Properties

Label 207.1
Level 207
Weight 1
Dimension 7
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 3168
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(3168\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(207))\).

Total New Old
Modular forms 186 102 84
Cusp forms 10 7 3
Eisenstein series 176 95 81

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 7 0 0 0

Trace form

\( 7 q + q^{2} - 3 q^{4} - 3 q^{6} - 7 q^{8} + 6 q^{12} - q^{13} - 4 q^{16} - 3 q^{18} - 4 q^{23} + 6 q^{24} - 2 q^{25} + 11 q^{26} - 3 q^{27} + q^{29} - q^{31} + 3 q^{32} - 3 q^{36} - 3 q^{39} + q^{41}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(207))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
207.1.b \(\chi_{207}(116, \cdot)\) None 0 1
207.1.d \(\chi_{207}(91, \cdot)\) 207.1.d.a 1 1
207.1.f \(\chi_{207}(22, \cdot)\) 207.1.f.a 6 2
207.1.h \(\chi_{207}(47, \cdot)\) None 0 2
207.1.j \(\chi_{207}(10, \cdot)\) None 0 10
207.1.l \(\chi_{207}(8, \cdot)\) None 0 10
207.1.n \(\chi_{207}(2, \cdot)\) None 0 20
207.1.p \(\chi_{207}(7, \cdot)\) None 0 20

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)