) −1044.51 −0.305402 −0.152701 0.988272i \(-0.548797\pi\)
−0.152701 + 0.988272i \(0.548797\pi\)
\(228\) 0 0
\(229\) 2141.54 0.617979 0.308989 0.951065i \(-0.400009\pi\)
0.308989 + 0.951065i \(0.400009\pi\)
\(230\) 1348.43 0.386578
\(231\) 0 0
\(232\) −1484.41 −0.420071
\(233\) −716.802 −0.201542 −0.100771 0.994910i \(-0.532131\pi\)
−0.100771 + 0.994910i \(0.532131\pi\)
\(234\) 0 0
\(235\) −4179.14 −1.16007
\(236\) −2841.75 −0.783824
\(237\) 0 0
\(238\) 4003.59 1.09040
\(239\) 3515.96 0.951585 0.475792 0.879558i \(-0.342161\pi\)
0.475792 + 0.879558i \(0.342161\pi\)
\(240\) 0 0
\(241\) 5684.64 1.51942 0.759710 0.650262i \(-0.225341\pi\)
0.759710 + 0.650262i \(0.225341\pi\)
\(242\) 6824.28 1.81273
\(243\) 0 0
\(244\) −1620.33 −0.425126
\(245\) 915.822 0.238815
\(246\) 0 0
\(247\) 6664.29 1.71676
\(248\) −353.445 −0.0904991
\(249\) 0 0
\(250\) 908.158 0.229748
\(251\) 6946.90 1.74695 0.873475 0.486870i \(-0.161861\pi\)
0.873475 + 0.486870i \(0.161861\pi\)
\(252\) 0 0
\(253\) −1283.38 −0.318914
\(254\) −2812.65 −0.694810
\(255\) 0 0
\(256\) 5108.88 1.24728
\(257\) 1776.30 0.431139 0.215569 0.976489i \(-0.430839\pi\)
0.215569 + 0.976489i \(0.430839\pi\)
\(258\) 0 0
\(259\) −3022.76 −0.725194
\(260\) 4788.23 1.14213
\(261\) 0 0
\(262\) 10931.8 2.57775
\(263\) −112.405 −0.0263544 −0.0131772 0.999913i \(-0.504195\pi\)
−0.0131772 + 0.999913i \(0.504195\pi\)
\(264\) 0 0
\(265\) −188.118 −0.0436075
\(266\) 9140.96 2.10702
\(267\) 0 0
\(268\) −539.536 −0.122975
\(269\) 5916.43 1.34101 0.670504 0.741906i \(-0.266078\pi\)
0.670504 + 0.741906i \(0.266078\pi\)
\(270\) 0 0
\(271\) −1011.96 −0.226836 −0.113418 0.993547i \(-0.536180\pi\)
−0.113418 + 0.993547i \(0.536180\pi\)
\(272\) 4532.72 1.01043
\(273\) 0 0
\(274\) −5476.81 −1.20754
\(275\) 6110.53 1.33992
\(276\) 0 0
\(277\) −3632.42 −0.787910 −0.393955 0.919130i \(-0.628893\pi\)
−0.393955 + 0.919130i \(0.628893\pi\)
\(278\) 1104.16 0.238212
\(279\) 0 0
\(280\) −1325.16 −0.282833
\(281\) −4382.47 −0.930378 −0.465189 0.885211i \(-0.654014\pi\)
−0.465189 + 0.885211i \(0.654014\pi\)
\(282\) 0 0
\(283\) −2692.29 −0.565513 −0.282757 0.959192i \(-0.591249\pi\)
−0.282757 + 0.959192i \(0.591249\pi\)
\(284\) −4639.36 −0.969350
\(285\) 0 0
\(286\) −10034.0 −2.07455
\(287\) −1203.89 −0.247608
\(288\) 0 0
\(289\) −1051.35 −0.213995
\(290\) −16924.3 −3.42700
\(291\) 0 0
\(292\) 3783.70 0.758303
\(293\) −4023.60 −0.802256 −0.401128 0.916022i \(-0.631382\pi\)
−0.401128 + 0.916022i \(0.631382\pi\)
\(294\) 0 0
\(295\) 6537.29 1.29022
\(296\) −923.643 −0.181370
\(297\) 0 0
\(298\) 7415.96 1.44159
\(299\) 1080.32 0.208952
\(300\) 0 0
\(301\) 2677.21 0.512663
\(302\) 7074.84 1.34805
\(303\) 0 0
\(304\) 10349.1 1.95250
\(305\) 3727.46 0.699784
\(306\) 0 0
\(307\) 5195.21 0.965818 0.482909 0.875670i \(-0.339580\pi\)
0.482909 + 0.875670i \(0.339580\pi\)
\(308\) −6250.85 −1.15641
\(309\) 0 0
\(310\) −4029.76 −0.738306
\(311\) −5440.59 −0.991986 −0.495993 0.868327i \(-0.665196\pi\)
−0.495993 + 0.868327i \(0.665196\pi\)
\(312\) 0 0
\(313\) −7390.51 −1.33462 −0.667310 0.744780i \(-0.732555\pi\)
−0.667310 + 0.744780i \(0.732555\pi\)
\(314\) 196.203 0.0352623
\(315\) 0 0
\(316\) 4787.10 0.852200
\(317\) 8785.02 1.55652 0.778258 0.627944i \(-0.216103\pi\)
0.778258 + 0.627944i \(0.216103\pi\)
\(318\) 0 0
\(319\) 16107.8 2.82717
\(320\) 5023.94 0.877646
\(321\) 0 0
\(322\) 1481.81 0.256453
\(323\) 8816.87 1.51883
\(324\) 0 0
\(325\) −5143.73 −0.877916
\(326\) −2327.53 −0.395429
\(327\) 0 0
\(328\) −367.864 −0.0619265
\(329\) −4592.50 −0.769583
\(330\) 0 0
\(331\) −7998.03 −1.32813 −0.664066 0.747674i \(-0.731170\pi\)
−0.664066 + 0.747674i \(0.731170\pi\)
\(332\) −8898.87 −1.47105
\(333\) 0 0
\(334\) 12454.1 2.04030
\(335\) 1241.17 0.202425
\(336\) 0 0
\(337\) −5572.96 −0.900827 −0.450413 0.892820i \(-0.648723\pi\)
−0.450413 + 0.892820i \(0.648723\pi\)
\(338\) 35.3508 0.00568885
\(339\) 0 0
\(340\) 6334.84 1.01046
\(341\) 3835.35 0.609078
\(342\) 0 0
\(343\) 6778.56 1.06708
\(344\) 818.054 0.128217
\(345\) 0 0
\(346\) −7564.03 −1.17527
\(347\) 8070.32 1.24852 0.624262 0.781215i \(-0.285400\pi\)
0.624262 + 0.781215i \(0.285400\pi\)
\(348\) 0 0
\(349\) −10343.3 −1.58644 −0.793218 0.608937i \(-0.791596\pi\)
−0.793218 + 0.608937i \(0.791596\pi\)
\(350\) −7055.31 −1.07749
\(351\) 0 0
\(352\) −13286.4 −2.01185
\(353\) 2326.06 0.350718 0.175359 0.984505i \(-0.443891\pi\)
0.175359 + 0.984505i \(0.443891\pi\)
\(354\) 0 0
\(355\) 10672.6 1.59561
\(356\) 2249.59 0.334910
\(357\) 0 0
\(358\) −16315.2 −2.40861
\(359\) 3333.39 0.490054 0.245027 0.969516i \(-0.421203\pi\)
0.245027 + 0.969516i \(0.421203\pi\)
\(360\) 0 0
\(361\) 13271.6 1.93491
\(362\) 7822.57 1.13576
\(363\) 0 0
\(364\) 5261.85 0.757681
\(365\) −8704.19 −1.24821
\(366\) 0 0
\(367\) 6803.73 0.967716 0.483858 0.875147i \(-0.339235\pi\)
0.483858 + 0.875147i \(0.339235\pi\)
\(368\) 1677.65 0.237645
\(369\) 0 0
\(370\) −10530.8 −1.47965
\(371\) −206.725 −0.0289289
\(372\) 0 0
\(373\) 628.598 0.0872589 0.0436294 0.999048i \(-0.486108\pi\)
0.0436294 + 0.999048i \(0.486108\pi\)
\(374\) −13275.0 −1.83538
\(375\) 0 0
\(376\) −1403.30 −0.192472
\(377\) −13559.3 −1.85236
\(378\) 0 0
\(379\) 3289.15 0.445785 0.222892 0.974843i \(-0.428450\pi\)
0.222892 + 0.974843i \(0.428450\pi\)
\(380\) 14463.6 1.95255
\(381\) 0 0
\(382\) 279.859 0.0374838
\(383\) 1889.81 0.252128 0.126064 0.992022i \(-0.459766\pi\)
0.126064 + 0.992022i \(0.459766\pi\)
\(384\) 0 0
\(385\) 14379.7 1.90353
\(386\) −872.501 −0.115050
\(387\) 0 0
\(388\) −9451.15 −1.23662
\(389\) 569.046 0.0741692 0.0370846 0.999312i \(-0.488193\pi\)
0.0370846 + 0.999312i \(0.488193\pi\)
\(390\) 0 0
\(391\) 1429.27 0.184863
\(392\) 307.520 0.0396228
\(393\) 0 0
\(394\) −2211.99 −0.282839
\(395\) −11012.4 −1.40277
\(396\) 0 0
\(397\) 4092.11 0.517323 0.258661 0.965968i \(-0.416719\pi\)
0.258661 + 0.965968i \(0.416719\pi\)
\(398\) −17492.1 −2.20302
\(399\) 0 0
\(400\) −7987.76 −0.998470
\(401\) −3867.00 −0.481568 −0.240784 0.970579i \(-0.577405\pi\)
−0.240784 + 0.970579i \(0.577405\pi\)
\(402\) 0 0
\(403\) −3228.52 −0.399068
\(404\) −3137.21 −0.386342
\(405\) 0 0
\(406\) −18598.4 −2.27345
\(407\) 10022.7 1.22066
\(408\) 0 0
\(409\) −15631.6 −1.88981 −0.944906 0.327343i \(-0.893847\pi\)
−0.944906 + 0.327343i \(0.893847\pi\)
\(410\) −4194.15 −0.505206
\(411\) 0 0
\(412\) −7515.61 −0.898708
\(413\) 7183.91 0.855925
\(414\) 0 0
\(415\) 20471.3 2.42144
\(416\) 11184.3 1.31816
\(417\) 0 0
\(418\) −30309.2 −3.54658
\(419\) 3562.17 0.415330 0.207665 0.978200i \(-0.433414\pi\)
0.207665 + 0.978200i \(0.433414\pi\)
\(420\) 0 0
\(421\) 10576.0 1.22433 0.612166 0.790729i \(-0.290298\pi\)
0.612166 + 0.790729i \(0.290298\pi\)
\(422\) −6955.13 −0.802299
\(423\) 0 0
\(424\) −63.1674 −0.00723509
\(425\) −6805.16 −0.776703
\(426\) 0 0
\(427\) 4096.16 0.464232
\(428\) −1354.96 −0.153024
\(429\) 0 0
\(430\) 9326.94 1.04601
\(431\) −6965.77 −0.778490 −0.389245 0.921134i \(-0.627264\pi\)
−0.389245 + 0.921134i \(0.627264\pi\)
\(432\) 0 0
\(433\) −16073.5 −1.78393 −0.891967 0.452100i \(-0.850675\pi\)
−0.891967 + 0.452100i \(0.850675\pi\)
\(434\) −4428.35 −0.489787
\(435\) 0 0
\(436\) −12903.2 −1.41732
\(437\) 3263.29 0.357218
\(438\) 0 0
\(439\) −613.988 −0.0667518 −0.0333759 0.999443i \(-0.510626\pi\)
−0.0333759 + 0.999443i \(0.510626\pi\)
\(440\) 4393.90 0.476070
\(441\) 0 0
\(442\) 11174.6 1.20254
\(443\) 263.475 0.0282575 0.0141288 0.999900i \(-0.495503\pi\)
0.0141288 + 0.999900i \(0.495503\pi\)
\(444\) 0 0
\(445\) −5175.04 −0.551282
\(446\) 13378.3 1.42036
\(447\) 0 0
\(448\) 5520.87 0.582225
\(449\) −1644.47 −0.172845 −0.0864226 0.996259i \(-0.527544\pi\)
−0.0864226 + 0.996259i \(0.527544\pi\)
\(450\) 0 0
\(451\) 3991.81 0.416778
\(452\) −11075.6 −1.15255
\(453\) 0 0
\(454\) −3998.81 −0.413378
\(455\) −12104.6 −1.24719
\(456\) 0 0
\(457\) −16190.9 −1.65728 −0.828641 0.559781i \(-0.810885\pi\)
−0.828641 + 0.559781i \(0.810885\pi\)
\(458\) 8198.74 0.836467
\(459\) 0 0
\(460\) 2344.65 0.237651
\(461\) −5783.08 −0.584262 −0.292131 0.956378i \(-0.594364\pi\)
−0.292131 + 0.956378i \(0.594364\pi\)
\(462\) 0 0
\(463\) −3753.34 −0.376744 −0.188372 0.982098i \(-0.560321\pi\)
−0.188372 + 0.982098i \(0.560321\pi\)
\(464\) −21056.4 −2.10672
\(465\) 0 0
\(466\) −2744.23 −0.272798
\(467\) 8441.21 0.836430 0.418215 0.908348i \(-0.362656\pi\)
0.418215 + 0.908348i \(0.362656\pi\)
\(468\) 0 0
\(469\) 1363.94 0.134287
\(470\) −15999.5 −1.57022
\(471\) 0 0
\(472\) 2195.13 0.214066
\(473\) −8876.97 −0.862925
\(474\) 0 0
\(475\) −15537.5 −1.50086
\(476\) 6961.43 0.670329
\(477\) 0 0
\(478\) 13460.6 1.28802
\(479\) 1001.54 0.0955359 0.0477680 0.998858i \(-0.484789\pi\)
0.0477680 + 0.998858i \(0.484789\pi\)
\(480\) 0 0
\(481\) −8436.96 −0.799776
\(482\) 21763.2 2.05662
\(483\) 0 0
\(484\) 11866.0 1.11439
\(485\) 21741.8 2.03556
\(486\) 0 0
\(487\) 13740.3 1.27851 0.639253 0.768997i \(-0.279244\pi\)
0.639253 + 0.768997i \(0.279244\pi\)
\(488\) 1251.63 0.116104
\(489\) 0 0
\(490\) 3506.16 0.323249
\(491\) 10708.1 0.984217 0.492109 0.870534i \(-0.336226\pi\)
0.492109 + 0.870534i \(0.336226\pi\)
\(492\) 0 0
\(493\) −17939.0 −1.63880
\(494\) 25513.7 2.32372
\(495\) 0 0
\(496\) −5013.61 −0.453867
\(497\) 11728.2 1.05852
\(498\) 0 0
\(499\) 9630.22 0.863944 0.431972 0.901887i \(-0.357818\pi\)
0.431972 + 0.901887i \(0.357818\pi\)
\(500\) 1579.10 0.141239
\(501\) 0 0
\(502\) 26595.7 2.36459
\(503\) −18170.1 −1.61067 −0.805334 0.592822i \(-0.798014\pi\)
−0.805334 + 0.592822i \(0.798014\pi\)
\(504\) 0 0
\(505\) 7216.97 0.635942
\(506\) −4913.31 −0.431667
\(507\) 0 0
\(508\) −4890.63 −0.427139
\(509\) −12525.5 −1.09073 −0.545365 0.838199i \(-0.683609\pi\)
−0.545365 + 0.838199i \(0.683609\pi\)
\(510\) 0 0
\(511\) −9565.14 −0.828057
\(512\) 14367.6 1.24017
\(513\) 0 0
\(514\) 6800.45 0.583570
\(515\) 17289.2 1.47933
\(516\) 0 0
\(517\) 15227.6 1.29538
\(518\) −11572.4 −0.981589
\(519\) 0 0
\(520\) −3698.70 −0.311921
\(521\) −3631.35 −0.305360 −0.152680 0.988276i \(-0.548790\pi\)
−0.152680 + 0.988276i \(0.548790\pi\)
\(522\) 0 0
\(523\) 12118.1 1.01317 0.506584 0.862191i \(-0.330908\pi\)
0.506584 + 0.862191i \(0.330908\pi\)
\(524\) 19008.2 1.58469
\(525\) 0 0
\(526\) −430.336 −0.0356721
\(527\) −4271.34 −0.353060
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) −720.195 −0.0590250
\(531\) 0 0
\(532\) 15894.3 1.29531
\(533\) −3360.23 −0.273073
\(534\) 0 0
\(535\) 3117.00 0.251887
\(536\) 416.768 0.0335852
\(537\) 0 0
\(538\) 22650.6 1.81513
\(539\) −3337.01 −0.266670
\(540\) 0 0
\(541\) −24466.6 −1.94437 −0.972184 0.234220i \(-0.924746\pi\)
−0.972184 + 0.234220i \(0.924746\pi\)
\(542\) −3874.23 −0.307034
\(543\) 0 0
\(544\) 14796.8 1.16619
\(545\) 29683.1 2.33300
\(546\) 0 0
\(547\) −9781.99 −0.764621 −0.382311 0.924034i \(-0.624872\pi\)
−0.382311 + 0.924034i \(0.624872\pi\)
\(548\) −9523.06 −0.742345
\(549\) 0 0
\(550\) 23393.7 1.81366
\(551\) −40958.0 −3.16673
\(552\) 0 0
\(553\) −12101.7 −0.930591
\(554\) −13906.5 −1.06648
\(555\) 0 0
\(556\) 1919.91 0.146443
\(557\) 2198.74 0.167260 0.0836300 0.996497i \(-0.473349\pi\)
0.0836300 + 0.996497i \(0.473349\pi\)
\(558\) 0 0
\(559\) 7472.47 0.565388
\(560\) −18797.3 −1.41845
\(561\) 0 0
\(562\) −16778.0 −1.25932
\(563\) −7927.38 −0.593427 −0.296714 0.954967i \(-0.595891\pi\)
−0.296714 + 0.954967i \(0.595891\pi\)
\(564\) 0 0
\(565\) 25478.8 1.89717
\(566\) −10307.3 −0.765453
\(567\) 0 0
\(568\) 3583.71 0.264734
\(569\) 18860.7 1.38960 0.694799 0.719204i \(-0.255493\pi\)
0.694799 + 0.719204i \(0.255493\pi\)
\(570\) 0 0
\(571\) −1044.79 −0.0765726 −0.0382863 0.999267i \(-0.512190\pi\)
−0.0382863 + 0.999267i \(0.512190\pi\)
\(572\) −17447.0 −1.27534
\(573\) 0 0
\(574\) −4609.01 −0.335150
\(575\) −2518.72 −0.182675
\(576\) 0 0
\(577\) −3366.04 −0.242860 −0.121430 0.992600i \(-0.538748\pi\)
−0.121430 + 0.992600i \(0.538748\pi\)
\(578\) −4025.04 −0.289653
\(579\) 0 0
\(580\) −29428.0 −2.10678
\(581\) 22496.2 1.60637
\(582\) 0 0
\(583\) 685.450 0.0486937
\(584\) −2922.75 −0.207096
\(585\) 0 0
\(586\) −15404.1 −1.08590
\(587\) 17910.9 1.25939 0.629696 0.776842i \(-0.283180\pi\)
0.629696 + 0.776842i \(0.283180\pi\)
\(588\) 0 0
\(589\) −9752.29 −0.682234
\(590\) 25027.5 1.74639
\(591\) 0 0
\(592\) −13101.9 −0.909600
\(593\) −3396.99 −0.235240 −0.117620 0.993059i \(-0.537527\pi\)
−0.117620 + 0.993059i \(0.537527\pi\)
\(594\) 0 0
\(595\) −16014.4 −1.10340
\(596\) 12894.8 0.886230
\(597\) 0 0
\(598\) 4135.94 0.282828
\(599\) 139.199 0.00949505 0.00474752 0.999989i \(-0.498489\pi\)
0.00474752 + 0.999989i \(0.498489\pi\)
\(600\) 0 0
\(601\) 1384.91 0.0939959 0.0469979 0.998895i \(-0.485035\pi\)
0.0469979 + 0.998895i \(0.485035\pi\)
\(602\) 10249.5 0.693917
\(603\) 0 0
\(604\) 12301.7 0.828724
\(605\) −27297.1 −1.83436
\(606\) 0 0
\(607\) 1928.79 0.128974 0.0644871 0.997919i \(-0.479459\pi\)
0.0644871 + 0.997919i \(0.479459\pi\)
\(608\) 33784.0 2.25349
\(609\) 0 0
\(610\) 14270.3 0.947195
\(611\) −12818.3 −0.848731
\(612\) 0 0
\(613\) 14251.4 0.939001 0.469500 0.882932i \(-0.344434\pi\)
0.469500 + 0.882932i \(0.344434\pi\)
\(614\) 19889.5 1.30729
\(615\) 0 0
\(616\) 4828.51 0.315822
\(617\) 6803.77 0.443938 0.221969 0.975054i \(-0.428752\pi\)
0.221969 + 0.975054i \(0.428752\pi\)
\(618\) 0 0
\(619\) 11856.9 0.769904 0.384952 0.922937i \(-0.374218\pi\)
0.384952 + 0.922937i \(0.374218\pi\)
\(620\) −7006.93 −0.453879
\(621\) 0 0
\(622\) −20828.9 −1.34271
\(623\) −5686.92 −0.365717
\(624\) 0 0
\(625\) −17321.3 −1.10857
\(626\) −28294.0 −1.80648
\(627\) 0 0
\(628\) 341.157 0.0216778
\(629\) −11162.1 −0.707572
\(630\) 0 0
\(631\) −15491.7 −0.977362 −0.488681 0.872463i \(-0.662522\pi\)
−0.488681 + 0.872463i \(0.662522\pi\)
\(632\) −3697.83 −0.232740
\(633\) 0 0
\(634\) 33632.8 2.10683
\(635\) 11250.6 0.703098
\(636\) 0 0
\(637\) 2809.03 0.174722
\(638\) 61667.7 3.82672
\(639\) 0 0
\(640\) −9937.32 −0.613761
\(641\) 18427.5 1.13548 0.567740 0.823208i \(-0.307818\pi\)
0.567740 + 0.823208i \(0.307818\pi\)
\(642\) 0 0
\(643\) 4164.58 0.255420 0.127710 0.991812i \(-0.459237\pi\)
0.127710 + 0.991812i \(0.459237\pi\)
\(644\) 2576.56 0.157656
\(645\) 0 0
\(646\) 33754.7 2.05582
\(647\) −24965.0 −1.51697 −0.758483 0.651693i \(-0.774059\pi\)
−0.758483 + 0.651693i \(0.774059\pi\)
\(648\) 0 0
\(649\) −23820.1 −1.44071
\(650\) −19692.4 −1.18831
\(651\) 0 0
\(652\) −4047.10 −0.243093
\(653\) 19702.6 1.18074 0.590370 0.807133i \(-0.298982\pi\)
0.590370 + 0.807133i \(0.298982\pi\)
\(654\) 0 0
\(655\) −43727.4 −2.60850
\(656\) −5218.14 −0.310571
\(657\) 0 0
\(658\) −17582.1 −1.04167
\(659\) 19243.1 1.13749 0.568744 0.822515i \(-0.307429\pi\)
0.568744 + 0.822515i \(0.307429\pi\)
\(660\) 0 0
\(661\) 11725.0 0.689939 0.344969 0.938614i \(-0.387889\pi\)
0.344969 + 0.938614i \(0.387889\pi\)
\(662\) −30619.9 −1.79770
\(663\) 0 0
\(664\) 6874.00 0.401751
\(665\) −36563.9 −2.13216
\(666\) 0 0
\(667\) −6639.55 −0.385434
\(668\) 21655.2 1.25429
\(669\) 0 0
\(670\) 4751.73 0.273993
\(671\) −13581.9 −0.781404
\(672\) 0 0
\(673\) −27664.1 −1.58450 −0.792252 0.610194i \(-0.791091\pi\)
−0.792252 + 0.610194i \(0.791091\pi\)
\(674\) −21335.7 −1.21932
\(675\) 0 0
\(676\) 61.4678 0.00349726
\(677\) −16852.0 −0.956683 −0.478342 0.878174i \(-0.658762\pi\)
−0.478342 + 0.878174i \(0.658762\pi\)
\(678\) 0 0
\(679\) 23892.4 1.35038
\(680\) −4893.39 −0.275960
\(681\) 0 0
\(682\) 14683.3 0.824420
\(683\) −24478.8 −1.37138 −0.685692 0.727891i \(-0.740500\pi\)
−0.685692 + 0.727891i \(0.740500\pi\)
\(684\) 0 0
\(685\) 21907.2 1.22195
\(686\) 25951.2 1.44435
\(687\) 0 0
\(688\) 11604.1 0.643025
\(689\) −576.999 −0.0319041
\(690\) 0 0
\(691\) 22681.5 1.24869 0.624346 0.781148i \(-0.285365\pi\)
0.624346 + 0.781148i \(0.285365\pi\)
\(692\) −13152.3 −0.722508
\(693\) 0 0
\(694\) 30896.6 1.68994
\(695\) −4416.63 −0.241054
\(696\) 0 0
\(697\) −4445.59 −0.241591
\(698\) −39598.7 −2.14733
\(699\) 0 0
\(700\) −12267.8 −0.662396
\(701\) −6898.78 −0.371703 −0.185851 0.982578i \(-0.559504\pi\)
−0.185851 + 0.982578i \(0.559504\pi\)
\(702\) 0 0
\(703\) −25485.2 −1.36727
\(704\) −18305.9 −0.980012
\(705\) 0 0
\(706\) 8905.15 0.474716
\(707\) 7930.82 0.421880
\(708\) 0 0
\(709\) −1725.21 −0.0913845 −0.0456922 0.998956i \(-0.514549\pi\)
−0.0456922 + 0.998956i \(0.514549\pi\)
\(710\) 40859.2 2.15975
\(711\) 0 0
\(712\) −1737.71 −0.0914654
\(713\) −1580.91 −0.0830370
\(714\) 0 0
\(715\) 40135.9 2.09929
\(716\) −28368.7 −1.48071
\(717\) 0 0
\(718\) 12761.6 0.663315
\(719\) 9213.52 0.477895 0.238947 0.971033i \(-0.423198\pi\)
0.238947 + 0.971033i \(0.423198\pi\)
\(720\) 0 0
\(721\) 18999.4 0.981377
\(722\) 50809.3 2.61901
\(723\) 0 0
\(724\) 13601.9 0.698217
\(725\) 31612.8 1.61941
\(726\) 0 0
\(727\) 23768.6 1.21256 0.606278 0.795253i \(-0.292662\pi\)
0.606278 + 0.795253i \(0.292662\pi\)
\(728\) −4064.55 −0.206926
\(729\) 0 0
\(730\) −33323.4 −1.68952
\(731\) 9886.09 0.500205
\(732\) 0 0
\(733\) 10711.8 0.539767 0.269884 0.962893i \(-0.413015\pi\)
0.269884 + 0.962893i \(0.413015\pi\)
\(734\) 26047.6 1.30986
\(735\) 0 0
\(736\) 5476.59 0.274280
\(737\) −4522.49 −0.226035
\(738\) 0 0
\(739\) −25572.2 −1.27292 −0.636461 0.771309i \(-0.719602\pi\)
−0.636461 + 0.771309i \(0.719602\pi\)
\(740\) −18310.9 −0.909625
\(741\) 0 0
\(742\) −791.431 −0.0391568
\(743\) 3613.01 0.178397 0.0891983 0.996014i \(-0.471570\pi\)
0.0891983 + 0.996014i \(0.471570\pi\)
\(744\) 0 0
\(745\) −29663.8 −1.45879
\(746\) 2406.54 0.118110
\(747\) 0 0
\(748\) −23082.4 −1.12831
\(749\) 3425.31 0.167100
\(750\) 0 0
\(751\) 26247.1 1.27532 0.637662 0.770316i \(-0.279902\pi\)
0.637662 + 0.770316i \(0.279902\pi\)
\(752\) −19905.7 −0.965277
\(753\) 0 0
\(754\) −51910.7 −2.50726
\(755\) −28299.4 −1.36413
\(756\) 0 0
\(757\) −12700.0 −0.609761 −0.304880 0.952391i \(-0.598617\pi\)
−0.304880 + 0.952391i \(0.598617\pi\)
\(758\) 12592.3 0.603393
\(759\) 0 0
\(760\) −11172.5 −0.533251
\(761\) −22485.4 −1.07108 −0.535542 0.844508i \(-0.679893\pi\)
−0.535542 + 0.844508i \(0.679893\pi\)
\(762\) 0 0
\(763\) 32619.1 1.54770
\(764\) 486.617 0.0230434
\(765\) 0 0
\(766\) 7235.01 0.341268
\(767\) 20051.3 0.943953
\(768\) 0 0
\(769\) −7141.34 −0.334881 −0.167440 0.985882i \(-0.553550\pi\)
−0.167440 + 0.985882i \(0.553550\pi\)
\(770\) 55051.7 2.57653
\(771\) 0 0
\(772\) −1517.10 −0.0707276
\(773\) −15819.1 −0.736060 −0.368030 0.929814i \(-0.619968\pi\)
−0.368030 + 0.929814i \(0.619968\pi\)
\(774\) 0 0
\(775\) 7527.15 0.348882
\(776\) 7300.61 0.337728
\(777\) 0 0
\(778\) 2178.55 0.100392
\(779\) −10150.1 −0.466837
\(780\) 0 0
\(781\) −38888.0 −1.78172
\(782\) 5471.85 0.250221
\(783\) 0 0
\(784\) 4362.17 0.198714
\(785\) −784.811 −0.0356829
\(786\) 0 0
\(787\) −2959.52 −0.134048 −0.0670239 0.997751i \(-0.521350\pi\)
−0.0670239 + 0.997751i \(0.521350\pi\)
\(788\) −3846.21 −0.173877
\(789\) 0 0
\(790\) −42160.3 −1.89873
\(791\) 27998.9 1.25857
\(792\) 0 0
\(793\) 11433.0 0.511975
\(794\) 15666.3 0.700224
\(795\) 0 0
\(796\) −30415.2 −1.35432
\(797\) −19932.4 −0.885876 −0.442938 0.896552i \(-0.646064\pi\)
−0.442938 + 0.896552i \(0.646064\pi\)
\(798\) 0 0
\(799\) −16958.7 −0.750883
\(800\) −26075.6 −1.15239
\(801\) 0 0
\(802\) −14804.5 −0.651828
\(803\) 31715.7 1.39380
\(804\) 0 0
\(805\) −5927.23 −0.259512
\(806\) −12360.2 −0.540159
\(807\) 0 0
\(808\) 2423.36 0.105512
\(809\) 7334.79 0.318761 0.159380 0.987217i \(-0.449050\pi\)
0.159380 + 0.987217i \(0.449050\pi\)
\(810\) 0 0
\(811\) −15908.5 −0.688807 −0.344404 0.938822i \(-0.611919\pi\)
−0.344404 + 0.938822i \(0.611919\pi\)
\(812\) −32338.8 −1.39762
\(813\) 0 0
\(814\) 38371.4 1.65223
\(815\) 9310.12 0.400146
\(816\) 0 0
\(817\) 22571.8 0.966570
\(818\) −59844.4 −2.55796
\(819\) 0 0
\(820\) −7292.78 −0.310579
\(821\) 6167.56 0.262180 0.131090 0.991371i \(-0.458152\pi\)
0.131090 + 0.991371i \(0.458152\pi\)
\(822\) 0 0
\(823\) −45695.7 −1.93542 −0.967710 0.252066i \(-0.918890\pi\)
−0.967710 + 0.252066i \(0.918890\pi\)
\(824\) 5805.49 0.245441
\(825\) 0 0
\(826\) 27503.1 1.15854
\(827\) −10905.6 −0.458554 −0.229277 0.973361i \(-0.573636\pi\)
−0.229277 + 0.973361i \(0.573636\pi\)
\(828\) 0 0
\(829\) −4256.81 −0.178341 −0.0891707 0.996016i \(-0.528422\pi\)
−0.0891707 + 0.996016i \(0.528422\pi\)
\(830\) 78373.0 3.27755
\(831\) 0 0
\(832\) 15409.5 0.642103
\(833\) 3716.35 0.154579
\(834\) 0 0
\(835\) −49816.5 −2.06464
\(836\) −52701.6 −2.18029
\(837\) 0 0
\(838\) 13637.5 0.562171
\(839\) 15166.7 0.624092 0.312046 0.950067i \(-0.398986\pi\)
0.312046 + 0.950067i \(0.398986\pi\)
\(840\) 0 0
\(841\) 58944.9 2.41687
\(842\) 40489.5 1.65720
\(843\) 0 0
\(844\) −12093.6 −0.493219
\(845\) −141.403 −0.00575671
\(846\) 0 0
\(847\) −29997.1 −1.21690
\(848\) −896.029 −0.0362851
\(849\) 0 0
\(850\) −26053.1 −1.05131
\(851\) −4131.31 −0.166416
\(852\) 0 0
\(853\) −24050.4 −0.965379 −0.482690 0.875791i \(-0.660340\pi\)
−0.482690 + 0.875791i \(0.660340\pi\)
\(854\) 15681.8 0.628363
\(855\) 0 0
\(856\) 1046.65 0.0417917
\(857\) −39207.3 −1.56277 −0.781387 0.624047i \(-0.785487\pi\)
−0.781387 + 0.624047i \(0.785487\pi\)
\(858\) 0 0
\(859\) −10527.2 −0.418142 −0.209071 0.977900i \(-0.567044\pi\)
−0.209071 + 0.977900i \(0.567044\pi\)
\(860\) 16217.6 0.643043
\(861\) 0 0
\(862\) −26667.9 −1.05373
\(863\) 11856.0 0.467651 0.233825 0.972279i \(-0.424876\pi\)
0.233825 + 0.972279i \(0.424876\pi\)
\(864\) 0 0
\(865\) 30256.1 1.18929
\(866\) −61536.3 −2.41465
\(867\) 0 0
\(868\) −7700.00 −0.301100
\(869\) 40126.3 1.56639
\(870\) 0 0
\(871\) 3806.95 0.148098
\(872\) 9967.18 0.387077
\(873\) 0 0
\(874\) 12493.3 0.483514
\(875\) −3991.95 −0.154231
\(876\) 0 0
\(877\) 51435.9 1.98046 0.990232 0.139432i \(-0.0445278\pi\)
0.990232 + 0.139432i \(0.0445278\pi\)
\(878\) −2350.61 −0.0903521
\(879\) 0 0
\(880\) 62327.4 2.38756
\(881\) −8069.52 −0.308592 −0.154296 0.988025i \(-0.549311\pi\)
−0.154296 + 0.988025i \(0.549311\pi\)
\(882\) 0 0
\(883\) −43901.7 −1.67317 −0.836586 0.547835i \(-0.815452\pi\)
−0.836586 + 0.547835i \(0.815452\pi\)
\(884\) 19430.4 0.739269
\(885\) 0 0
\(886\) 1008.70 0.0382481
\(887\) 5877.02 0.222470 0.111235 0.993794i \(-0.464519\pi\)
0.111235 + 0.993794i \(0.464519\pi\)
\(888\) 0 0
\(889\) 12363.4 0.466430
\(890\) −19812.3 −0.746190
\(891\) 0 0
\(892\) 23262.1 0.873178
\(893\) −38719.9 −1.45097
\(894\) 0 0
\(895\) 65260.7 2.43734
\(896\) −10920.2 −0.407165
\(897\) 0 0
\(898\) −6295.75 −0.233955
\(899\) 19842.2 0.736122
\(900\) 0 0
\(901\) −763.371 −0.0282259
\(902\) 15282.4 0.564132
\(903\) 0 0
\(904\) 8555.42 0.314767
\(905\) −31290.3 −1.14931
\(906\) 0 0
\(907\) 1967.03 0.0720110 0.0360055 0.999352i \(-0.488537\pi\)
0.0360055 + 0.999352i \(0.488537\pi\)
\(908\) −6953.12 −0.254127
\(909\) 0 0
\(910\) −46341.5 −1.68814
\(911\) −21073.2 −0.766396 −0.383198 0.923666i \(-0.625177\pi\)
−0.383198 + 0.923666i \(0.625177\pi\)
\(912\) 0 0
\(913\) −74592.0 −2.70387
\(914\) −61985.6 −2.24322
\(915\) 0 0
\(916\) 14255.9 0.514224
\(917\) −48052.6 −1.73046
\(918\) 0 0
\(919\) −7748.69 −0.278135 −0.139067 0.990283i \(-0.544410\pi\)
−0.139067 + 0.990283i \(0.544410\pi\)
\(920\) −1811.14 −0.0649038
\(921\) 0 0
\(922\) −22140.1 −0.790830
\(923\) 32735.2 1.16738
\(924\) 0 0
\(925\) 19670.4 0.699198
\(926\) −14369.4 −0.509943
\(927\) 0 0
\(928\) −68737.5 −2.43148
\(929\) −35683.4 −1.26021 −0.630105 0.776510i \(-0.716988\pi\)
−0.630105 + 0.776510i \(0.716988\pi\)
\(930\) 0 0
\(931\) 8485.13 0.298699
\(932\) −4771.65 −0.167704
\(933\) 0 0
\(934\) 32316.6 1.13215
\(935\) 53099.8 1.85727
\(936\) 0 0
\(937\) 46259.2 1.61283 0.806414 0.591351i \(-0.201405\pi\)
0.806414 + 0.591351i \(0.201405\pi\)
\(938\) 5221.74 0.181765
\(939\) 0 0
\(940\) −27819.9 −0.965303
\(941\) −23519.2 −0.814777 −0.407388 0.913255i \(-0.633560\pi\)
−0.407388 + 0.913255i \(0.633560\pi\)
\(942\) 0 0
\(943\) −1645.40 −0.0568203
\(944\) 31137.9 1.07357
\(945\) 0 0
\(946\) −33984.8 −1.16801
\(947\) 52061.1 1.78644 0.893220 0.449621i \(-0.148441\pi\)
0.893220 + 0.449621i \(0.148441\pi\)
\(948\) 0 0
\(949\) −26697.7 −0.913218
\(950\) −59484.1 −2.03149
\(951\) 0 0
\(952\) −5377.41 −0.183070
\(953\) 15306.5 0.520278 0.260139 0.965571i \(-0.416232\pi\)
0.260139 + 0.965571i \(0.416232\pi\)
\(954\) 0 0
\(955\) −1119.43 −0.0379309
\(956\) 23405.3 0.791820
\(957\) 0 0
\(958\) 3834.34 0.129313
\(959\) 24074.1 0.810631
\(960\) 0 0
\(961\) −25066.5 −0.841412
\(962\) −32300.3 −1.08254
\(963\) 0 0
\(964\) 37841.8 1.26432
\(965\) 3490.01 0.116422
\(966\) 0 0
\(967\) 19036.6 0.633068 0.316534 0.948581i \(-0.397481\pi\)
0.316534 + 0.948581i \(0.397481\pi\)
\(968\) −9166.00 −0.304345
\(969\) 0 0
\(970\) 83237.0 2.75524
\(971\) −9160.05 −0.302740 −0.151370 0.988477i \(-0.548368\pi\)
−0.151370 + 0.988477i \(0.548368\pi\)
\(972\) 0 0
\(973\) −4853.49 −0.159914
\(974\) 52603.7 1.73053
\(975\) 0 0
\(976\) 17754.4 0.582279
\(977\) −27640.7 −0.905122 −0.452561 0.891733i \(-0.649490\pi\)
−0.452561 + 0.891733i \(0.649490\pi\)
\(978\) 0 0
\(979\) 18856.4 0.615582
\(980\) 6096.49 0.198720
\(981\) 0 0
\(982\) 40995.2 1.33219
\(983\) −40382.6 −1.31028 −0.655140 0.755508i \(-0.727390\pi\)
−0.655140 + 0.755508i \(0.727390\pi\)
\(984\) 0 0
\(985\) 8847.97 0.286213
\(986\) −68678.0 −2.21821
\(987\) 0 0
\(988\) 44363.2 1.42852
\(989\) 3659.03 0.117645
\(990\) 0 0
\(991\) 17541.4 0.562283 0.281141 0.959666i \(-0.409287\pi\)
0.281141 + 0.959666i \(0.409287\pi\)
\(992\) −16366.7 −0.523834
\(993\) 0 0
\(994\) 44900.7 1.43276
\(995\) 69968.5 2.22930
\(996\) 0 0
\(997\) −42798.5 −1.35952 −0.679760 0.733435i \(-0.737916\pi\)
−0.679760 + 0.733435i \(0.737916\pi\)
\(998\) 36868.6 1.16939
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.b.1.2 2
3.2 odd 2 69.4.a.b.1.1 2
12.11 even 2 1104.4.a.q.1.2 2
15.14 odd 2 1725.4.a.m.1.2 2
69.68 even 2 1587.4.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.b.1.1 2 3.2 odd 2
207.4.a.b.1.2 2 1.1 even 1 trivial
1104.4.a.q.1.2 2 12.11 even 2
1587.4.a.c.1.1 2 69.68 even 2
1725.4.a.m.1.2 2 15.14 odd 2