Properties

Label 207.4.a.a.1.1
Level $207$
Weight $4$
Character 207.1
Self dual yes
Analytic conductor $12.213$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [207,4,Mod(1,207)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(207, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("207.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 207.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.2133953712\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 207.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -4.00000 q^{4} +6.00000 q^{5} -8.00000 q^{7} -24.0000 q^{8} +O(q^{10})\) \(q+2.00000 q^{2} -4.00000 q^{4} +6.00000 q^{5} -8.00000 q^{7} -24.0000 q^{8} +12.0000 q^{10} -34.0000 q^{11} -57.0000 q^{13} -16.0000 q^{14} -16.0000 q^{16} +80.0000 q^{17} -70.0000 q^{19} -24.0000 q^{20} -68.0000 q^{22} -23.0000 q^{23} -89.0000 q^{25} -114.000 q^{26} +32.0000 q^{28} -245.000 q^{29} +103.000 q^{31} +160.000 q^{32} +160.000 q^{34} -48.0000 q^{35} -298.000 q^{37} -140.000 q^{38} -144.000 q^{40} -95.0000 q^{41} +88.0000 q^{43} +136.000 q^{44} -46.0000 q^{46} +357.000 q^{47} -279.000 q^{49} -178.000 q^{50} +228.000 q^{52} +414.000 q^{53} -204.000 q^{55} +192.000 q^{56} -490.000 q^{58} +408.000 q^{59} +822.000 q^{61} +206.000 q^{62} +448.000 q^{64} -342.000 q^{65} +926.000 q^{67} -320.000 q^{68} -96.0000 q^{70} -335.000 q^{71} -899.000 q^{73} -596.000 q^{74} +280.000 q^{76} +272.000 q^{77} -1322.00 q^{79} -96.0000 q^{80} -190.000 q^{82} +36.0000 q^{83} +480.000 q^{85} +176.000 q^{86} +816.000 q^{88} +460.000 q^{89} +456.000 q^{91} +92.0000 q^{92} +714.000 q^{94} -420.000 q^{95} -964.000 q^{97} -558.000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 6.00000 0.536656 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(6\) 0 0
\(7\) −8.00000 −0.431959 −0.215980 0.976398i \(-0.569295\pi\)
−0.215980 + 0.976398i \(0.569295\pi\)
\(8\) −24.0000 −1.06066
\(9\) 0 0
\(10\) 12.0000 0.379473
\(11\) −34.0000 −0.931944 −0.465972 0.884799i \(-0.654295\pi\)
−0.465972 + 0.884799i \(0.654295\pi\)
\(12\) 0 0
\(13\) −57.0000 −1.21607 −0.608037 0.793909i \(-0.708043\pi\)
−0.608037 + 0.793909i \(0.708043\pi\)
\(14\) −16.0000 −0.305441
\(15\) 0 0
\(16\) −16.0000 −0.250000
\(17\) 80.0000 1.14134 0.570672 0.821178i \(-0.306683\pi\)
0.570672 + 0.821178i \(0.306683\pi\)
\(18\) 0 0
\(19\) −70.0000 −0.845216 −0.422608 0.906313i \(-0.638885\pi\)
−0.422608 + 0.906313i \(0.638885\pi\)
\(20\) −24.0000 −0.268328
\(21\) 0 0
\(22\) −68.0000 −0.658984
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) −89.0000 −0.712000
\(26\) −114.000 −0.859894
\(27\) 0 0
\(28\) 32.0000 0.215980
\(29\) −245.000 −1.56881 −0.784403 0.620252i \(-0.787030\pi\)
−0.784403 + 0.620252i \(0.787030\pi\)
\(30\) 0 0
\(31\) 103.000 0.596753 0.298377 0.954448i \(-0.403555\pi\)
0.298377 + 0.954448i \(0.403555\pi\)
\(32\) 160.000 0.883883
\(33\) 0 0
\(34\) 160.000 0.807052
\(35\) −48.0000 −0.231814
\(36\) 0 0
\(37\) −298.000 −1.32408 −0.662039 0.749469i \(-0.730309\pi\)
−0.662039 + 0.749469i \(0.730309\pi\)
\(38\) −140.000 −0.597658
\(39\) 0 0
\(40\) −144.000 −0.569210
\(41\) −95.0000 −0.361866 −0.180933 0.983495i \(-0.557912\pi\)
−0.180933 + 0.983495i \(0.557912\pi\)
\(42\) 0 0
\(43\) 88.0000 0.312090 0.156045 0.987750i \(-0.450125\pi\)
0.156045 + 0.987750i \(0.450125\pi\)
\(44\) 136.000 0.465972
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 357.000 1.10795 0.553977 0.832532i \(-0.313110\pi\)
0.553977 + 0.832532i \(0.313110\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) −178.000 −0.503460
\(51\) 0 0
\(52\) 228.000 0.608037
\(53\) 414.000 1.07297 0.536484 0.843911i \(-0.319752\pi\)
0.536484 + 0.843911i \(0.319752\pi\)
\(54\) 0 0
\(55\) −204.000 −0.500134
\(56\) 192.000 0.458162
\(57\) 0 0
\(58\) −490.000 −1.10931
\(59\) 408.000 0.900289 0.450145 0.892956i \(-0.351372\pi\)
0.450145 + 0.892956i \(0.351372\pi\)
\(60\) 0 0
\(61\) 822.000 1.72535 0.862675 0.505759i \(-0.168788\pi\)
0.862675 + 0.505759i \(0.168788\pi\)
\(62\) 206.000 0.421968
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) −342.000 −0.652614
\(66\) 0 0
\(67\) 926.000 1.68849 0.844246 0.535957i \(-0.180049\pi\)
0.844246 + 0.535957i \(0.180049\pi\)
\(68\) −320.000 −0.570672
\(69\) 0 0
\(70\) −96.0000 −0.163917
\(71\) −335.000 −0.559960 −0.279980 0.960006i \(-0.590328\pi\)
−0.279980 + 0.960006i \(0.590328\pi\)
\(72\) 0 0
\(73\) −899.000 −1.44137 −0.720685 0.693263i \(-0.756173\pi\)
−0.720685 + 0.693263i \(0.756173\pi\)
\(74\) −596.000 −0.936265
\(75\) 0 0
\(76\) 280.000 0.422608
\(77\) 272.000 0.402562
\(78\) 0 0
\(79\) −1322.00 −1.88274 −0.941371 0.337373i \(-0.890462\pi\)
−0.941371 + 0.337373i \(0.890462\pi\)
\(80\) −96.0000 −0.134164
\(81\) 0 0
\(82\) −190.000 −0.255878
\(83\) 36.0000 0.0476086 0.0238043 0.999717i \(-0.492422\pi\)
0.0238043 + 0.999717i \(0.492422\pi\)
\(84\) 0 0
\(85\) 480.000 0.612510
\(86\) 176.000 0.220681
\(87\) 0 0
\(88\) 816.000 0.988476
\(89\) 460.000 0.547864 0.273932 0.961749i \(-0.411676\pi\)
0.273932 + 0.961749i \(0.411676\pi\)
\(90\) 0 0
\(91\) 456.000 0.525294
\(92\) 92.0000 0.104257
\(93\) 0 0
\(94\) 714.000 0.783441
\(95\) −420.000 −0.453590
\(96\) 0 0
\(97\) −964.000 −1.00907 −0.504533 0.863393i \(-0.668335\pi\)
−0.504533 + 0.863393i \(0.668335\pi\)
\(98\) −558.000 −0.575168
\(99\) 0 0
\(100\) 356.000 0.356000
\(101\) 310.000 0.305407 0.152704 0.988272i \(-0.451202\pi\)
0.152704 + 0.988272i \(0.451202\pi\)
\(102\) 0 0
\(103\) 1044.00 0.998722 0.499361 0.866394i \(-0.333568\pi\)
0.499361 + 0.866394i \(0.333568\pi\)
\(104\) 1368.00 1.28984
\(105\) 0 0
\(106\) 828.000 0.758703
\(107\) −414.000 −0.374046 −0.187023 0.982356i \(-0.559884\pi\)
−0.187023 + 0.982356i \(0.559884\pi\)
\(108\) 0 0
\(109\) 704.000 0.618633 0.309316 0.950959i \(-0.399900\pi\)
0.309316 + 0.950959i \(0.399900\pi\)
\(110\) −408.000 −0.353648
\(111\) 0 0
\(112\) 128.000 0.107990
\(113\) −952.000 −0.792537 −0.396268 0.918135i \(-0.629695\pi\)
−0.396268 + 0.918135i \(0.629695\pi\)
\(114\) 0 0
\(115\) −138.000 −0.111901
\(116\) 980.000 0.784403
\(117\) 0 0
\(118\) 816.000 0.636601
\(119\) −640.000 −0.493014
\(120\) 0 0
\(121\) −175.000 −0.131480
\(122\) 1644.00 1.22001
\(123\) 0 0
\(124\) −412.000 −0.298377
\(125\) −1284.00 −0.918756
\(126\) 0 0
\(127\) 261.000 0.182362 0.0911811 0.995834i \(-0.470936\pi\)
0.0911811 + 0.995834i \(0.470936\pi\)
\(128\) −384.000 −0.265165
\(129\) 0 0
\(130\) −684.000 −0.461467
\(131\) 1441.00 0.961074 0.480537 0.876974i \(-0.340442\pi\)
0.480537 + 0.876974i \(0.340442\pi\)
\(132\) 0 0
\(133\) 560.000 0.365099
\(134\) 1852.00 1.19394
\(135\) 0 0
\(136\) −1920.00 −1.21058
\(137\) −1556.00 −0.970351 −0.485175 0.874417i \(-0.661244\pi\)
−0.485175 + 0.874417i \(0.661244\pi\)
\(138\) 0 0
\(139\) 25.0000 0.0152552 0.00762760 0.999971i \(-0.497572\pi\)
0.00762760 + 0.999971i \(0.497572\pi\)
\(140\) 192.000 0.115907
\(141\) 0 0
\(142\) −670.000 −0.395952
\(143\) 1938.00 1.13331
\(144\) 0 0
\(145\) −1470.00 −0.841909
\(146\) −1798.00 −1.01920
\(147\) 0 0
\(148\) 1192.00 0.662039
\(149\) −822.000 −0.451952 −0.225976 0.974133i \(-0.572557\pi\)
−0.225976 + 0.974133i \(0.572557\pi\)
\(150\) 0 0
\(151\) −1489.00 −0.802471 −0.401235 0.915975i \(-0.631419\pi\)
−0.401235 + 0.915975i \(0.631419\pi\)
\(152\) 1680.00 0.896487
\(153\) 0 0
\(154\) 544.000 0.284654
\(155\) 618.000 0.320251
\(156\) 0 0
\(157\) −632.000 −0.321268 −0.160634 0.987014i \(-0.551354\pi\)
−0.160634 + 0.987014i \(0.551354\pi\)
\(158\) −2644.00 −1.33130
\(159\) 0 0
\(160\) 960.000 0.474342
\(161\) 184.000 0.0900698
\(162\) 0 0
\(163\) −3043.00 −1.46225 −0.731123 0.682245i \(-0.761004\pi\)
−0.731123 + 0.682245i \(0.761004\pi\)
\(164\) 380.000 0.180933
\(165\) 0 0
\(166\) 72.0000 0.0336644
\(167\) 2224.00 1.03053 0.515264 0.857031i \(-0.327694\pi\)
0.515264 + 0.857031i \(0.327694\pi\)
\(168\) 0 0
\(169\) 1052.00 0.478835
\(170\) 960.000 0.433110
\(171\) 0 0
\(172\) −352.000 −0.156045
\(173\) −3230.00 −1.41949 −0.709747 0.704457i \(-0.751191\pi\)
−0.709747 + 0.704457i \(0.751191\pi\)
\(174\) 0 0
\(175\) 712.000 0.307555
\(176\) 544.000 0.232986
\(177\) 0 0
\(178\) 920.000 0.387398
\(179\) −369.000 −0.154080 −0.0770401 0.997028i \(-0.524547\pi\)
−0.0770401 + 0.997028i \(0.524547\pi\)
\(180\) 0 0
\(181\) −1370.00 −0.562604 −0.281302 0.959619i \(-0.590766\pi\)
−0.281302 + 0.959619i \(0.590766\pi\)
\(182\) 912.000 0.371439
\(183\) 0 0
\(184\) 552.000 0.221163
\(185\) −1788.00 −0.710575
\(186\) 0 0
\(187\) −2720.00 −1.06367
\(188\) −1428.00 −0.553977
\(189\) 0 0
\(190\) −840.000 −0.320737
\(191\) −4410.00 −1.67066 −0.835331 0.549747i \(-0.814724\pi\)
−0.835331 + 0.549747i \(0.814724\pi\)
\(192\) 0 0
\(193\) −135.000 −0.0503498 −0.0251749 0.999683i \(-0.508014\pi\)
−0.0251749 + 0.999683i \(0.508014\pi\)
\(194\) −1928.00 −0.713517
\(195\) 0 0
\(196\) 1116.00 0.406706
\(197\) −1221.00 −0.441587 −0.220794 0.975321i \(-0.570865\pi\)
−0.220794 + 0.975321i \(0.570865\pi\)
\(198\) 0 0
\(199\) −1098.00 −0.391131 −0.195566 0.980691i \(-0.562654\pi\)
−0.195566 + 0.980691i \(0.562654\pi\)
\(200\) 2136.00 0.755190
\(201\) 0 0
\(202\) 620.000 0.215956
\(203\) 1960.00 0.677660
\(204\) 0 0
\(205\) −570.000 −0.194198
\(206\) 2088.00 0.706203
\(207\) 0 0
\(208\) 912.000 0.304018
\(209\) 2380.00 0.787694
\(210\) 0 0
\(211\) −3676.00 −1.19937 −0.599683 0.800238i \(-0.704707\pi\)
−0.599683 + 0.800238i \(0.704707\pi\)
\(212\) −1656.00 −0.536484
\(213\) 0 0
\(214\) −828.000 −0.264490
\(215\) 528.000 0.167485
\(216\) 0 0
\(217\) −824.000 −0.257773
\(218\) 1408.00 0.437439
\(219\) 0 0
\(220\) 816.000 0.250067
\(221\) −4560.00 −1.38796
\(222\) 0 0
\(223\) 1656.00 0.497282 0.248641 0.968596i \(-0.420016\pi\)
0.248641 + 0.968596i \(0.420016\pi\)
\(224\) −1280.00 −0.381802
\(225\) 0 0
\(226\) −1904.00 −0.560408
\(227\) −2940.00 −0.859624 −0.429812 0.902918i \(-0.641420\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(228\) 0 0
\(229\) 3612.00 1.04230 0.521152 0.853464i \(-0.325502\pi\)
0.521152 + 0.853464i \(0.325502\pi\)
\(230\) −276.000 −0.0791257
\(231\) 0 0
\(232\) 5880.00 1.66397
\(233\) 4325.00 1.21605 0.608026 0.793917i \(-0.291962\pi\)
0.608026 + 0.793917i \(0.291962\pi\)
\(234\) 0 0
\(235\) 2142.00 0.594590
\(236\) −1632.00 −0.450145
\(237\) 0 0
\(238\) −1280.00 −0.348614
\(239\) −2735.00 −0.740219 −0.370110 0.928988i \(-0.620680\pi\)
−0.370110 + 0.928988i \(0.620680\pi\)
\(240\) 0 0
\(241\) −6710.00 −1.79348 −0.896741 0.442556i \(-0.854072\pi\)
−0.896741 + 0.442556i \(0.854072\pi\)
\(242\) −350.000 −0.0929705
\(243\) 0 0
\(244\) −3288.00 −0.862675
\(245\) −1674.00 −0.436522
\(246\) 0 0
\(247\) 3990.00 1.02784
\(248\) −2472.00 −0.632952
\(249\) 0 0
\(250\) −2568.00 −0.649658
\(251\) 6948.00 1.74723 0.873613 0.486621i \(-0.161771\pi\)
0.873613 + 0.486621i \(0.161771\pi\)
\(252\) 0 0
\(253\) 782.000 0.194324
\(254\) 522.000 0.128950
\(255\) 0 0
\(256\) −4352.00 −1.06250
\(257\) 4929.00 1.19635 0.598176 0.801365i \(-0.295892\pi\)
0.598176 + 0.801365i \(0.295892\pi\)
\(258\) 0 0
\(259\) 2384.00 0.571948
\(260\) 1368.00 0.326307
\(261\) 0 0
\(262\) 2882.00 0.679582
\(263\) −6138.00 −1.43911 −0.719554 0.694437i \(-0.755654\pi\)
−0.719554 + 0.694437i \(0.755654\pi\)
\(264\) 0 0
\(265\) 2484.00 0.575815
\(266\) 1120.00 0.258164
\(267\) 0 0
\(268\) −3704.00 −0.844246
\(269\) 2063.00 0.467596 0.233798 0.972285i \(-0.424885\pi\)
0.233798 + 0.972285i \(0.424885\pi\)
\(270\) 0 0
\(271\) −1064.00 −0.238500 −0.119250 0.992864i \(-0.538049\pi\)
−0.119250 + 0.992864i \(0.538049\pi\)
\(272\) −1280.00 −0.285336
\(273\) 0 0
\(274\) −3112.00 −0.686142
\(275\) 3026.00 0.663544
\(276\) 0 0
\(277\) 5729.00 1.24268 0.621340 0.783541i \(-0.286589\pi\)
0.621340 + 0.783541i \(0.286589\pi\)
\(278\) 50.0000 0.0107871
\(279\) 0 0
\(280\) 1152.00 0.245876
\(281\) 960.000 0.203804 0.101902 0.994794i \(-0.467507\pi\)
0.101902 + 0.994794i \(0.467507\pi\)
\(282\) 0 0
\(283\) −114.000 −0.0239456 −0.0119728 0.999928i \(-0.503811\pi\)
−0.0119728 + 0.999928i \(0.503811\pi\)
\(284\) 1340.00 0.279980
\(285\) 0 0
\(286\) 3876.00 0.801373
\(287\) 760.000 0.156311
\(288\) 0 0
\(289\) 1487.00 0.302666
\(290\) −2940.00 −0.595320
\(291\) 0 0
\(292\) 3596.00 0.720685
\(293\) 7048.00 1.40529 0.702643 0.711543i \(-0.252003\pi\)
0.702643 + 0.711543i \(0.252003\pi\)
\(294\) 0 0
\(295\) 2448.00 0.483146
\(296\) 7152.00 1.40440
\(297\) 0 0
\(298\) −1644.00 −0.319578
\(299\) 1311.00 0.253569
\(300\) 0 0
\(301\) −704.000 −0.134810
\(302\) −2978.00 −0.567433
\(303\) 0 0
\(304\) 1120.00 0.211304
\(305\) 4932.00 0.925920
\(306\) 0 0
\(307\) 3872.00 0.719826 0.359913 0.932986i \(-0.382806\pi\)
0.359913 + 0.932986i \(0.382806\pi\)
\(308\) −1088.00 −0.201281
\(309\) 0 0
\(310\) 1236.00 0.226452
\(311\) 4977.00 0.907459 0.453730 0.891139i \(-0.350093\pi\)
0.453730 + 0.891139i \(0.350093\pi\)
\(312\) 0 0
\(313\) −2536.00 −0.457965 −0.228983 0.973430i \(-0.573540\pi\)
−0.228983 + 0.973430i \(0.573540\pi\)
\(314\) −1264.00 −0.227171
\(315\) 0 0
\(316\) 5288.00 0.941371
\(317\) −1434.00 −0.254074 −0.127037 0.991898i \(-0.540547\pi\)
−0.127037 + 0.991898i \(0.540547\pi\)
\(318\) 0 0
\(319\) 8330.00 1.46204
\(320\) 2688.00 0.469574
\(321\) 0 0
\(322\) 368.000 0.0636889
\(323\) −5600.00 −0.964682
\(324\) 0 0
\(325\) 5073.00 0.865844
\(326\) −6086.00 −1.03396
\(327\) 0 0
\(328\) 2280.00 0.383817
\(329\) −2856.00 −0.478591
\(330\) 0 0
\(331\) 5469.00 0.908167 0.454084 0.890959i \(-0.349967\pi\)
0.454084 + 0.890959i \(0.349967\pi\)
\(332\) −144.000 −0.0238043
\(333\) 0 0
\(334\) 4448.00 0.728694
\(335\) 5556.00 0.906139
\(336\) 0 0
\(337\) −7796.00 −1.26016 −0.630082 0.776529i \(-0.716979\pi\)
−0.630082 + 0.776529i \(0.716979\pi\)
\(338\) 2104.00 0.338587
\(339\) 0 0
\(340\) −1920.00 −0.306255
\(341\) −3502.00 −0.556141
\(342\) 0 0
\(343\) 4976.00 0.783320
\(344\) −2112.00 −0.331022
\(345\) 0 0
\(346\) −6460.00 −1.00373
\(347\) 10068.0 1.55758 0.778788 0.627288i \(-0.215835\pi\)
0.778788 + 0.627288i \(0.215835\pi\)
\(348\) 0 0
\(349\) −7495.00 −1.14956 −0.574782 0.818306i \(-0.694913\pi\)
−0.574782 + 0.818306i \(0.694913\pi\)
\(350\) 1424.00 0.217474
\(351\) 0 0
\(352\) −5440.00 −0.823730
\(353\) −10617.0 −1.60081 −0.800405 0.599460i \(-0.795382\pi\)
−0.800405 + 0.599460i \(0.795382\pi\)
\(354\) 0 0
\(355\) −2010.00 −0.300506
\(356\) −1840.00 −0.273932
\(357\) 0 0
\(358\) −738.000 −0.108951
\(359\) −2522.00 −0.370769 −0.185384 0.982666i \(-0.559353\pi\)
−0.185384 + 0.982666i \(0.559353\pi\)
\(360\) 0 0
\(361\) −1959.00 −0.285610
\(362\) −2740.00 −0.397821
\(363\) 0 0
\(364\) −1824.00 −0.262647
\(365\) −5394.00 −0.773520
\(366\) 0 0
\(367\) 7204.00 1.02465 0.512324 0.858792i \(-0.328785\pi\)
0.512324 + 0.858792i \(0.328785\pi\)
\(368\) 368.000 0.0521286
\(369\) 0 0
\(370\) −3576.00 −0.502452
\(371\) −3312.00 −0.463478
\(372\) 0 0
\(373\) −13310.0 −1.84763 −0.923815 0.382840i \(-0.874946\pi\)
−0.923815 + 0.382840i \(0.874946\pi\)
\(374\) −5440.00 −0.752128
\(375\) 0 0
\(376\) −8568.00 −1.17516
\(377\) 13965.0 1.90778
\(378\) 0 0
\(379\) 12952.0 1.75541 0.877704 0.479203i \(-0.159074\pi\)
0.877704 + 0.479203i \(0.159074\pi\)
\(380\) 1680.00 0.226795
\(381\) 0 0
\(382\) −8820.00 −1.18134
\(383\) 2812.00 0.375161 0.187580 0.982249i \(-0.439936\pi\)
0.187580 + 0.982249i \(0.439936\pi\)
\(384\) 0 0
\(385\) 1632.00 0.216037
\(386\) −270.000 −0.0356027
\(387\) 0 0
\(388\) 3856.00 0.504533
\(389\) −1264.00 −0.164749 −0.0823745 0.996601i \(-0.526250\pi\)
−0.0823745 + 0.996601i \(0.526250\pi\)
\(390\) 0 0
\(391\) −1840.00 −0.237987
\(392\) 6696.00 0.862753
\(393\) 0 0
\(394\) −2442.00 −0.312249
\(395\) −7932.00 −1.01039
\(396\) 0 0
\(397\) 7119.00 0.899981 0.449990 0.893033i \(-0.351427\pi\)
0.449990 + 0.893033i \(0.351427\pi\)
\(398\) −2196.00 −0.276572
\(399\) 0 0
\(400\) 1424.00 0.178000
\(401\) −4262.00 −0.530758 −0.265379 0.964144i \(-0.585497\pi\)
−0.265379 + 0.964144i \(0.585497\pi\)
\(402\) 0 0
\(403\) −5871.00 −0.725696
\(404\) −1240.00 −0.152704
\(405\) 0 0
\(406\) 3920.00 0.479178
\(407\) 10132.0 1.23397
\(408\) 0 0
\(409\) 229.000 0.0276854 0.0138427 0.999904i \(-0.495594\pi\)
0.0138427 + 0.999904i \(0.495594\pi\)
\(410\) −1140.00 −0.137319
\(411\) 0 0
\(412\) −4176.00 −0.499361
\(413\) −3264.00 −0.388888
\(414\) 0 0
\(415\) 216.000 0.0255495
\(416\) −9120.00 −1.07487
\(417\) 0 0
\(418\) 4760.00 0.556984
\(419\) −15776.0 −1.83940 −0.919699 0.392623i \(-0.871568\pi\)
−0.919699 + 0.392623i \(0.871568\pi\)
\(420\) 0 0
\(421\) −8728.00 −1.01040 −0.505198 0.863003i \(-0.668581\pi\)
−0.505198 + 0.863003i \(0.668581\pi\)
\(422\) −7352.00 −0.848080
\(423\) 0 0
\(424\) −9936.00 −1.13805
\(425\) −7120.00 −0.812637
\(426\) 0 0
\(427\) −6576.00 −0.745281
\(428\) 1656.00 0.187023
\(429\) 0 0
\(430\) 1056.00 0.118430
\(431\) 2928.00 0.327232 0.163616 0.986524i \(-0.447684\pi\)
0.163616 + 0.986524i \(0.447684\pi\)
\(432\) 0 0
\(433\) −5314.00 −0.589780 −0.294890 0.955531i \(-0.595283\pi\)
−0.294890 + 0.955531i \(0.595283\pi\)
\(434\) −1648.00 −0.182273
\(435\) 0 0
\(436\) −2816.00 −0.309316
\(437\) 1610.00 0.176240
\(438\) 0 0
\(439\) 2585.00 0.281037 0.140519 0.990078i \(-0.455123\pi\)
0.140519 + 0.990078i \(0.455123\pi\)
\(440\) 4896.00 0.530472
\(441\) 0 0
\(442\) −9120.00 −0.981435
\(443\) 2997.00 0.321426 0.160713 0.987001i \(-0.448621\pi\)
0.160713 + 0.987001i \(0.448621\pi\)
\(444\) 0 0
\(445\) 2760.00 0.294015
\(446\) 3312.00 0.351632
\(447\) 0 0
\(448\) −3584.00 −0.377964
\(449\) 16562.0 1.74078 0.870389 0.492365i \(-0.163868\pi\)
0.870389 + 0.492365i \(0.163868\pi\)
\(450\) 0 0
\(451\) 3230.00 0.337239
\(452\) 3808.00 0.396268
\(453\) 0 0
\(454\) −5880.00 −0.607846
\(455\) 2736.00 0.281903
\(456\) 0 0
\(457\) 3924.00 0.401656 0.200828 0.979626i \(-0.435637\pi\)
0.200828 + 0.979626i \(0.435637\pi\)
\(458\) 7224.00 0.737020
\(459\) 0 0
\(460\) 552.000 0.0559503
\(461\) 4543.00 0.458977 0.229489 0.973311i \(-0.426295\pi\)
0.229489 + 0.973311i \(0.426295\pi\)
\(462\) 0 0
\(463\) 9616.00 0.965213 0.482606 0.875837i \(-0.339690\pi\)
0.482606 + 0.875837i \(0.339690\pi\)
\(464\) 3920.00 0.392201
\(465\) 0 0
\(466\) 8650.00 0.859879
\(467\) −7826.00 −0.775469 −0.387735 0.921771i \(-0.626742\pi\)
−0.387735 + 0.921771i \(0.626742\pi\)
\(468\) 0 0
\(469\) −7408.00 −0.729360
\(470\) 4284.00 0.420439
\(471\) 0 0
\(472\) −9792.00 −0.954901
\(473\) −2992.00 −0.290851
\(474\) 0 0
\(475\) 6230.00 0.601794
\(476\) 2560.00 0.246507
\(477\) 0 0
\(478\) −5470.00 −0.523414
\(479\) −11404.0 −1.08781 −0.543906 0.839146i \(-0.683055\pi\)
−0.543906 + 0.839146i \(0.683055\pi\)
\(480\) 0 0
\(481\) 16986.0 1.61018
\(482\) −13420.0 −1.26818
\(483\) 0 0
\(484\) 700.000 0.0657400
\(485\) −5784.00 −0.541521
\(486\) 0 0
\(487\) −9267.00 −0.862275 −0.431137 0.902286i \(-0.641888\pi\)
−0.431137 + 0.902286i \(0.641888\pi\)
\(488\) −19728.0 −1.83001
\(489\) 0 0
\(490\) −3348.00 −0.308668
\(491\) 18191.0 1.67199 0.835996 0.548735i \(-0.184890\pi\)
0.835996 + 0.548735i \(0.184890\pi\)
\(492\) 0 0
\(493\) −19600.0 −1.79055
\(494\) 7980.00 0.726796
\(495\) 0 0
\(496\) −1648.00 −0.149188
\(497\) 2680.00 0.241880
\(498\) 0 0
\(499\) 19315.0 1.73278 0.866391 0.499366i \(-0.166434\pi\)
0.866391 + 0.499366i \(0.166434\pi\)
\(500\) 5136.00 0.459378
\(501\) 0 0
\(502\) 13896.0 1.23548
\(503\) −8422.00 −0.746557 −0.373279 0.927719i \(-0.621766\pi\)
−0.373279 + 0.927719i \(0.621766\pi\)
\(504\) 0 0
\(505\) 1860.00 0.163899
\(506\) 1564.00 0.137408
\(507\) 0 0
\(508\) −1044.00 −0.0911811
\(509\) 863.000 0.0751509 0.0375754 0.999294i \(-0.488037\pi\)
0.0375754 + 0.999294i \(0.488037\pi\)
\(510\) 0 0
\(511\) 7192.00 0.622613
\(512\) −5632.00 −0.486136
\(513\) 0 0
\(514\) 9858.00 0.845949
\(515\) 6264.00 0.535971
\(516\) 0 0
\(517\) −12138.0 −1.03255
\(518\) 4768.00 0.404428
\(519\) 0 0
\(520\) 8208.00 0.692201
\(521\) −19260.0 −1.61957 −0.809785 0.586727i \(-0.800416\pi\)
−0.809785 + 0.586727i \(0.800416\pi\)
\(522\) 0 0
\(523\) −11740.0 −0.981557 −0.490779 0.871284i \(-0.663288\pi\)
−0.490779 + 0.871284i \(0.663288\pi\)
\(524\) −5764.00 −0.480537
\(525\) 0 0
\(526\) −12276.0 −1.01760
\(527\) 8240.00 0.681101
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 4968.00 0.407163
\(531\) 0 0
\(532\) −2240.00 −0.182549
\(533\) 5415.00 0.440056
\(534\) 0 0
\(535\) −2484.00 −0.200734
\(536\) −22224.0 −1.79092
\(537\) 0 0
\(538\) 4126.00 0.330640
\(539\) 9486.00 0.758054
\(540\) 0 0
\(541\) 17741.0 1.40988 0.704940 0.709267i \(-0.250974\pi\)
0.704940 + 0.709267i \(0.250974\pi\)
\(542\) −2128.00 −0.168645
\(543\) 0 0
\(544\) 12800.0 1.00882
\(545\) 4224.00 0.331993
\(546\) 0 0
\(547\) −6571.00 −0.513630 −0.256815 0.966461i \(-0.582673\pi\)
−0.256815 + 0.966461i \(0.582673\pi\)
\(548\) 6224.00 0.485175
\(549\) 0 0
\(550\) 6052.00 0.469197
\(551\) 17150.0 1.32598
\(552\) 0 0
\(553\) 10576.0 0.813268
\(554\) 11458.0 0.878707
\(555\) 0 0
\(556\) −100.000 −0.00762760
\(557\) 1372.00 0.104369 0.0521845 0.998637i \(-0.483382\pi\)
0.0521845 + 0.998637i \(0.483382\pi\)
\(558\) 0 0
\(559\) −5016.00 −0.379524
\(560\) 768.000 0.0579534
\(561\) 0 0
\(562\) 1920.00 0.144111
\(563\) −4332.00 −0.324284 −0.162142 0.986767i \(-0.551840\pi\)
−0.162142 + 0.986767i \(0.551840\pi\)
\(564\) 0 0
\(565\) −5712.00 −0.425320
\(566\) −228.000 −0.0169321
\(567\) 0 0
\(568\) 8040.00 0.593928
\(569\) 3546.00 0.261258 0.130629 0.991431i \(-0.458300\pi\)
0.130629 + 0.991431i \(0.458300\pi\)
\(570\) 0 0
\(571\) −6160.00 −0.451468 −0.225734 0.974189i \(-0.572478\pi\)
−0.225734 + 0.974189i \(0.572478\pi\)
\(572\) −7752.00 −0.566656
\(573\) 0 0
\(574\) 1520.00 0.110529
\(575\) 2047.00 0.148462
\(576\) 0 0
\(577\) 2953.00 0.213059 0.106529 0.994310i \(-0.466026\pi\)
0.106529 + 0.994310i \(0.466026\pi\)
\(578\) 2974.00 0.214017
\(579\) 0 0
\(580\) 5880.00 0.420955
\(581\) −288.000 −0.0205650
\(582\) 0 0
\(583\) −14076.0 −0.999946
\(584\) 21576.0 1.52880
\(585\) 0 0
\(586\) 14096.0 0.993687
\(587\) 2949.00 0.207356 0.103678 0.994611i \(-0.466939\pi\)
0.103678 + 0.994611i \(0.466939\pi\)
\(588\) 0 0
\(589\) −7210.00 −0.504385
\(590\) 4896.00 0.341636
\(591\) 0 0
\(592\) 4768.00 0.331020
\(593\) −16390.0 −1.13500 −0.567501 0.823372i \(-0.692090\pi\)
−0.567501 + 0.823372i \(0.692090\pi\)
\(594\) 0 0
\(595\) −3840.00 −0.264579
\(596\) 3288.00 0.225976
\(597\) 0 0
\(598\) 2622.00 0.179300
\(599\) 12920.0 0.881297 0.440648 0.897680i \(-0.354749\pi\)
0.440648 + 0.897680i \(0.354749\pi\)
\(600\) 0 0
\(601\) −13835.0 −0.939004 −0.469502 0.882931i \(-0.655567\pi\)
−0.469502 + 0.882931i \(0.655567\pi\)
\(602\) −1408.00 −0.0953252
\(603\) 0 0
\(604\) 5956.00 0.401235
\(605\) −1050.00 −0.0705596
\(606\) 0 0
\(607\) 6004.00 0.401474 0.200737 0.979645i \(-0.435666\pi\)
0.200737 + 0.979645i \(0.435666\pi\)
\(608\) −11200.0 −0.747072
\(609\) 0 0
\(610\) 9864.00 0.654724
\(611\) −20349.0 −1.34735
\(612\) 0 0
\(613\) −16416.0 −1.08162 −0.540812 0.841143i \(-0.681883\pi\)
−0.540812 + 0.841143i \(0.681883\pi\)
\(614\) 7744.00 0.508994
\(615\) 0 0
\(616\) −6528.00 −0.426982
\(617\) −3786.00 −0.247032 −0.123516 0.992343i \(-0.539417\pi\)
−0.123516 + 0.992343i \(0.539417\pi\)
\(618\) 0 0
\(619\) 15824.0 1.02750 0.513748 0.857941i \(-0.328257\pi\)
0.513748 + 0.857941i \(0.328257\pi\)
\(620\) −2472.00 −0.160126
\(621\) 0 0
\(622\) 9954.00 0.641670
\(623\) −3680.00 −0.236655
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) −5072.00 −0.323830
\(627\) 0 0
\(628\) 2528.00 0.160634
\(629\) −23840.0 −1.51123
\(630\) 0 0
\(631\) 17852.0 1.12627 0.563135 0.826365i \(-0.309595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(632\) 31728.0 1.99695
\(633\) 0 0
\(634\) −2868.00 −0.179657
\(635\) 1566.00 0.0978658
\(636\) 0 0
\(637\) 15903.0 0.989168
\(638\) 16660.0 1.03382
\(639\) 0 0
\(640\) −2304.00 −0.142302
\(641\) −10324.0 −0.636152 −0.318076 0.948065i \(-0.603037\pi\)
−0.318076 + 0.948065i \(0.603037\pi\)
\(642\) 0 0
\(643\) −14702.0 −0.901696 −0.450848 0.892601i \(-0.648878\pi\)
−0.450848 + 0.892601i \(0.648878\pi\)
\(644\) −736.000 −0.0450349
\(645\) 0 0
\(646\) −11200.0 −0.682133
\(647\) −11939.0 −0.725457 −0.362728 0.931895i \(-0.618155\pi\)
−0.362728 + 0.931895i \(0.618155\pi\)
\(648\) 0 0
\(649\) −13872.0 −0.839019
\(650\) 10146.0 0.612244
\(651\) 0 0
\(652\) 12172.0 0.731123
\(653\) −6159.00 −0.369097 −0.184548 0.982823i \(-0.559082\pi\)
−0.184548 + 0.982823i \(0.559082\pi\)
\(654\) 0 0
\(655\) 8646.00 0.515767
\(656\) 1520.00 0.0904665
\(657\) 0 0
\(658\) −5712.00 −0.338415
\(659\) 21692.0 1.28225 0.641123 0.767438i \(-0.278469\pi\)
0.641123 + 0.767438i \(0.278469\pi\)
\(660\) 0 0
\(661\) 16502.0 0.971034 0.485517 0.874227i \(-0.338631\pi\)
0.485517 + 0.874227i \(0.338631\pi\)
\(662\) 10938.0 0.642171
\(663\) 0 0
\(664\) −864.000 −0.0504965
\(665\) 3360.00 0.195933
\(666\) 0 0
\(667\) 5635.00 0.327119
\(668\) −8896.00 −0.515264
\(669\) 0 0
\(670\) 11112.0 0.640737
\(671\) −27948.0 −1.60793
\(672\) 0 0
\(673\) −27733.0 −1.58845 −0.794226 0.607622i \(-0.792124\pi\)
−0.794226 + 0.607622i \(0.792124\pi\)
\(674\) −15592.0 −0.891070
\(675\) 0 0
\(676\) −4208.00 −0.239417
\(677\) 8814.00 0.500369 0.250184 0.968198i \(-0.419509\pi\)
0.250184 + 0.968198i \(0.419509\pi\)
\(678\) 0 0
\(679\) 7712.00 0.435875
\(680\) −11520.0 −0.649664
\(681\) 0 0
\(682\) −7004.00 −0.393251
\(683\) 22999.0 1.28848 0.644240 0.764823i \(-0.277174\pi\)
0.644240 + 0.764823i \(0.277174\pi\)
\(684\) 0 0
\(685\) −9336.00 −0.520745
\(686\) 9952.00 0.553891
\(687\) 0 0
\(688\) −1408.00 −0.0780225
\(689\) −23598.0 −1.30481
\(690\) 0 0
\(691\) −12140.0 −0.668346 −0.334173 0.942512i \(-0.608457\pi\)
−0.334173 + 0.942512i \(0.608457\pi\)
\(692\) 12920.0 0.709747
\(693\) 0 0
\(694\) 20136.0 1.10137
\(695\) 150.000 0.00818680
\(696\) 0 0
\(697\) −7600.00 −0.413014
\(698\) −14990.0 −0.812865
\(699\) 0 0
\(700\) −2848.00 −0.153778
\(701\) 20024.0 1.07888 0.539441 0.842024i \(-0.318636\pi\)
0.539441 + 0.842024i \(0.318636\pi\)
\(702\) 0 0
\(703\) 20860.0 1.11913
\(704\) −15232.0 −0.815451
\(705\) 0 0
\(706\) −21234.0 −1.13194
\(707\) −2480.00 −0.131924
\(708\) 0 0
\(709\) −4956.00 −0.262520 −0.131260 0.991348i \(-0.541902\pi\)
−0.131260 + 0.991348i \(0.541902\pi\)
\(710\) −4020.00 −0.212490
\(711\) 0 0
\(712\) −11040.0 −0.581098
\(713\) −2369.00 −0.124432
\(714\) 0 0
\(715\) 11628.0 0.608199
\(716\) 1476.00 0.0770401
\(717\) 0 0
\(718\) −5044.00 −0.262173
\(719\) −2760.00 −0.143158 −0.0715790 0.997435i \(-0.522804\pi\)
−0.0715790 + 0.997435i \(0.522804\pi\)
\(720\) 0 0
\(721\) −8352.00 −0.431407
\(722\) −3918.00 −0.201957
\(723\) 0 0
\(724\) 5480.00 0.281302
\(725\) 21805.0 1.11699
\(726\) 0 0
\(727\) 7746.00 0.395163 0.197581 0.980287i \(-0.436691\pi\)
0.197581 + 0.980287i \(0.436691\pi\)
\(728\) −10944.0 −0.557159
\(729\) 0 0
\(730\) −10788.0 −0.546961
\(731\) 7040.00 0.356202
\(732\) 0 0
\(733\) −11976.0 −0.603470 −0.301735 0.953392i \(-0.597566\pi\)
−0.301735 + 0.953392i \(0.597566\pi\)
\(734\) 14408.0 0.724535
\(735\) 0 0
\(736\) −3680.00 −0.184302
\(737\) −31484.0 −1.57358
\(738\) 0 0
\(739\) 15057.0 0.749500 0.374750 0.927126i \(-0.377728\pi\)
0.374750 + 0.927126i \(0.377728\pi\)
\(740\) 7152.00 0.355287
\(741\) 0 0
\(742\) −6624.00 −0.327729
\(743\) −18532.0 −0.915038 −0.457519 0.889200i \(-0.651262\pi\)
−0.457519 + 0.889200i \(0.651262\pi\)
\(744\) 0 0
\(745\) −4932.00 −0.242543
\(746\) −26620.0 −1.30647
\(747\) 0 0
\(748\) 10880.0 0.531834
\(749\) 3312.00 0.161573
\(750\) 0 0
\(751\) −192.000 −0.00932913 −0.00466457 0.999989i \(-0.501485\pi\)
−0.00466457 + 0.999989i \(0.501485\pi\)
\(752\) −5712.00 −0.276988
\(753\) 0 0
\(754\) 27930.0 1.34901
\(755\) −8934.00 −0.430651
\(756\) 0 0
\(757\) −9830.00 −0.471965 −0.235982 0.971757i \(-0.575831\pi\)
−0.235982 + 0.971757i \(0.575831\pi\)
\(758\) 25904.0 1.24126
\(759\) 0 0
\(760\) 10080.0 0.481105
\(761\) 30219.0 1.43947 0.719736 0.694248i \(-0.244263\pi\)
0.719736 + 0.694248i \(0.244263\pi\)
\(762\) 0 0
\(763\) −5632.00 −0.267224
\(764\) 17640.0 0.835331
\(765\) 0 0
\(766\) 5624.00 0.265279
\(767\) −23256.0 −1.09482
\(768\) 0 0
\(769\) 1122.00 0.0526142 0.0263071 0.999654i \(-0.491625\pi\)
0.0263071 + 0.999654i \(0.491625\pi\)
\(770\) 3264.00 0.152762
\(771\) 0 0
\(772\) 540.000 0.0251749
\(773\) −19300.0 −0.898024 −0.449012 0.893526i \(-0.648224\pi\)
−0.449012 + 0.893526i \(0.648224\pi\)
\(774\) 0 0
\(775\) −9167.00 −0.424888
\(776\) 23136.0 1.07028
\(777\) 0 0
\(778\) −2528.00 −0.116495
\(779\) 6650.00 0.305855
\(780\) 0 0
\(781\) 11390.0 0.521852
\(782\) −3680.00 −0.168282
\(783\) 0 0
\(784\) 4464.00 0.203353
\(785\) −3792.00 −0.172411
\(786\) 0 0
\(787\) −19396.0 −0.878517 −0.439258 0.898361i \(-0.644759\pi\)
−0.439258 + 0.898361i \(0.644759\pi\)
\(788\) 4884.00 0.220794
\(789\) 0 0
\(790\) −15864.0 −0.714450
\(791\) 7616.00 0.342344
\(792\) 0 0
\(793\) −46854.0 −2.09815
\(794\) 14238.0 0.636383
\(795\) 0 0
\(796\) 4392.00 0.195566
\(797\) 39034.0 1.73482 0.867412 0.497590i \(-0.165782\pi\)
0.867412 + 0.497590i \(0.165782\pi\)
\(798\) 0 0
\(799\) 28560.0 1.26456
\(800\) −14240.0 −0.629325
\(801\) 0 0
\(802\) −8524.00 −0.375303
\(803\) 30566.0 1.34328
\(804\) 0 0
\(805\) 1104.00 0.0483365
\(806\) −11742.0 −0.513144
\(807\) 0 0
\(808\) −7440.00 −0.323934
\(809\) 10310.0 0.448060 0.224030 0.974582i \(-0.428079\pi\)
0.224030 + 0.974582i \(0.428079\pi\)
\(810\) 0 0
\(811\) −40693.0 −1.76193 −0.880965 0.473182i \(-0.843105\pi\)
−0.880965 + 0.473182i \(0.843105\pi\)
\(812\) −7840.00 −0.338830
\(813\) 0 0
\(814\) 20264.0 0.872546
\(815\) −18258.0 −0.784724
\(816\) 0 0
\(817\) −6160.00 −0.263784
\(818\) 458.000 0.0195765
\(819\) 0 0
\(820\) 2280.00 0.0970988
\(821\) 13934.0 0.592326 0.296163 0.955137i \(-0.404293\pi\)
0.296163 + 0.955137i \(0.404293\pi\)
\(822\) 0 0
\(823\) 6175.00 0.261539 0.130770 0.991413i \(-0.458255\pi\)
0.130770 + 0.991413i \(0.458255\pi\)
\(824\) −25056.0 −1.05930
\(825\) 0 0
\(826\) −6528.00 −0.274986
\(827\) −28664.0 −1.20525 −0.602627 0.798023i \(-0.705879\pi\)
−0.602627 + 0.798023i \(0.705879\pi\)
\(828\) 0 0
\(829\) −39590.0 −1.65865 −0.829323 0.558770i \(-0.811274\pi\)
−0.829323 + 0.558770i \(0.811274\pi\)
\(830\) 432.000 0.0180662
\(831\) 0 0
\(832\) −25536.0 −1.06406
\(833\) −22320.0 −0.928382
\(834\) 0 0
\(835\) 13344.0 0.553040
\(836\) −9520.00 −0.393847
\(837\) 0 0
\(838\) −31552.0 −1.30065
\(839\) 14316.0 0.589086 0.294543 0.955638i \(-0.404833\pi\)
0.294543 + 0.955638i \(0.404833\pi\)
\(840\) 0 0
\(841\) 35636.0 1.46115
\(842\) −17456.0 −0.714458
\(843\) 0 0
\(844\) 14704.0 0.599683
\(845\) 6312.00 0.256970
\(846\) 0 0
\(847\) 1400.00 0.0567941
\(848\) −6624.00 −0.268242
\(849\) 0 0
\(850\) −14240.0 −0.574621
\(851\) 6854.00 0.276089
\(852\) 0 0
\(853\) 28366.0 1.13861 0.569304 0.822127i \(-0.307213\pi\)
0.569304 + 0.822127i \(0.307213\pi\)
\(854\) −13152.0 −0.526993
\(855\) 0 0
\(856\) 9936.00 0.396735
\(857\) −19283.0 −0.768605 −0.384303 0.923207i \(-0.625558\pi\)
−0.384303 + 0.923207i \(0.625558\pi\)
\(858\) 0 0
\(859\) −26101.0 −1.03673 −0.518367 0.855158i \(-0.673460\pi\)
−0.518367 + 0.855158i \(0.673460\pi\)
\(860\) −2112.00 −0.0837426
\(861\) 0 0
\(862\) 5856.00 0.231388
\(863\) −973.000 −0.0383793 −0.0191896 0.999816i \(-0.506109\pi\)
−0.0191896 + 0.999816i \(0.506109\pi\)
\(864\) 0 0
\(865\) −19380.0 −0.761780
\(866\) −10628.0 −0.417037
\(867\) 0 0
\(868\) 3296.00 0.128887
\(869\) 44948.0 1.75461
\(870\) 0 0
\(871\) −52782.0 −2.05333
\(872\) −16896.0 −0.656159
\(873\) 0 0
\(874\) 3220.00 0.124620
\(875\) 10272.0 0.396865
\(876\) 0 0
\(877\) 5694.00 0.219239 0.109620 0.993974i \(-0.465037\pi\)
0.109620 + 0.993974i \(0.465037\pi\)
\(878\) 5170.00 0.198723
\(879\) 0 0
\(880\) 3264.00 0.125033
\(881\) −45960.0 −1.75758 −0.878792 0.477205i \(-0.841650\pi\)
−0.878792 + 0.477205i \(0.841650\pi\)
\(882\) 0 0
\(883\) 17188.0 0.655065 0.327532 0.944840i \(-0.393783\pi\)
0.327532 + 0.944840i \(0.393783\pi\)
\(884\) 18240.0 0.693979
\(885\) 0 0
\(886\) 5994.00 0.227283
\(887\) −8451.00 −0.319906 −0.159953 0.987125i \(-0.551134\pi\)
−0.159953 + 0.987125i \(0.551134\pi\)
\(888\) 0 0
\(889\) −2088.00 −0.0787731
\(890\) 5520.00 0.207900
\(891\) 0 0
\(892\) −6624.00 −0.248641
\(893\) −24990.0 −0.936460
\(894\) 0 0
\(895\) −2214.00 −0.0826881
\(896\) 3072.00 0.114541
\(897\) 0 0
\(898\) 33124.0 1.23092
\(899\) −25235.0 −0.936190
\(900\) 0 0
\(901\) 33120.0 1.22463
\(902\) 6460.00 0.238464
\(903\) 0 0
\(904\) 22848.0 0.840612
\(905\) −8220.00 −0.301925
\(906\) 0 0
\(907\) 32774.0 1.19983 0.599913 0.800065i \(-0.295202\pi\)
0.599913 + 0.800065i \(0.295202\pi\)
\(908\) 11760.0 0.429812
\(909\) 0 0
\(910\) 5472.00 0.199335
\(911\) 23690.0 0.861564 0.430782 0.902456i \(-0.358238\pi\)
0.430782 + 0.902456i \(0.358238\pi\)
\(912\) 0 0
\(913\) −1224.00 −0.0443686
\(914\) 7848.00 0.284014
\(915\) 0 0
\(916\) −14448.0 −0.521152
\(917\) −11528.0 −0.415145
\(918\) 0 0
\(919\) −30044.0 −1.07841 −0.539206 0.842174i \(-0.681275\pi\)
−0.539206 + 0.842174i \(0.681275\pi\)
\(920\) 3312.00 0.118688
\(921\) 0 0
\(922\) 9086.00 0.324546
\(923\) 19095.0 0.680953
\(924\) 0 0
\(925\) 26522.0 0.942744
\(926\) 19232.0 0.682508
\(927\) 0 0
\(928\) −39200.0 −1.38664
\(929\) 39705.0 1.40224 0.701119 0.713044i \(-0.252684\pi\)
0.701119 + 0.713044i \(0.252684\pi\)
\(930\) 0 0
\(931\) 19530.0 0.687508
\(932\) −17300.0 −0.608026
\(933\) 0 0
\(934\) −15652.0 −0.548339
\(935\) −16320.0 −0.570825
\(936\) 0 0
\(937\) 17422.0 0.607419 0.303710 0.952765i \(-0.401775\pi\)
0.303710 + 0.952765i \(0.401775\pi\)
\(938\) −14816.0 −0.515735
\(939\) 0 0
\(940\) −8568.00 −0.297295
\(941\) 25292.0 0.876191 0.438095 0.898928i \(-0.355653\pi\)
0.438095 + 0.898928i \(0.355653\pi\)
\(942\) 0 0
\(943\) 2185.00 0.0754543
\(944\) −6528.00 −0.225072
\(945\) 0 0
\(946\) −5984.00 −0.205662
\(947\) −33211.0 −1.13961 −0.569806 0.821779i \(-0.692982\pi\)
−0.569806 + 0.821779i \(0.692982\pi\)
\(948\) 0 0
\(949\) 51243.0 1.75281
\(950\) 12460.0 0.425532
\(951\) 0 0
\(952\) 15360.0 0.522921
\(953\) 14154.0 0.481105 0.240552 0.970636i \(-0.422671\pi\)
0.240552 + 0.970636i \(0.422671\pi\)
\(954\) 0 0
\(955\) −26460.0 −0.896571
\(956\) 10940.0 0.370110
\(957\) 0 0
\(958\) −22808.0 −0.769199
\(959\) 12448.0 0.419152
\(960\) 0 0
\(961\) −19182.0 −0.643886
\(962\) 33972.0 1.13857
\(963\) 0 0
\(964\) 26840.0 0.896741
\(965\) −810.000 −0.0270205
\(966\) 0 0
\(967\) −46343.0 −1.54115 −0.770574 0.637350i \(-0.780030\pi\)
−0.770574 + 0.637350i \(0.780030\pi\)
\(968\) 4200.00 0.139456
\(969\) 0 0
\(970\) −11568.0 −0.382914
\(971\) −11710.0 −0.387015 −0.193508 0.981099i \(-0.561986\pi\)
−0.193508 + 0.981099i \(0.561986\pi\)
\(972\) 0 0
\(973\) −200.000 −0.00658963
\(974\) −18534.0 −0.609720
\(975\) 0 0
\(976\) −13152.0 −0.431337
\(977\) −47854.0 −1.56703 −0.783513 0.621375i \(-0.786574\pi\)
−0.783513 + 0.621375i \(0.786574\pi\)
\(978\) 0 0
\(979\) −15640.0 −0.510579
\(980\) 6696.00 0.218261
\(981\) 0 0
\(982\) 36382.0 1.18228
\(983\) 22078.0 0.716357 0.358178 0.933653i \(-0.383398\pi\)
0.358178 + 0.933653i \(0.383398\pi\)
\(984\) 0 0
\(985\) −7326.00 −0.236980
\(986\) −39200.0 −1.26611
\(987\) 0 0
\(988\) −15960.0 −0.513922
\(989\) −2024.00 −0.0650753
\(990\) 0 0
\(991\) −4288.00 −0.137450 −0.0687249 0.997636i \(-0.521893\pi\)
−0.0687249 + 0.997636i \(0.521893\pi\)
\(992\) 16480.0 0.527460
\(993\) 0 0
\(994\) 5360.00 0.171035
\(995\) −6588.00 −0.209903
\(996\) 0 0
\(997\) 28966.0 0.920123 0.460061 0.887887i \(-0.347827\pi\)
0.460061 + 0.887887i \(0.347827\pi\)
\(998\) 38630.0 1.22526
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.4.a.a.1.1 1
3.2 odd 2 23.4.a.a.1.1 1
12.11 even 2 368.4.a.d.1.1 1
15.2 even 4 575.4.b.b.24.1 2
15.8 even 4 575.4.b.b.24.2 2
15.14 odd 2 575.4.a.g.1.1 1
21.20 even 2 1127.4.a.a.1.1 1
24.5 odd 2 1472.4.a.h.1.1 1
24.11 even 2 1472.4.a.c.1.1 1
69.68 even 2 529.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.a.1.1 1 3.2 odd 2
207.4.a.a.1.1 1 1.1 even 1 trivial
368.4.a.d.1.1 1 12.11 even 2
529.4.a.a.1.1 1 69.68 even 2
575.4.a.g.1.1 1 15.14 odd 2
575.4.b.b.24.1 2 15.2 even 4
575.4.b.b.24.2 2 15.8 even 4
1127.4.a.a.1.1 1 21.20 even 2
1472.4.a.c.1.1 1 24.11 even 2
1472.4.a.h.1.1 1 24.5 odd 2