Properties

Label 2034.4.a.c
Level $2034$
Weight $4$
Character orbit 2034.a
Self dual yes
Analytic conductor $120.010$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,4,Mod(1,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2034.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4,0,8,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(120.009884952\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 678)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + (5 \beta + 5) q^{5} + (2 \beta - 11) q^{7} - 8 q^{8} + ( - 10 \beta - 10) q^{10} + ( - 33 \beta + 22) q^{11} + ( - 6 \beta - 4) q^{13} + ( - 4 \beta + 22) q^{14} + 16 q^{16} + ( - 16 \beta + 74) q^{17}+ \cdots + (88 \beta + 428) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} + 10 q^{5} - 22 q^{7} - 16 q^{8} - 20 q^{10} + 44 q^{11} - 8 q^{13} + 44 q^{14} + 32 q^{16} + 148 q^{17} - 132 q^{19} + 40 q^{20} - 88 q^{22} - 162 q^{23} - 100 q^{25} + 16 q^{26}+ \cdots + 856 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−2.00000 0 4.00000 −2.07107 0 −13.8284 −8.00000 0 4.14214
1.2 −2.00000 0 4.00000 12.0711 0 −8.17157 −8.00000 0 −24.1421
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(113\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2034.4.a.c 2
3.b odd 2 1 678.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
678.4.a.c 2 3.b odd 2 1
2034.4.a.c 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 10T_{5} - 25 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2034))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 10T - 25 \) Copy content Toggle raw display
$7$ \( T^{2} + 22T + 113 \) Copy content Toggle raw display
$11$ \( T^{2} - 44T - 1694 \) Copy content Toggle raw display
$13$ \( T^{2} + 8T - 56 \) Copy content Toggle raw display
$17$ \( T^{2} - 148T + 4964 \) Copy content Toggle raw display
$19$ \( T^{2} + 132T + 3778 \) Copy content Toggle raw display
$23$ \( T^{2} + 162T - 2417 \) Copy content Toggle raw display
$29$ \( T^{2} - 310T + 23975 \) Copy content Toggle raw display
$31$ \( T^{2} + 252T - 11036 \) Copy content Toggle raw display
$37$ \( T^{2} - 48T - 8136 \) Copy content Toggle raw display
$41$ \( T^{2} - 64T - 138368 \) Copy content Toggle raw display
$43$ \( T^{2} - 72T - 34616 \) Copy content Toggle raw display
$47$ \( T^{2} + 210T + 6975 \) Copy content Toggle raw display
$53$ \( T^{2} - 404T + 40802 \) Copy content Toggle raw display
$59$ \( T^{2} - 562T + 78911 \) Copy content Toggle raw display
$61$ \( T^{2} - 174T - 14903 \) Copy content Toggle raw display
$67$ \( T^{2} + 612T - 209006 \) Copy content Toggle raw display
$71$ \( T^{2} - 586T - 22729 \) Copy content Toggle raw display
$73$ \( T^{2} - 1608 T + 594574 \) Copy content Toggle raw display
$79$ \( T^{2} + 1032T + 62734 \) Copy content Toggle raw display
$83$ \( T^{2} + 556T - 778148 \) Copy content Toggle raw display
$89$ \( T^{2} - 690T - 363137 \) Copy content Toggle raw display
$97$ \( T^{2} - 486 T - 1253151 \) Copy content Toggle raw display
show more
show less