Newspace parameters
| Level: | \( N \) | \(=\) | \( 207 = 3^{2} \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 207.m (of order \(33\), degree \(20\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(1.65290332184\) |
| Analytic rank: | \(0\) |
| Dimension: | \(440\) |
| Relative dimension: | \(22\) over \(\Q(\zeta_{33})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{33}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4.1 | −1.46746 | + | 2.06076i | −1.47811 | + | 0.902882i | −1.43916 | − | 4.15818i | 2.97107 | − | 1.53169i | 0.308441 | − | 4.37097i | 0.452583 | − | 0.355916i | 5.82617 | + | 1.71072i | 1.36961 | − | 2.66912i | −1.20348 | + | 8.37037i |
| 4.2 | −1.42424 | + | 2.00007i | −0.974750 | − | 1.43173i | −1.31767 | − | 3.80716i | −1.71157 | + | 0.882374i | 4.25184 | + | 0.0895707i | 1.45139 | − | 1.14139i | 4.77948 | + | 1.40338i | −1.09973 | + | 2.79116i | 0.672877 | − | 4.67996i |
| 4.3 | −1.30169 | + | 1.82796i | 0.211378 | + | 1.71910i | −0.992927 | − | 2.86887i | −1.37586 | + | 0.709305i | −3.41761 | − | 1.85134i | 0.277555 | − | 0.218272i | 2.23034 | + | 0.654887i | −2.91064 | + | 0.726763i | 0.494355 | − | 3.43832i |
| 4.4 | −1.08192 | + | 1.51935i | 1.47170 | − | 0.913295i | −0.483727 | − | 1.39764i | 0.797744 | − | 0.411266i | −0.204651 | + | 3.22414i | 2.76230 | − | 2.17230i | −0.932440 | − | 0.273789i | 1.33179 | − | 2.68819i | −0.238242 | + | 1.65701i |
| 4.5 | −0.976060 | + | 1.37068i | 1.50753 | + | 0.852857i | −0.271946 | − | 0.785737i | 1.76457 | − | 0.909700i | −2.64043 | + | 1.23390i | −3.19096 | + | 2.50940i | −1.88664 | − | 0.553967i | 1.54527 | + | 2.57141i | −0.475416 | + | 3.30659i |
| 4.6 | −0.954897 | + | 1.34096i | −1.52649 | − | 0.818435i | −0.232223 | − | 0.670964i | 1.25699 | − | 0.648021i | 2.55513 | − | 1.26545i | −2.05983 | + | 1.61987i | −2.03757 | − | 0.598284i | 1.66033 | + | 2.49866i | −0.331318 | + | 2.30437i |
| 4.7 | −0.665677 | + | 0.934812i | −1.60332 | + | 0.655269i | 0.223388 | + | 0.645436i | −3.14339 | + | 1.62053i | 0.454737 | − | 1.93500i | 1.17978 | − | 0.927791i | −2.95431 | − | 0.867462i | 2.14125 | − | 2.10121i | 0.577591 | − | 4.01723i |
| 4.8 | −0.569295 | + | 0.799462i | 0.758988 | − | 1.55690i | 0.339092 | + | 0.979743i | −3.24434 | + | 1.67257i | 0.812595 | + | 1.49312i | −3.31555 | + | 2.60738i | −2.85969 | − | 0.839681i | −1.84787 | − | 2.36334i | 0.509825 | − | 3.54591i |
| 4.9 | −0.381565 | + | 0.535833i | 0.00453809 | − | 1.73204i | 0.512611 | + | 1.48109i | 3.01055 | − | 1.55205i | 0.926355 | + | 0.663319i | −0.335362 | + | 0.263732i | −2.25153 | − | 0.661109i | −2.99996 | − | 0.0157204i | −0.317082 | + | 2.20536i |
| 4.10 | −0.229452 | + | 0.322220i | 0.0945687 | + | 1.72947i | 0.602958 | + | 1.74213i | 2.96492 | − | 1.52852i | −0.578969 | − | 0.366358i | 3.41188 | − | 2.68313i | −1.45879 | − | 0.428340i | −2.98211 | + | 0.327107i | −0.187786 | + | 1.30608i |
| 4.11 | −0.176547 | + | 0.247925i | 1.62057 | + | 0.611351i | 0.623838 | + | 1.80246i | −1.66769 | + | 0.859756i | −0.437676 | + | 0.293848i | 1.42051 | − | 1.11710i | −1.14108 | − | 0.335050i | 2.25250 | + | 1.98147i | 0.0812707 | − | 0.565250i |
| 4.12 | 0.0256606 | − | 0.0360353i | −1.16039 | + | 1.28588i | 0.653496 | + | 1.88815i | 0.800365 | − | 0.412617i | 0.0165606 | + | 0.0748116i | −3.08653 | + | 2.42727i | 0.169702 | + | 0.0498289i | −0.306974 | − | 2.98425i | 0.00566909 | − | 0.0394294i |
| 4.13 | 0.187803 | − | 0.263732i | −1.56096 | − | 0.750610i | 0.619851 | + | 1.79094i | 0.277733 | − | 0.143181i | −0.491112 | + | 0.270708i | 0.387605 | − | 0.304816i | 1.21004 | + | 0.355301i | 1.87317 | + | 2.34334i | 0.0143975 | − | 0.100137i |
| 4.14 | 0.541462 | − | 0.760376i | 1.52956 | − | 0.812681i | 0.369144 | + | 1.06657i | −0.806242 | + | 0.415647i | 0.210254 | − | 1.60308i | −0.783251 | + | 0.615955i | 2.80218 | + | 0.822793i | 1.67910 | − | 2.48609i | −0.120501 | + | 0.838104i |
| 4.15 | 0.680467 | − | 0.955583i | 0.453546 | − | 1.67161i | 0.204034 | + | 0.589516i | 0.783941 | − | 0.404150i | −1.28874 | − | 1.57088i | 0.987285 | − | 0.776409i | 2.95334 | + | 0.867179i | −2.58859 | − | 1.51631i | 0.147248 | − | 1.02413i |
| 4.16 | 0.744303 | − | 1.04523i | 0.0216039 | + | 1.73192i | 0.115623 | + | 0.334070i | −3.33608 | + | 1.71987i | 1.82633 | + | 1.26649i | 0.176203 | − | 0.138568i | 2.89759 | + | 0.850810i | −2.99907 | + | 0.0748322i | −0.685401 | + | 4.76707i |
| 4.17 | 0.865712 | − | 1.21572i | −1.67168 | + | 0.453296i | −0.0743883 | − | 0.214931i | 0.376170 | − | 0.193929i | −0.896114 | + | 2.42473i | 3.39171 | − | 2.66727i | 2.53832 | + | 0.745317i | 2.58905 | − | 1.51553i | 0.0898911 | − | 0.625206i |
| 4.18 | 0.985191 | − | 1.38351i | 0.806693 | + | 1.53273i | −0.289355 | − | 0.836037i | 1.87297 | − | 0.965585i | 2.91528 | + | 0.393962i | −2.05250 | + | 1.61410i | 1.81755 | + | 0.533680i | −1.69849 | + | 2.47288i | 0.509343 | − | 3.54256i |
| 4.19 | 1.30535 | − | 1.83310i | −1.23309 | − | 1.21634i | −1.00220 | − | 2.89566i | 2.91364 | − | 1.50208i | −3.83929 | + | 0.672636i | −1.86236 | + | 1.46457i | −2.29782 | − | 0.674701i | 0.0410290 | + | 2.99972i | 1.04983 | − | 7.30173i |
| 4.20 | 1.34512 | − | 1.88895i | −0.263222 | − | 1.71193i | −1.10466 | − | 3.19172i | −3.02169 | + | 1.55779i | −3.58782 | − | 1.80553i | 1.82903 | − | 1.43837i | −3.06489 | − | 0.899932i | −2.86143 | + | 0.901238i | −1.12193 | + | 7.80323i |
| See next 80 embeddings (of 440 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.c | even | 3 | 1 | inner |
| 23.c | even | 11 | 1 | inner |
| 207.m | even | 33 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 207.2.m.a | ✓ | 440 |
| 3.b | odd | 2 | 1 | 621.2.q.a | 440 | ||
| 9.c | even | 3 | 1 | inner | 207.2.m.a | ✓ | 440 |
| 9.d | odd | 6 | 1 | 621.2.q.a | 440 | ||
| 23.c | even | 11 | 1 | inner | 207.2.m.a | ✓ | 440 |
| 69.h | odd | 22 | 1 | 621.2.q.a | 440 | ||
| 207.m | even | 33 | 1 | inner | 207.2.m.a | ✓ | 440 |
| 207.n | odd | 66 | 1 | 621.2.q.a | 440 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 207.2.m.a | ✓ | 440 | 1.a | even | 1 | 1 | trivial |
| 207.2.m.a | ✓ | 440 | 9.c | even | 3 | 1 | inner |
| 207.2.m.a | ✓ | 440 | 23.c | even | 11 | 1 | inner |
| 207.2.m.a | ✓ | 440 | 207.m | even | 33 | 1 | inner |
| 621.2.q.a | 440 | 3.b | odd | 2 | 1 | ||
| 621.2.q.a | 440 | 9.d | odd | 6 | 1 | ||
| 621.2.q.a | 440 | 69.h | odd | 22 | 1 | ||
| 621.2.q.a | 440 | 207.n | odd | 66 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(207, [\chi])\).