Properties

Label 207.4.a.b.1.1
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.82843 q^{2} -4.65685 q^{4} +7.31371 q^{5} -11.1716 q^{7} +23.1421 q^{8} -13.3726 q^{10} +16.2010 q^{11} -13.0294 q^{13} +20.4264 q^{14} -5.05887 q^{16} -33.8579 q^{17} -6.11775 q^{19} -34.0589 q^{20} -29.6224 q^{22} -23.0000 q^{23} -71.5097 q^{25} +23.8234 q^{26} +52.0244 q^{28} -84.6762 q^{29} -236.735 q^{31} -175.887 q^{32} +61.9066 q^{34} -81.7056 q^{35} -63.6224 q^{37} +11.1859 q^{38} +169.255 q^{40} -75.5391 q^{41} -260.912 q^{43} -75.4457 q^{44} +42.0538 q^{46} -224.902 q^{47} -218.196 q^{49} +130.750 q^{50} +60.6762 q^{52} -44.2843 q^{53} +118.489 q^{55} -258.534 q^{56} +154.824 q^{58} +466.891 q^{59} -520.593 q^{61} +432.853 q^{62} +362.068 q^{64} -95.2935 q^{65} -906.950 q^{67} +157.671 q^{68} +149.393 q^{70} +920.930 q^{71} +251.608 q^{73} +116.329 q^{74} +28.4895 q^{76} -180.991 q^{77} +1052.88 q^{79} -36.9991 q^{80} +138.118 q^{82} -143.202 q^{83} -247.627 q^{85} +477.058 q^{86} +374.926 q^{88} -1081.94 q^{89} +145.559 q^{91} +107.108 q^{92} +411.216 q^{94} -44.7434 q^{95} +1159.76 q^{97} +398.955 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 8 q^{5} - 28 q^{7} + 18 q^{8} - 72 q^{10} + 72 q^{11} - 60 q^{13} - 44 q^{14} - 78 q^{16} - 96 q^{17} - 148 q^{19} - 136 q^{20} + 184 q^{22} - 46 q^{23} + 38 q^{25} - 156 q^{26}+ \cdots + 170 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.82843 −0.646447 −0.323223 0.946323i \(-0.604766\pi\)
−0.323223 + 0.946323i \(0.604766\pi\)
\(3\) 0 0
\(4\) −4.65685 −0.582107
\(5\) 7.31371 0.654158 0.327079 0.944997i \(-0.393936\pi\)
0.327079 + 0.944997i \(0.393936\pi\)
\(6\) 0 0
\(7\) −11.1716 −0.603208 −0.301604 0.953433i \(-0.597522\pi\)
−0.301604 + 0.953433i \(0.597522\pi\)
\(8\) 23.1421 1.02275
\(9\) 0 0
\(10\) −13.3726 −0.422878
\(11\) 16.2010 0.444072 0.222036 0.975039i \(-0.428730\pi\)
0.222036 + 0.975039i \(0.428730\pi\)
\(12\) 0 0
\(13\) −13.0294 −0.277978 −0.138989 0.990294i \(-0.544385\pi\)
−0.138989 + 0.990294i \(0.544385\pi\)
\(14\) 20.4264 0.389942
\(15\) 0 0
\(16\) −5.05887 −0.0790449
\(17\) −33.8579 −0.483043 −0.241522 0.970395i \(-0.577647\pi\)
−0.241522 + 0.970395i \(0.577647\pi\)
\(18\) 0 0
\(19\) −6.11775 −0.0738688 −0.0369344 0.999318i \(-0.511759\pi\)
−0.0369344 + 0.999318i \(0.511759\pi\)
\(20\) −34.0589 −0.380790
\(21\) 0 0
\(22\) −29.6224 −0.287069
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −71.5097 −0.572077
\(26\) 23.8234 0.179698
\(27\) 0 0
\(28\) 52.0244 0.351132
\(29\) −84.6762 −0.542206 −0.271103 0.962550i \(-0.587388\pi\)
−0.271103 + 0.962550i \(0.587388\pi\)
\(30\) 0 0
\(31\) −236.735 −1.37158 −0.685788 0.727801i \(-0.740542\pi\)
−0.685788 + 0.727801i \(0.740542\pi\)
\(32\) −175.887 −0.971649
\(33\) 0 0
\(34\) 61.9066 0.312262
\(35\) −81.7056 −0.394593
\(36\) 0 0
\(37\) −63.6224 −0.282688 −0.141344 0.989961i \(-0.545142\pi\)
−0.141344 + 0.989961i \(0.545142\pi\)
\(38\) 11.1859 0.0477523
\(39\) 0 0
\(40\) 169.255 0.669038
\(41\) −75.5391 −0.287737 −0.143869 0.989597i \(-0.545954\pi\)
−0.143869 + 0.989597i \(0.545954\pi\)
\(42\) 0 0
\(43\) −260.912 −0.925318 −0.462659 0.886536i \(-0.653105\pi\)
−0.462659 + 0.886536i \(0.653105\pi\)
\(44\) −75.4457 −0.258497
\(45\) 0 0
\(46\) 42.0538 0.134793
\(47\) −224.902 −0.697984 −0.348992 0.937126i \(-0.613476\pi\)
−0.348992 + 0.937126i \(0.613476\pi\)
\(48\) 0 0
\(49\) −218.196 −0.636140
\(50\) 130.750 0.369817
\(51\) 0 0
\(52\) 60.6762 0.161813
\(53\) −44.2843 −0.114772 −0.0573860 0.998352i \(-0.518277\pi\)
−0.0573860 + 0.998352i \(0.518277\pi\)
\(54\) 0 0
\(55\) 118.489 0.290493
\(56\) −258.534 −0.616930
\(57\) 0 0
\(58\) 154.824 0.350507
\(59\) 466.891 1.03024 0.515119 0.857118i \(-0.327748\pi\)
0.515119 + 0.857118i \(0.327748\pi\)
\(60\) 0 0
\(61\) −520.593 −1.09271 −0.546353 0.837555i \(-0.683984\pi\)
−0.546353 + 0.837555i \(0.683984\pi\)
\(62\) 432.853 0.886651
\(63\) 0 0
\(64\) 362.068 0.707164
\(65\) −95.2935 −0.181842
\(66\) 0 0
\(67\) −906.950 −1.65376 −0.826878 0.562382i \(-0.809885\pi\)
−0.826878 + 0.562382i \(0.809885\pi\)
\(68\) 157.671 0.281183
\(69\) 0 0
\(70\) 149.393 0.255084
\(71\) 920.930 1.53936 0.769678 0.638432i \(-0.220417\pi\)
0.769678 + 0.638432i \(0.220417\pi\)
\(72\) 0 0
\(73\) 251.608 0.403404 0.201702 0.979447i \(-0.435353\pi\)
0.201702 + 0.979447i \(0.435353\pi\)
\(74\) 116.329 0.182743
\(75\) 0 0
\(76\) 28.4895 0.0429996
\(77\) −180.991 −0.267868
\(78\) 0 0
\(79\) 1052.88 1.49947 0.749734 0.661740i \(-0.230182\pi\)
0.749734 + 0.661740i \(0.230182\pi\)
\(80\) −36.9991 −0.0517079
\(81\) 0 0
\(82\) 138.118 0.186007
\(83\) −143.202 −0.189379 −0.0946894 0.995507i \(-0.530186\pi\)
−0.0946894 + 0.995507i \(0.530186\pi\)
\(84\) 0 0
\(85\) −247.627 −0.315987
\(86\) 477.058 0.598168
\(87\) 0 0
\(88\) 374.926 0.454173
\(89\) −1081.94 −1.28859 −0.644297 0.764775i \(-0.722850\pi\)
−0.644297 + 0.764775i \(0.722850\pi\)
\(90\) 0 0
\(91\) 145.559 0.167679
\(92\) 107.108 0.121378
\(93\) 0 0
\(94\) 411.216 0.451210
\(95\) −44.7434 −0.0483219
\(96\) 0 0
\(97\) 1159.76 1.21398 0.606990 0.794709i \(-0.292377\pi\)
0.606990 + 0.794709i \(0.292377\pi\)
\(98\) 398.955 0.411230
\(99\) 0 0
\(100\) 333.010 0.333010
\(101\) −1172.72 −1.15535 −0.577676 0.816266i \(-0.696040\pi\)
−0.577676 + 0.816266i \(0.696040\pi\)
\(102\) 0 0
\(103\) 981.003 0.938458 0.469229 0.883077i \(-0.344532\pi\)
0.469229 + 0.883077i \(0.344532\pi\)
\(104\) −301.529 −0.284301
\(105\) 0 0
\(106\) 80.9706 0.0741939
\(107\) 899.543 0.812730 0.406365 0.913711i \(-0.366796\pi\)
0.406365 + 0.913711i \(0.366796\pi\)
\(108\) 0 0
\(109\) 1710.34 1.50294 0.751470 0.659767i \(-0.229345\pi\)
0.751470 + 0.659767i \(0.229345\pi\)
\(110\) −216.649 −0.187788
\(111\) 0 0
\(112\) 56.5156 0.0476805
\(113\) 1079.79 0.898919 0.449459 0.893301i \(-0.351617\pi\)
0.449459 + 0.893301i \(0.351617\pi\)
\(114\) 0 0
\(115\) −168.215 −0.136401
\(116\) 394.325 0.315622
\(117\) 0 0
\(118\) −853.677 −0.665994
\(119\) 378.246 0.291376
\(120\) 0 0
\(121\) −1068.53 −0.802800
\(122\) 951.866 0.706376
\(123\) 0 0
\(124\) 1102.44 0.798404
\(125\) −1437.21 −1.02839
\(126\) 0 0
\(127\) −361.324 −0.252459 −0.126230 0.992001i \(-0.540288\pi\)
−0.126230 + 0.992001i \(0.540288\pi\)
\(128\) 745.083 0.514505
\(129\) 0 0
\(130\) 174.237 0.117551
\(131\) 1056.56 0.704672 0.352336 0.935873i \(-0.385387\pi\)
0.352336 + 0.935873i \(0.385387\pi\)
\(132\) 0 0
\(133\) 68.3449 0.0445583
\(134\) 1658.29 1.06906
\(135\) 0 0
\(136\) −783.543 −0.494031
\(137\) −2273.44 −1.41776 −0.708879 0.705331i \(-0.750799\pi\)
−0.708879 + 0.705331i \(0.750799\pi\)
\(138\) 0 0
\(139\) −1544.41 −0.942411 −0.471206 0.882023i \(-0.656181\pi\)
−0.471206 + 0.882023i \(0.656181\pi\)
\(140\) 380.491 0.229696
\(141\) 0 0
\(142\) −1683.85 −0.995112
\(143\) −211.090 −0.123442
\(144\) 0 0
\(145\) −619.297 −0.354688
\(146\) −460.047 −0.260779
\(147\) 0 0
\(148\) 296.280 0.164555
\(149\) −665.076 −0.365672 −0.182836 0.983143i \(-0.558528\pi\)
−0.182836 + 0.983143i \(0.558528\pi\)
\(150\) 0 0
\(151\) −3559.98 −1.91859 −0.959294 0.282410i \(-0.908866\pi\)
−0.959294 + 0.282410i \(0.908866\pi\)
\(152\) −141.578 −0.0755492
\(153\) 0 0
\(154\) 330.928 0.173162
\(155\) −1731.41 −0.897228
\(156\) 0 0
\(157\) −1391.25 −0.707221 −0.353611 0.935393i \(-0.615046\pi\)
−0.353611 + 0.935393i \(0.615046\pi\)
\(158\) −1925.11 −0.969326
\(159\) 0 0
\(160\) −1286.39 −0.635612
\(161\) 256.946 0.125778
\(162\) 0 0
\(163\) 975.960 0.468976 0.234488 0.972119i \(-0.424659\pi\)
0.234488 + 0.972119i \(0.424659\pi\)
\(164\) 351.775 0.167494
\(165\) 0 0
\(166\) 261.834 0.122423
\(167\) −2053.06 −0.951323 −0.475661 0.879628i \(-0.657791\pi\)
−0.475661 + 0.879628i \(0.657791\pi\)
\(168\) 0 0
\(169\) −2027.23 −0.922728
\(170\) 452.767 0.204269
\(171\) 0 0
\(172\) 1215.03 0.538634
\(173\) −1308.25 −0.574937 −0.287468 0.957790i \(-0.592814\pi\)
−0.287468 + 0.957790i \(0.592814\pi\)
\(174\) 0 0
\(175\) 798.875 0.345082
\(176\) −81.9589 −0.0351016
\(177\) 0 0
\(178\) 1978.24 0.833007
\(179\) 829.584 0.346403 0.173201 0.984886i \(-0.444589\pi\)
0.173201 + 0.984886i \(0.444589\pi\)
\(180\) 0 0
\(181\) −2431.29 −0.998431 −0.499216 0.866478i \(-0.666378\pi\)
−0.499216 + 0.866478i \(0.666378\pi\)
\(182\) −266.145 −0.108395
\(183\) 0 0
\(184\) −532.269 −0.213258
\(185\) −465.315 −0.184923
\(186\) 0 0
\(187\) −548.532 −0.214506
\(188\) 1047.33 0.406301
\(189\) 0 0
\(190\) 81.8101 0.0312375
\(191\) 2878.90 1.09063 0.545314 0.838232i \(-0.316410\pi\)
0.545314 + 0.838232i \(0.316410\pi\)
\(192\) 0 0
\(193\) 1423.90 0.531060 0.265530 0.964103i \(-0.414453\pi\)
0.265530 + 0.964103i \(0.414453\pi\)
\(194\) −2120.54 −0.784773
\(195\) 0 0
\(196\) 1016.11 0.370301
\(197\) 3517.78 1.27224 0.636121 0.771590i \(-0.280538\pi\)
0.636121 + 0.771590i \(0.280538\pi\)
\(198\) 0 0
\(199\) 4069.01 1.44947 0.724735 0.689028i \(-0.241962\pi\)
0.724735 + 0.689028i \(0.241962\pi\)
\(200\) −1654.89 −0.585091
\(201\) 0 0
\(202\) 2144.24 0.746873
\(203\) 945.966 0.327063
\(204\) 0 0
\(205\) −552.471 −0.188226
\(206\) −1793.69 −0.606663
\(207\) 0 0
\(208\) 65.9143 0.0219728
\(209\) −99.1137 −0.0328031
\(210\) 0 0
\(211\) −2631.29 −0.858510 −0.429255 0.903183i \(-0.641224\pi\)
−0.429255 + 0.903183i \(0.641224\pi\)
\(212\) 206.225 0.0668095
\(213\) 0 0
\(214\) −1644.75 −0.525387
\(215\) −1908.23 −0.605304
\(216\) 0 0
\(217\) 2644.70 0.827346
\(218\) −3127.22 −0.971570
\(219\) 0 0
\(220\) −551.788 −0.169098
\(221\) 441.149 0.134276
\(222\) 0 0
\(223\) −2886.47 −0.866780 −0.433390 0.901206i \(-0.642683\pi\)
−0.433390 + 0.901206i \(0.642683\pi\)
\(224\) 1964.94 0.586107
\(225\) 0 0
\(226\) −1974.31 −0.581103
\(227\) −1819.49 −0.532000 −0.266000 0.963973i \(-0.585702\pi\)
−0.266000 + 0.963973i \(0.585702\pi\)
\(228\) 0 0
\(229\) 1038.46 0.299664 0.149832 0.988711i \(-0.452127\pi\)
0.149832 + 0.988711i \(0.452127\pi\)
\(230\) 307.569 0.0881762
\(231\) 0 0
\(232\) −1959.59 −0.554540
\(233\) 1432.80 0.402858 0.201429 0.979503i \(-0.435441\pi\)
0.201429 + 0.979503i \(0.435441\pi\)
\(234\) 0 0
\(235\) −1644.86 −0.456592
\(236\) −2174.25 −0.599709
\(237\) 0 0
\(238\) −691.595 −0.188359
\(239\) 6548.04 1.77221 0.886103 0.463488i \(-0.153402\pi\)
0.886103 + 0.463488i \(0.153402\pi\)
\(240\) 0 0
\(241\) 1815.36 0.485217 0.242609 0.970124i \(-0.421997\pi\)
0.242609 + 0.970124i \(0.421997\pi\)
\(242\) 1953.72 0.518968
\(243\) 0 0
\(244\) 2424.33 0.636072
\(245\) −1595.82 −0.416136
\(246\) 0 0
\(247\) 79.7108 0.0205339
\(248\) −5478.55 −1.40278
\(249\) 0 0
\(250\) 2627.84 0.664797
\(251\) 7405.10 1.86218 0.931088 0.364796i \(-0.118861\pi\)
0.931088 + 0.364796i \(0.118861\pi\)
\(252\) 0 0
\(253\) −372.623 −0.0925953
\(254\) 660.654 0.163201
\(255\) 0 0
\(256\) −4258.88 −1.03976
\(257\) 203.697 0.0494408 0.0247204 0.999694i \(-0.492130\pi\)
0.0247204 + 0.999694i \(0.492130\pi\)
\(258\) 0 0
\(259\) 710.762 0.170520
\(260\) 443.768 0.105851
\(261\) 0 0
\(262\) −1931.84 −0.455533
\(263\) −4807.59 −1.12718 −0.563591 0.826054i \(-0.690581\pi\)
−0.563591 + 0.826054i \(0.690581\pi\)
\(264\) 0 0
\(265\) −323.882 −0.0750790
\(266\) −124.964 −0.0288046
\(267\) 0 0
\(268\) 4223.54 0.962662
\(269\) 7183.57 1.62822 0.814108 0.580714i \(-0.197227\pi\)
0.814108 + 0.580714i \(0.197227\pi\)
\(270\) 0 0
\(271\) 7099.96 1.59148 0.795742 0.605636i \(-0.207081\pi\)
0.795742 + 0.605636i \(0.207081\pi\)
\(272\) 171.283 0.0381821
\(273\) 0 0
\(274\) 4156.81 0.916504
\(275\) −1158.53 −0.254043
\(276\) 0 0
\(277\) −2195.58 −0.476244 −0.238122 0.971235i \(-0.576532\pi\)
−0.238122 + 0.971235i \(0.576532\pi\)
\(278\) 2823.84 0.609219
\(279\) 0 0
\(280\) −1890.84 −0.403570
\(281\) 646.472 0.137243 0.0686215 0.997643i \(-0.478140\pi\)
0.0686215 + 0.997643i \(0.478140\pi\)
\(282\) 0 0
\(283\) −3031.71 −0.636806 −0.318403 0.947955i \(-0.603147\pi\)
−0.318403 + 0.947955i \(0.603147\pi\)
\(284\) −4288.64 −0.896070
\(285\) 0 0
\(286\) 385.963 0.0797988
\(287\) 843.891 0.173565
\(288\) 0 0
\(289\) −3766.65 −0.766669
\(290\) 1132.34 0.229287
\(291\) 0 0
\(292\) −1171.70 −0.234824
\(293\) −3944.40 −0.786466 −0.393233 0.919439i \(-0.628643\pi\)
−0.393233 + 0.919439i \(0.628643\pi\)
\(294\) 0 0
\(295\) 3414.71 0.673939
\(296\) −1472.36 −0.289118
\(297\) 0 0
\(298\) 1216.04 0.236388
\(299\) 299.677 0.0579624
\(300\) 0 0
\(301\) 2914.79 0.558159
\(302\) 6509.16 1.24026
\(303\) 0 0
\(304\) 30.9489 0.00583896
\(305\) −3807.46 −0.714803
\(306\) 0 0
\(307\) −3403.21 −0.632676 −0.316338 0.948647i \(-0.602453\pi\)
−0.316338 + 0.948647i \(0.602453\pi\)
\(308\) 842.848 0.155928
\(309\) 0 0
\(310\) 3165.76 0.580010
\(311\) 5024.59 0.916136 0.458068 0.888917i \(-0.348542\pi\)
0.458068 + 0.888917i \(0.348542\pi\)
\(312\) 0 0
\(313\) 6242.51 1.12731 0.563654 0.826011i \(-0.309395\pi\)
0.563654 + 0.826011i \(0.309395\pi\)
\(314\) 2543.80 0.457181
\(315\) 0 0
\(316\) −4903.10 −0.872850
\(317\) −5029.02 −0.891034 −0.445517 0.895273i \(-0.646980\pi\)
−0.445517 + 0.895273i \(0.646980\pi\)
\(318\) 0 0
\(319\) −1371.84 −0.240778
\(320\) 2648.06 0.462597
\(321\) 0 0
\(322\) −469.807 −0.0813085
\(323\) 207.134 0.0356819
\(324\) 0 0
\(325\) 931.731 0.159025
\(326\) −1784.47 −0.303168
\(327\) 0 0
\(328\) −1748.14 −0.294283
\(329\) 2512.50 0.421030
\(330\) 0 0
\(331\) 6574.03 1.09167 0.545833 0.837894i \(-0.316213\pi\)
0.545833 + 0.837894i \(0.316213\pi\)
\(332\) 666.870 0.110239
\(333\) 0 0
\(334\) 3753.88 0.614979
\(335\) −6633.17 −1.08182
\(336\) 0 0
\(337\) 6000.96 0.970010 0.485005 0.874511i \(-0.338818\pi\)
0.485005 + 0.874511i \(0.338818\pi\)
\(338\) 3706.65 0.596494
\(339\) 0 0
\(340\) 1153.16 0.183938
\(341\) −3835.35 −0.609078
\(342\) 0 0
\(343\) 6269.44 0.986933
\(344\) −6038.05 −0.946366
\(345\) 0 0
\(346\) 2392.03 0.371666
\(347\) −3854.32 −0.596285 −0.298143 0.954521i \(-0.596367\pi\)
−0.298143 + 0.954521i \(0.596367\pi\)
\(348\) 0 0
\(349\) 4251.34 0.652061 0.326030 0.945359i \(-0.394289\pi\)
0.326030 + 0.945359i \(0.394289\pi\)
\(350\) −1460.69 −0.223077
\(351\) 0 0
\(352\) −2849.55 −0.431482
\(353\) −11058.1 −1.66731 −0.833656 0.552284i \(-0.813756\pi\)
−0.833656 + 0.552284i \(0.813756\pi\)
\(354\) 0 0
\(355\) 6735.41 1.00698
\(356\) 5038.41 0.750100
\(357\) 0 0
\(358\) −1516.83 −0.223931
\(359\) −445.389 −0.0654784 −0.0327392 0.999464i \(-0.510423\pi\)
−0.0327392 + 0.999464i \(0.510423\pi\)
\(360\) 0 0
\(361\) −6821.57 −0.994543
\(362\) 4445.43 0.645432
\(363\) 0 0
\(364\) −677.848 −0.0976069
\(365\) 1840.19 0.263890
\(366\) 0 0
\(367\) 3992.27 0.567833 0.283917 0.958849i \(-0.408366\pi\)
0.283917 + 0.958849i \(0.408366\pi\)
\(368\) 116.354 0.0164820
\(369\) 0 0
\(370\) 850.795 0.119543
\(371\) 494.725 0.0692314
\(372\) 0 0
\(373\) −6176.60 −0.857405 −0.428703 0.903446i \(-0.641029\pi\)
−0.428703 + 0.903446i \(0.641029\pi\)
\(374\) 1002.95 0.138667
\(375\) 0 0
\(376\) −5204.70 −0.713862
\(377\) 1103.28 0.150721
\(378\) 0 0
\(379\) −3069.15 −0.415968 −0.207984 0.978132i \(-0.566690\pi\)
−0.207984 + 0.978132i \(0.566690\pi\)
\(380\) 208.364 0.0281285
\(381\) 0 0
\(382\) −5263.86 −0.705033
\(383\) −1017.81 −0.135790 −0.0678952 0.997692i \(-0.521628\pi\)
−0.0678952 + 0.997692i \(0.521628\pi\)
\(384\) 0 0
\(385\) −1323.71 −0.175228
\(386\) −2603.50 −0.343302
\(387\) 0 0
\(388\) −5400.85 −0.706666
\(389\) 10231.0 1.33350 0.666748 0.745283i \(-0.267686\pi\)
0.666748 + 0.745283i \(0.267686\pi\)
\(390\) 0 0
\(391\) 778.731 0.100722
\(392\) −5049.52 −0.650610
\(393\) 0 0
\(394\) −6432.01 −0.822436
\(395\) 7700.44 0.980889
\(396\) 0 0
\(397\) −7312.11 −0.924394 −0.462197 0.886777i \(-0.652939\pi\)
−0.462197 + 0.886777i \(0.652939\pi\)
\(398\) −7439.88 −0.937004
\(399\) 0 0
\(400\) 361.758 0.0452198
\(401\) 2859.00 0.356039 0.178020 0.984027i \(-0.443031\pi\)
0.178020 + 0.984027i \(0.443031\pi\)
\(402\) 0 0
\(403\) 3084.52 0.381268
\(404\) 5461.21 0.672538
\(405\) 0 0
\(406\) −1729.63 −0.211429
\(407\) −1030.75 −0.125534
\(408\) 0 0
\(409\) −2100.40 −0.253932 −0.126966 0.991907i \(-0.540524\pi\)
−0.126966 + 0.991907i \(0.540524\pi\)
\(410\) 1010.15 0.121678
\(411\) 0 0
\(412\) −4568.39 −0.546283
\(413\) −5215.91 −0.621449
\(414\) 0 0
\(415\) −1047.34 −0.123884
\(416\) 2291.71 0.270097
\(417\) 0 0
\(418\) 181.222 0.0212054
\(419\) 8941.83 1.04257 0.521285 0.853382i \(-0.325453\pi\)
0.521285 + 0.853382i \(0.325453\pi\)
\(420\) 0 0
\(421\) −11876.0 −1.37483 −0.687413 0.726266i \(-0.741254\pi\)
−0.687413 + 0.726266i \(0.741254\pi\)
\(422\) 4811.13 0.554981
\(423\) 0 0
\(424\) −1024.83 −0.117383
\(425\) 2421.16 0.276338
\(426\) 0 0
\(427\) 5815.84 0.659130
\(428\) −4189.04 −0.473096
\(429\) 0 0
\(430\) 3489.06 0.391297
\(431\) −2474.23 −0.276518 −0.138259 0.990396i \(-0.544151\pi\)
−0.138259 + 0.990396i \(0.544151\pi\)
\(432\) 0 0
\(433\) −8210.49 −0.911249 −0.455624 0.890172i \(-0.650584\pi\)
−0.455624 + 0.890172i \(0.650584\pi\)
\(434\) −4835.65 −0.534835
\(435\) 0 0
\(436\) −7964.78 −0.874871
\(437\) 140.708 0.0154027
\(438\) 0 0
\(439\) 15542.0 1.68970 0.844850 0.535003i \(-0.179689\pi\)
0.844850 + 0.535003i \(0.179689\pi\)
\(440\) 2742.10 0.297101
\(441\) 0 0
\(442\) −806.609 −0.0868019
\(443\) 6576.52 0.705328 0.352664 0.935750i \(-0.385276\pi\)
0.352664 + 0.935750i \(0.385276\pi\)
\(444\) 0 0
\(445\) −7912.96 −0.842944
\(446\) 5277.69 0.560327
\(447\) 0 0
\(448\) −4044.87 −0.426567
\(449\) 6648.47 0.698799 0.349400 0.936974i \(-0.386386\pi\)
0.349400 + 0.936974i \(0.386386\pi\)
\(450\) 0 0
\(451\) −1223.81 −0.127776
\(452\) −5028.41 −0.523267
\(453\) 0 0
\(454\) 3326.81 0.343910
\(455\) 1064.58 0.109688
\(456\) 0 0
\(457\) −14901.1 −1.52526 −0.762631 0.646834i \(-0.776093\pi\)
−0.762631 + 0.646834i \(0.776093\pi\)
\(458\) −1898.74 −0.193717
\(459\) 0 0
\(460\) 783.354 0.0794002
\(461\) −3180.92 −0.321367 −0.160684 0.987006i \(-0.551370\pi\)
−0.160684 + 0.987006i \(0.551370\pi\)
\(462\) 0 0
\(463\) 10841.3 1.08821 0.544104 0.839018i \(-0.316870\pi\)
0.544104 + 0.839018i \(0.316870\pi\)
\(464\) 428.366 0.0428586
\(465\) 0 0
\(466\) −2619.77 −0.260426
\(467\) −16873.2 −1.67195 −0.835973 0.548770i \(-0.815096\pi\)
−0.835973 + 0.548770i \(0.815096\pi\)
\(468\) 0 0
\(469\) 10132.1 0.997559
\(470\) 3007.52 0.295162
\(471\) 0 0
\(472\) 10804.9 1.05367
\(473\) −4227.03 −0.410907
\(474\) 0 0
\(475\) 437.478 0.0422587
\(476\) −1761.43 −0.169612
\(477\) 0 0
\(478\) −11972.6 −1.14564
\(479\) −5673.54 −0.541192 −0.270596 0.962693i \(-0.587221\pi\)
−0.270596 + 0.962693i \(0.587221\pi\)
\(480\) 0 0
\(481\) 828.964 0.0785811
\(482\) −3319.25 −0.313667
\(483\) 0 0
\(484\) 4975.98 0.467316
\(485\) 8482.17 0.794135
\(486\) 0 0
\(487\) 16387.7 1.52484 0.762421 0.647082i \(-0.224011\pi\)
0.762421 + 0.647082i \(0.224011\pi\)
\(488\) −12047.6 −1.11756
\(489\) 0 0
\(490\) 2917.84 0.269010
\(491\) −16060.1 −1.47614 −0.738068 0.674726i \(-0.764262\pi\)
−0.738068 + 0.674726i \(0.764262\pi\)
\(492\) 0 0
\(493\) 2866.95 0.261909
\(494\) −145.745 −0.0132741
\(495\) 0 0
\(496\) 1197.61 0.108416
\(497\) −10288.2 −0.928552
\(498\) 0 0
\(499\) −6254.22 −0.561077 −0.280539 0.959843i \(-0.590513\pi\)
−0.280539 + 0.959843i \(0.590513\pi\)
\(500\) 6692.90 0.598631
\(501\) 0 0
\(502\) −13539.7 −1.20380
\(503\) −14085.9 −1.24862 −0.624312 0.781175i \(-0.714621\pi\)
−0.624312 + 0.781175i \(0.714621\pi\)
\(504\) 0 0
\(505\) −8576.97 −0.755782
\(506\) 681.314 0.0598579
\(507\) 0 0
\(508\) 1682.63 0.146958
\(509\) −6902.54 −0.601080 −0.300540 0.953769i \(-0.597167\pi\)
−0.300540 + 0.953769i \(0.597167\pi\)
\(510\) 0 0
\(511\) −2810.86 −0.243337
\(512\) 1826.38 0.157647
\(513\) 0 0
\(514\) −372.446 −0.0319608
\(515\) 7174.77 0.613899
\(516\) 0 0
\(517\) −3643.63 −0.309955
\(518\) −1299.58 −0.110232
\(519\) 0 0
\(520\) −2205.30 −0.185978
\(521\) 13831.4 1.16308 0.581538 0.813519i \(-0.302451\pi\)
0.581538 + 0.813519i \(0.302451\pi\)
\(522\) 0 0
\(523\) 4141.92 0.346297 0.173149 0.984896i \(-0.444606\pi\)
0.173149 + 0.984896i \(0.444606\pi\)
\(524\) −4920.25 −0.410195
\(525\) 0 0
\(526\) 8790.34 0.728663
\(527\) 8015.34 0.662531
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 592.195 0.0485345
\(531\) 0 0
\(532\) −318.272 −0.0259377
\(533\) 984.232 0.0799847
\(534\) 0 0
\(535\) 6579.00 0.531654
\(536\) −20988.8 −1.69137
\(537\) 0 0
\(538\) −13134.6 −1.05255
\(539\) −3534.99 −0.282492
\(540\) 0 0
\(541\) −4441.37 −0.352956 −0.176478 0.984305i \(-0.556470\pi\)
−0.176478 + 0.984305i \(0.556470\pi\)
\(542\) −12981.8 −1.02881
\(543\) 0 0
\(544\) 5955.17 0.469349
\(545\) 12508.9 0.983160
\(546\) 0 0
\(547\) −2858.01 −0.223399 −0.111700 0.993742i \(-0.535629\pi\)
−0.111700 + 0.993742i \(0.535629\pi\)
\(548\) 10587.1 0.825286
\(549\) 0 0
\(550\) 2118.29 0.164225
\(551\) 518.028 0.0400521
\(552\) 0 0
\(553\) −11762.3 −0.904491
\(554\) 4014.46 0.307866
\(555\) 0 0
\(556\) 7192.09 0.548584
\(557\) −24614.7 −1.87246 −0.936230 0.351388i \(-0.885710\pi\)
−0.936230 + 0.351388i \(0.885710\pi\)
\(558\) 0 0
\(559\) 3399.53 0.257218
\(560\) 413.339 0.0311906
\(561\) 0 0
\(562\) −1182.03 −0.0887202
\(563\) 21799.4 1.63186 0.815928 0.578154i \(-0.196227\pi\)
0.815928 + 0.578154i \(0.196227\pi\)
\(564\) 0 0
\(565\) 7897.25 0.588035
\(566\) 5543.25 0.411661
\(567\) 0 0
\(568\) 21312.3 1.57437
\(569\) 18323.3 1.35000 0.675002 0.737816i \(-0.264143\pi\)
0.675002 + 0.737816i \(0.264143\pi\)
\(570\) 0 0
\(571\) 8424.79 0.617454 0.308727 0.951151i \(-0.400097\pi\)
0.308727 + 0.951151i \(0.400097\pi\)
\(572\) 983.016 0.0718565
\(573\) 0 0
\(574\) −1542.99 −0.112201
\(575\) 1644.72 0.119286
\(576\) 0 0
\(577\) −9565.96 −0.690184 −0.345092 0.938569i \(-0.612152\pi\)
−0.345092 + 0.938569i \(0.612152\pi\)
\(578\) 6887.04 0.495611
\(579\) 0 0
\(580\) 2883.98 0.206467
\(581\) 1599.79 0.114235
\(582\) 0 0
\(583\) −717.450 −0.0509670
\(584\) 5822.75 0.412581
\(585\) 0 0
\(586\) 7212.05 0.508408
\(587\) 27041.1 1.90137 0.950686 0.310156i \(-0.100381\pi\)
0.950686 + 0.310156i \(0.100381\pi\)
\(588\) 0 0
\(589\) 1448.29 0.101317
\(590\) −6243.55 −0.435666
\(591\) 0 0
\(592\) 321.858 0.0223450
\(593\) 25057.0 1.73519 0.867595 0.497272i \(-0.165665\pi\)
0.867595 + 0.497272i \(0.165665\pi\)
\(594\) 0 0
\(595\) 2766.38 0.190606
\(596\) 3097.16 0.212860
\(597\) 0 0
\(598\) −547.938 −0.0374696
\(599\) 4596.80 0.313556 0.156778 0.987634i \(-0.449889\pi\)
0.156778 + 0.987634i \(0.449889\pi\)
\(600\) 0 0
\(601\) 7811.09 0.530152 0.265076 0.964228i \(-0.414603\pi\)
0.265076 + 0.964228i \(0.414603\pi\)
\(602\) −5329.49 −0.360820
\(603\) 0 0
\(604\) 16578.3 1.11682
\(605\) −7814.90 −0.525158
\(606\) 0 0
\(607\) 15143.2 1.01259 0.506296 0.862360i \(-0.331014\pi\)
0.506296 + 0.862360i \(0.331014\pi\)
\(608\) 1076.03 0.0717746
\(609\) 0 0
\(610\) 6961.67 0.462082
\(611\) 2930.34 0.194024
\(612\) 0 0
\(613\) −20487.4 −1.34988 −0.674941 0.737872i \(-0.735831\pi\)
−0.674941 + 0.737872i \(0.735831\pi\)
\(614\) 6222.52 0.408991
\(615\) 0 0
\(616\) −4188.51 −0.273961
\(617\) −25547.8 −1.66696 −0.833480 0.552549i \(-0.813655\pi\)
−0.833480 + 0.552549i \(0.813655\pi\)
\(618\) 0 0
\(619\) 15251.1 0.990294 0.495147 0.868809i \(-0.335114\pi\)
0.495147 + 0.868809i \(0.335114\pi\)
\(620\) 8062.93 0.522282
\(621\) 0 0
\(622\) −9187.10 −0.592233
\(623\) 12086.9 0.777291
\(624\) 0 0
\(625\) −1572.66 −0.100650
\(626\) −11414.0 −0.728745
\(627\) 0 0
\(628\) 6478.84 0.411678
\(629\) 2154.12 0.136551
\(630\) 0 0
\(631\) −11888.3 −0.750024 −0.375012 0.927020i \(-0.622361\pi\)
−0.375012 + 0.927020i \(0.622361\pi\)
\(632\) 24365.8 1.53358
\(633\) 0 0
\(634\) 9195.19 0.576006
\(635\) −2642.62 −0.165148
\(636\) 0 0
\(637\) 2842.97 0.176833
\(638\) 2508.31 0.155650
\(639\) 0 0
\(640\) 5449.32 0.336568
\(641\) −11163.5 −0.687881 −0.343941 0.938991i \(-0.611762\pi\)
−0.343941 + 0.938991i \(0.611762\pi\)
\(642\) 0 0
\(643\) −22456.6 −1.37730 −0.688648 0.725096i \(-0.741795\pi\)
−0.688648 + 0.725096i \(0.741795\pi\)
\(644\) −1196.56 −0.0732160
\(645\) 0 0
\(646\) −378.729 −0.0230664
\(647\) −27307.0 −1.65927 −0.829635 0.558306i \(-0.811451\pi\)
−0.829635 + 0.558306i \(0.811451\pi\)
\(648\) 0 0
\(649\) 7564.11 0.457500
\(650\) −1703.60 −0.102801
\(651\) 0 0
\(652\) −4544.90 −0.272994
\(653\) 21965.4 1.31634 0.658171 0.752868i \(-0.271330\pi\)
0.658171 + 0.752868i \(0.271330\pi\)
\(654\) 0 0
\(655\) 7727.37 0.460967
\(656\) 382.143 0.0227442
\(657\) 0 0
\(658\) −4593.93 −0.272173
\(659\) 27620.9 1.63271 0.816356 0.577549i \(-0.195991\pi\)
0.816356 + 0.577549i \(0.195991\pi\)
\(660\) 0 0
\(661\) 4999.00 0.294158 0.147079 0.989125i \(-0.453013\pi\)
0.147079 + 0.989125i \(0.453013\pi\)
\(662\) −12020.1 −0.705703
\(663\) 0 0
\(664\) −3314.00 −0.193687
\(665\) 499.855 0.0291482
\(666\) 0 0
\(667\) 1947.55 0.113058
\(668\) 9560.82 0.553771
\(669\) 0 0
\(670\) 12128.3 0.699337
\(671\) −8434.13 −0.485240
\(672\) 0 0
\(673\) −18499.9 −1.05961 −0.529807 0.848118i \(-0.677736\pi\)
−0.529807 + 0.848118i \(0.677736\pi\)
\(674\) −10972.3 −0.627059
\(675\) 0 0
\(676\) 9440.53 0.537126
\(677\) 1611.99 0.0915121 0.0457560 0.998953i \(-0.485430\pi\)
0.0457560 + 0.998953i \(0.485430\pi\)
\(678\) 0 0
\(679\) −12956.4 −0.732283
\(680\) −5730.61 −0.323175
\(681\) 0 0
\(682\) 7012.65 0.393737
\(683\) −2745.18 −0.153794 −0.0768972 0.997039i \(-0.524501\pi\)
−0.0768972 + 0.997039i \(0.524501\pi\)
\(684\) 0 0
\(685\) −16627.2 −0.927437
\(686\) −11463.2 −0.638000
\(687\) 0 0
\(688\) 1319.92 0.0731417
\(689\) 576.999 0.0319041
\(690\) 0 0
\(691\) 6774.46 0.372956 0.186478 0.982459i \(-0.440293\pi\)
0.186478 + 0.982459i \(0.440293\pi\)
\(692\) 6092.31 0.334675
\(693\) 0 0
\(694\) 7047.35 0.385467
\(695\) −11295.4 −0.616486
\(696\) 0 0
\(697\) 2557.59 0.138990
\(698\) −7773.27 −0.421522
\(699\) 0 0
\(700\) −3720.25 −0.200874
\(701\) −19717.2 −1.06235 −0.531176 0.847261i \(-0.678250\pi\)
−0.531176 + 0.847261i \(0.678250\pi\)
\(702\) 0 0
\(703\) 389.226 0.0208818
\(704\) 5865.87 0.314032
\(705\) 0 0
\(706\) 20218.9 1.07783
\(707\) 13101.2 0.696918
\(708\) 0 0
\(709\) 25897.2 1.37178 0.685889 0.727706i \(-0.259414\pi\)
0.685889 + 0.727706i \(0.259414\pi\)
\(710\) −12315.2 −0.650960
\(711\) 0 0
\(712\) −25038.3 −1.31791
\(713\) 5444.91 0.285993
\(714\) 0 0
\(715\) −1543.85 −0.0807507
\(716\) −3863.25 −0.201643
\(717\) 0 0
\(718\) 814.362 0.0423283
\(719\) −14013.5 −0.726865 −0.363433 0.931620i \(-0.618395\pi\)
−0.363433 + 0.931620i \(0.618395\pi\)
\(720\) 0 0
\(721\) −10959.4 −0.566085
\(722\) 12472.7 0.642919
\(723\) 0 0
\(724\) 11322.1 0.581194
\(725\) 6055.17 0.310184
\(726\) 0 0
\(727\) −6116.58 −0.312038 −0.156019 0.987754i \(-0.549866\pi\)
−0.156019 + 0.987754i \(0.549866\pi\)
\(728\) 3368.55 0.171493
\(729\) 0 0
\(730\) −3364.65 −0.170591
\(731\) 8833.91 0.446969
\(732\) 0 0
\(733\) −25067.8 −1.26317 −0.631583 0.775308i \(-0.717594\pi\)
−0.631583 + 0.775308i \(0.717594\pi\)
\(734\) −7299.58 −0.367074
\(735\) 0 0
\(736\) 4045.41 0.202603
\(737\) −14693.5 −0.734386
\(738\) 0 0
\(739\) 14908.2 0.742095 0.371047 0.928614i \(-0.378999\pi\)
0.371047 + 0.928614i \(0.378999\pi\)
\(740\) 2166.91 0.107645
\(741\) 0 0
\(742\) −904.569 −0.0447544
\(743\) −17125.0 −0.845566 −0.422783 0.906231i \(-0.638947\pi\)
−0.422783 + 0.906231i \(0.638947\pi\)
\(744\) 0 0
\(745\) −4864.18 −0.239208
\(746\) 11293.5 0.554267
\(747\) 0 0
\(748\) 2554.43 0.124865
\(749\) −10049.3 −0.490246
\(750\) 0 0
\(751\) −16547.1 −0.804009 −0.402004 0.915638i \(-0.631686\pi\)
−0.402004 + 0.915638i \(0.631686\pi\)
\(752\) 1137.75 0.0551721
\(753\) 0 0
\(754\) −2017.27 −0.0974333
\(755\) −26036.6 −1.25506
\(756\) 0 0
\(757\) 33624.0 1.61438 0.807189 0.590293i \(-0.200988\pi\)
0.807189 + 0.590293i \(0.200988\pi\)
\(758\) 5611.72 0.268901
\(759\) 0 0
\(760\) −1035.46 −0.0494211
\(761\) −1430.59 −0.0681459 −0.0340729 0.999419i \(-0.510848\pi\)
−0.0340729 + 0.999419i \(0.510848\pi\)
\(762\) 0 0
\(763\) −19107.1 −0.906586
\(764\) −13406.6 −0.634862
\(765\) 0 0
\(766\) 1860.99 0.0877813
\(767\) −6083.33 −0.286384
\(768\) 0 0
\(769\) −32902.7 −1.54291 −0.771457 0.636282i \(-0.780471\pi\)
−0.771457 + 0.636282i \(0.780471\pi\)
\(770\) 2420.31 0.113275
\(771\) 0 0
\(772\) −6630.90 −0.309134
\(773\) −15196.9 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(774\) 0 0
\(775\) 16928.8 0.784648
\(776\) 26839.4 1.24160
\(777\) 0 0
\(778\) −18706.6 −0.862034
\(779\) 462.129 0.0212548
\(780\) 0 0
\(781\) 14920.0 0.683585
\(782\) −1423.85 −0.0651111
\(783\) 0 0
\(784\) 1103.83 0.0502836
\(785\) −10175.2 −0.462634
\(786\) 0 0
\(787\) −33540.5 −1.51917 −0.759586 0.650406i \(-0.774599\pi\)
−0.759586 + 0.650406i \(0.774599\pi\)
\(788\) −16381.8 −0.740580
\(789\) 0 0
\(790\) −14079.7 −0.634092
\(791\) −12062.9 −0.542235
\(792\) 0 0
\(793\) 6783.03 0.303749
\(794\) 13369.7 0.597571
\(795\) 0 0
\(796\) −18948.8 −0.843746
\(797\) −10451.6 −0.464508 −0.232254 0.972655i \(-0.574610\pi\)
−0.232254 + 0.972655i \(0.574610\pi\)
\(798\) 0 0
\(799\) 7614.69 0.337157
\(800\) 12577.6 0.555859
\(801\) 0 0
\(802\) −5227.47 −0.230160
\(803\) 4076.31 0.179140
\(804\) 0 0
\(805\) 1879.23 0.0822784
\(806\) −5639.83 −0.246470
\(807\) 0 0
\(808\) −27139.4 −1.18163
\(809\) −44402.8 −1.92969 −0.964845 0.262820i \(-0.915348\pi\)
−0.964845 + 0.262820i \(0.915348\pi\)
\(810\) 0 0
\(811\) −17243.5 −0.746611 −0.373305 0.927708i \(-0.621776\pi\)
−0.373305 + 0.927708i \(0.621776\pi\)
\(812\) −4405.23 −0.190386
\(813\) 0 0
\(814\) 1884.65 0.0811508
\(815\) 7137.88 0.306784
\(816\) 0 0
\(817\) 1596.19 0.0683521
\(818\) 3840.43 0.164154
\(819\) 0 0
\(820\) 2572.78 0.109567
\(821\) 22572.4 0.959541 0.479771 0.877394i \(-0.340720\pi\)
0.479771 + 0.877394i \(0.340720\pi\)
\(822\) 0 0
\(823\) −25704.3 −1.08870 −0.544348 0.838859i \(-0.683223\pi\)
−0.544348 + 0.838859i \(0.683223\pi\)
\(824\) 22702.5 0.959805
\(825\) 0 0
\(826\) 9536.92 0.401733
\(827\) 6681.58 0.280945 0.140472 0.990085i \(-0.455138\pi\)
0.140472 + 0.990085i \(0.455138\pi\)
\(828\) 0 0
\(829\) 20180.8 0.845487 0.422743 0.906249i \(-0.361067\pi\)
0.422743 + 0.906249i \(0.361067\pi\)
\(830\) 1914.98 0.0800842
\(831\) 0 0
\(832\) −4717.54 −0.196576
\(833\) 7387.65 0.307283
\(834\) 0 0
\(835\) −15015.5 −0.622315
\(836\) 461.558 0.0190949
\(837\) 0 0
\(838\) −16349.5 −0.673966
\(839\) −15142.7 −0.623104 −0.311552 0.950229i \(-0.600849\pi\)
−0.311552 + 0.950229i \(0.600849\pi\)
\(840\) 0 0
\(841\) −17218.9 −0.706013
\(842\) 21714.5 0.888752
\(843\) 0 0
\(844\) 12253.6 0.499745
\(845\) −14826.6 −0.603610
\(846\) 0 0
\(847\) 11937.1 0.484256
\(848\) 224.029 0.00907214
\(849\) 0 0
\(850\) −4426.92 −0.178638
\(851\) 1463.31 0.0589445
\(852\) 0 0
\(853\) −29073.6 −1.16701 −0.583507 0.812108i \(-0.698320\pi\)
−0.583507 + 0.812108i \(0.698320\pi\)
\(854\) −10633.8 −0.426092
\(855\) 0 0
\(856\) 20817.4 0.831218
\(857\) 24579.3 0.979713 0.489857 0.871803i \(-0.337049\pi\)
0.489857 + 0.871803i \(0.337049\pi\)
\(858\) 0 0
\(859\) 20359.2 0.808670 0.404335 0.914611i \(-0.367503\pi\)
0.404335 + 0.914611i \(0.367503\pi\)
\(860\) 8886.36 0.352352
\(861\) 0 0
\(862\) 4523.95 0.178754
\(863\) 31440.0 1.24013 0.620064 0.784551i \(-0.287107\pi\)
0.620064 + 0.784551i \(0.287107\pi\)
\(864\) 0 0
\(865\) −9568.13 −0.376100
\(866\) 15012.3 0.589074
\(867\) 0 0
\(868\) −12316.0 −0.481604
\(869\) 17057.7 0.665871
\(870\) 0 0
\(871\) 11817.1 0.459708
\(872\) 39580.8 1.53713
\(873\) 0 0
\(874\) −257.275 −0.00995703
\(875\) 16055.9 0.620331
\(876\) 0 0
\(877\) 33232.1 1.27955 0.639777 0.768561i \(-0.279027\pi\)
0.639777 + 0.768561i \(0.279027\pi\)
\(878\) −28417.4 −1.09230
\(879\) 0 0
\(880\) −599.423 −0.0229620
\(881\) −46530.5 −1.77940 −0.889700 0.456545i \(-0.849087\pi\)
−0.889700 + 0.456545i \(0.849087\pi\)
\(882\) 0 0
\(883\) −9010.26 −0.343397 −0.171698 0.985150i \(-0.554925\pi\)
−0.171698 + 0.985150i \(0.554925\pi\)
\(884\) −2054.37 −0.0781627
\(885\) 0 0
\(886\) −12024.7 −0.455957
\(887\) −16773.0 −0.634930 −0.317465 0.948270i \(-0.602832\pi\)
−0.317465 + 0.948270i \(0.602832\pi\)
\(888\) 0 0
\(889\) 4036.56 0.152285
\(890\) 14468.3 0.544918
\(891\) 0 0
\(892\) 13441.9 0.504559
\(893\) 1375.89 0.0515593
\(894\) 0 0
\(895\) 6067.34 0.226602
\(896\) −8323.75 −0.310354
\(897\) 0 0
\(898\) −12156.3 −0.451736
\(899\) 20045.8 0.743677
\(900\) 0 0
\(901\) 1499.37 0.0554398
\(902\) 2237.65 0.0826003
\(903\) 0 0
\(904\) 24988.6 0.919367
\(905\) −17781.7 −0.653132
\(906\) 0 0
\(907\) −42971.0 −1.57313 −0.786565 0.617507i \(-0.788143\pi\)
−0.786565 + 0.617507i \(0.788143\pi\)
\(908\) 8473.12 0.309681
\(909\) 0 0
\(910\) −1946.50 −0.0709077
\(911\) 4801.23 0.174612 0.0873061 0.996182i \(-0.472174\pi\)
0.0873061 + 0.996182i \(0.472174\pi\)
\(912\) 0 0
\(913\) −2320.02 −0.0840978
\(914\) 27245.6 0.986001
\(915\) 0 0
\(916\) −4835.94 −0.174437
\(917\) −11803.4 −0.425064
\(918\) 0 0
\(919\) 31232.7 1.12108 0.560539 0.828128i \(-0.310594\pi\)
0.560539 + 0.828128i \(0.310594\pi\)
\(920\) −3892.86 −0.139504
\(921\) 0 0
\(922\) 5816.09 0.207747
\(923\) −11999.2 −0.427907
\(924\) 0 0
\(925\) 4549.61 0.161719
\(926\) −19822.6 −0.703468
\(927\) 0 0
\(928\) 14893.5 0.526834
\(929\) 23023.4 0.813104 0.406552 0.913628i \(-0.366731\pi\)
0.406552 + 0.913628i \(0.366731\pi\)
\(930\) 0 0
\(931\) 1334.87 0.0469909
\(932\) −6672.35 −0.234507
\(933\) 0 0
\(934\) 30851.4 1.08082
\(935\) −4011.80 −0.140321
\(936\) 0 0
\(937\) −11599.2 −0.404405 −0.202203 0.979344i \(-0.564810\pi\)
−0.202203 + 0.979344i \(0.564810\pi\)
\(938\) −18525.7 −0.644869
\(939\) 0 0
\(940\) 7659.89 0.265785
\(941\) 20423.2 0.707522 0.353761 0.935336i \(-0.384903\pi\)
0.353761 + 0.935336i \(0.384903\pi\)
\(942\) 0 0
\(943\) 1737.40 0.0599974
\(944\) −2361.95 −0.0814351
\(945\) 0 0
\(946\) 7728.82 0.265630
\(947\) −22021.1 −0.755638 −0.377819 0.925880i \(-0.623326\pi\)
−0.377819 + 0.925880i \(0.623326\pi\)
\(948\) 0 0
\(949\) −3278.31 −0.112138
\(950\) −799.897 −0.0273180
\(951\) 0 0
\(952\) 8753.41 0.298004
\(953\) −46234.5 −1.57154 −0.785772 0.618517i \(-0.787734\pi\)
−0.785772 + 0.618517i \(0.787734\pi\)
\(954\) 0 0
\(955\) 21055.4 0.713443
\(956\) −30493.3 −1.03161
\(957\) 0 0
\(958\) 10373.7 0.349852
\(959\) 25397.9 0.855203
\(960\) 0 0
\(961\) 26252.5 0.881222
\(962\) −1515.70 −0.0507985
\(963\) 0 0
\(964\) −8453.85 −0.282448
\(965\) 10414.0 0.347397
\(966\) 0 0
\(967\) 32443.4 1.07891 0.539456 0.842014i \(-0.318630\pi\)
0.539456 + 0.842014i \(0.318630\pi\)
\(968\) −24728.0 −0.821062
\(969\) 0 0
\(970\) −15509.0 −0.513366
\(971\) −10183.9 −0.336579 −0.168290 0.985738i \(-0.553824\pi\)
−0.168290 + 0.985738i \(0.553824\pi\)
\(972\) 0 0
\(973\) 17253.5 0.568470
\(974\) −29963.7 −0.985729
\(975\) 0 0
\(976\) 2633.61 0.0863729
\(977\) 26704.7 0.874472 0.437236 0.899347i \(-0.355957\pi\)
0.437236 + 0.899347i \(0.355957\pi\)
\(978\) 0 0
\(979\) −17528.4 −0.572228
\(980\) 7431.51 0.242236
\(981\) 0 0
\(982\) 29364.8 0.954243
\(983\) 12350.6 0.400735 0.200368 0.979721i \(-0.435786\pi\)
0.200368 + 0.979721i \(0.435786\pi\)
\(984\) 0 0
\(985\) 25728.0 0.832247
\(986\) −5242.02 −0.169310
\(987\) 0 0
\(988\) −371.202 −0.0119529
\(989\) 6000.97 0.192942
\(990\) 0 0
\(991\) 18050.6 0.578602 0.289301 0.957238i \(-0.406577\pi\)
0.289301 + 0.957238i \(0.406577\pi\)
\(992\) 41638.7 1.33269
\(993\) 0 0
\(994\) 18811.3 0.600260
\(995\) 29759.5 0.948182
\(996\) 0 0
\(997\) 14290.5 0.453946 0.226973 0.973901i \(-0.427117\pi\)
0.226973 + 0.973901i \(0.427117\pi\)
\(998\) 11435.4 0.362706
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.b.1.1 2
3.2 odd 2 69.4.a.b.1.2 2
12.11 even 2 1104.4.a.q.1.1 2
15.14 odd 2 1725.4.a.m.1.1 2
69.68 even 2 1587.4.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.b.1.2 2 3.2 odd 2
207.4.a.b.1.1 2 1.1 even 1 trivial
1104.4.a.q.1.1 2 12.11 even 2
1587.4.a.c.1.2 2 69.68 even 2
1725.4.a.m.1.1 2 15.14 odd 2