Properties

Label 2034.3.d.a.2033.32
Level $2034$
Weight $3$
Character 2034.2033
Analytic conductor $55.422$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,3,Mod(2033,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.2033"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2034.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.4224857709\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2033.32
Character \(\chi\) \(=\) 2034.2033
Dual form 2034.3.d.a.2033.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} -3.08580 q^{5} +9.93072 q^{7} -2.82843i q^{8} -4.36398i q^{10} +6.64882i q^{11} -16.2542 q^{13} +14.0442i q^{14} +4.00000 q^{16} -11.4308 q^{17} -17.1180i q^{19} +6.17159 q^{20} -9.40285 q^{22} +25.9910 q^{23} -15.4779 q^{25} -22.9869i q^{26} -19.8614 q^{28} +39.6228 q^{29} -23.5666 q^{31} +5.65685i q^{32} -16.1657i q^{34} -30.6442 q^{35} +11.4764i q^{37} +24.2086 q^{38} +8.72795i q^{40} +13.2048i q^{41} -59.9593i q^{43} -13.2976i q^{44} +36.7568i q^{46} -18.9990 q^{47} +49.6192 q^{49} -21.8890i q^{50} +32.5084 q^{52} +18.3758i q^{53} -20.5169i q^{55} -28.0883i q^{56} +56.0350i q^{58} -4.79160 q^{59} -72.0736 q^{61} -33.3282i q^{62} -8.00000 q^{64} +50.1571 q^{65} +38.1779i q^{67} +22.8617 q^{68} -43.3374i q^{70} -78.0632 q^{71} -93.5234i q^{73} -16.2300 q^{74} +34.2361i q^{76} +66.0276i q^{77} -115.264i q^{79} -12.3432 q^{80} -18.6743 q^{82} +10.5559i q^{83} +35.2733 q^{85} +84.7953 q^{86} +18.8057 q^{88} +11.0370 q^{89} -161.416 q^{91} -51.9820 q^{92} -26.8687i q^{94} +52.8228i q^{95} -154.475 q^{97} +70.1721i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} - 8 q^{7} + 144 q^{16} + 36 q^{25} + 16 q^{28} + 64 q^{31} + 108 q^{49} - 80 q^{61} - 288 q^{64} + 248 q^{82} - 164 q^{85} + 516 q^{91} - 420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) −3.08580 −0.617159 −0.308580 0.951198i \(-0.599854\pi\)
−0.308580 + 0.951198i \(0.599854\pi\)
\(6\) 0 0
\(7\) 9.93072 1.41867 0.709337 0.704869i \(-0.248994\pi\)
0.709337 + 0.704869i \(0.248994\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 4.36398i 0.436398i
\(11\) 6.64882i 0.604438i 0.953239 + 0.302219i \(0.0977274\pi\)
−0.953239 + 0.302219i \(0.902273\pi\)
\(12\) 0 0
\(13\) −16.2542 −1.25032 −0.625161 0.780496i \(-0.714967\pi\)
−0.625161 + 0.780496i \(0.714967\pi\)
\(14\) 14.0442i 1.00315i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −11.4308 −0.672403 −0.336201 0.941790i \(-0.609142\pi\)
−0.336201 + 0.941790i \(0.609142\pi\)
\(18\) 0 0
\(19\) 17.1180i 0.900950i −0.892789 0.450475i \(-0.851255\pi\)
0.892789 0.450475i \(-0.148745\pi\)
\(20\) 6.17159 0.308580
\(21\) 0 0
\(22\) −9.40285 −0.427402
\(23\) 25.9910 1.13004 0.565021 0.825076i \(-0.308868\pi\)
0.565021 + 0.825076i \(0.308868\pi\)
\(24\) 0 0
\(25\) −15.4779 −0.619114
\(26\) 22.9869i 0.884111i
\(27\) 0 0
\(28\) −19.8614 −0.709337
\(29\) 39.6228 1.36630 0.683151 0.730277i \(-0.260609\pi\)
0.683151 + 0.730277i \(0.260609\pi\)
\(30\) 0 0
\(31\) −23.5666 −0.760212 −0.380106 0.924943i \(-0.624112\pi\)
−0.380106 + 0.924943i \(0.624112\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 16.1657i 0.475460i
\(35\) −30.6442 −0.875548
\(36\) 0 0
\(37\) 11.4764i 0.310172i 0.987901 + 0.155086i \(0.0495655\pi\)
−0.987901 + 0.155086i \(0.950435\pi\)
\(38\) 24.2086 0.637068
\(39\) 0 0
\(40\) 8.72795i 0.218199i
\(41\) 13.2048i 0.322067i 0.986949 + 0.161034i \(0.0514827\pi\)
−0.986949 + 0.161034i \(0.948517\pi\)
\(42\) 0 0
\(43\) 59.9593i 1.39440i −0.716875 0.697202i \(-0.754428\pi\)
0.716875 0.697202i \(-0.245572\pi\)
\(44\) 13.2976i 0.302219i
\(45\) 0 0
\(46\) 36.7568i 0.799061i
\(47\) −18.9990 −0.404235 −0.202117 0.979361i \(-0.564782\pi\)
−0.202117 + 0.979361i \(0.564782\pi\)
\(48\) 0 0
\(49\) 49.6192 1.01264
\(50\) 21.8890i 0.437780i
\(51\) 0 0
\(52\) 32.5084 0.625161
\(53\) 18.3758i 0.346713i 0.984859 + 0.173357i \(0.0554613\pi\)
−0.984859 + 0.173357i \(0.944539\pi\)
\(54\) 0 0
\(55\) 20.5169i 0.373035i
\(56\) 28.0883i 0.501577i
\(57\) 0 0
\(58\) 56.0350i 0.966122i
\(59\) −4.79160 −0.0812135 −0.0406068 0.999175i \(-0.512929\pi\)
−0.0406068 + 0.999175i \(0.512929\pi\)
\(60\) 0 0
\(61\) −72.0736 −1.18153 −0.590767 0.806842i \(-0.701175\pi\)
−0.590767 + 0.806842i \(0.701175\pi\)
\(62\) 33.3282i 0.537551i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 50.1571 0.771648
\(66\) 0 0
\(67\) 38.1779i 0.569820i 0.958554 + 0.284910i \(0.0919637\pi\)
−0.958554 + 0.284910i \(0.908036\pi\)
\(68\) 22.8617 0.336201
\(69\) 0 0
\(70\) 43.3374i 0.619106i
\(71\) −78.0632 −1.09948 −0.549741 0.835335i \(-0.685273\pi\)
−0.549741 + 0.835335i \(0.685273\pi\)
\(72\) 0 0
\(73\) 93.5234i 1.28114i −0.767899 0.640571i \(-0.778698\pi\)
0.767899 0.640571i \(-0.221302\pi\)
\(74\) −16.2300 −0.219325
\(75\) 0 0
\(76\) 34.2361i 0.450475i
\(77\) 66.0276i 0.857501i
\(78\) 0 0
\(79\) 115.264i 1.45904i −0.683959 0.729520i \(-0.739743\pi\)
0.683959 0.729520i \(-0.260257\pi\)
\(80\) −12.3432 −0.154290
\(81\) 0 0
\(82\) −18.6743 −0.227736
\(83\) 10.5559i 0.127180i 0.997976 + 0.0635898i \(0.0202549\pi\)
−0.997976 + 0.0635898i \(0.979745\pi\)
\(84\) 0 0
\(85\) 35.2733 0.414980
\(86\) 84.7953 0.985992
\(87\) 0 0
\(88\) 18.8057 0.213701
\(89\) 11.0370 0.124011 0.0620057 0.998076i \(-0.480250\pi\)
0.0620057 + 0.998076i \(0.480250\pi\)
\(90\) 0 0
\(91\) −161.416 −1.77380
\(92\) −51.9820 −0.565021
\(93\) 0 0
\(94\) 26.8687i 0.285837i
\(95\) 52.8228i 0.556030i
\(96\) 0 0
\(97\) −154.475 −1.59253 −0.796263 0.604950i \(-0.793193\pi\)
−0.796263 + 0.604950i \(0.793193\pi\)
\(98\) 70.1721i 0.716042i
\(99\) 0 0
\(100\) 30.9557 0.309557
\(101\) 14.4811 0.143377 0.0716884 0.997427i \(-0.477161\pi\)
0.0716884 + 0.997427i \(0.477161\pi\)
\(102\) 0 0
\(103\) 130.454i 1.26654i −0.773930 0.633271i \(-0.781712\pi\)
0.773930 0.633271i \(-0.218288\pi\)
\(104\) 45.9738i 0.442056i
\(105\) 0 0
\(106\) −25.9873 −0.245163
\(107\) −135.187 −1.26343 −0.631716 0.775200i \(-0.717649\pi\)
−0.631716 + 0.775200i \(0.717649\pi\)
\(108\) 0 0
\(109\) 136.445 1.25179 0.625896 0.779907i \(-0.284733\pi\)
0.625896 + 0.779907i \(0.284733\pi\)
\(110\) 29.0153 0.263775
\(111\) 0 0
\(112\) 39.7229 0.354669
\(113\) −98.6090 55.1839i −0.872646 0.488353i
\(114\) 0 0
\(115\) −80.2029 −0.697416
\(116\) −79.2455 −0.683151
\(117\) 0 0
\(118\) 6.77634i 0.0574266i
\(119\) −113.517 −0.953920
\(120\) 0 0
\(121\) 76.7932 0.634655
\(122\) 101.927i 0.835471i
\(123\) 0 0
\(124\) 47.1331 0.380106
\(125\) 124.906 0.999252
\(126\) 0 0
\(127\) −90.2928 −0.710967 −0.355483 0.934683i \(-0.615684\pi\)
−0.355483 + 0.934683i \(0.615684\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 70.9329i 0.545637i
\(131\) 110.841i 0.846117i −0.906102 0.423059i \(-0.860956\pi\)
0.906102 0.423059i \(-0.139044\pi\)
\(132\) 0 0
\(133\) 169.995i 1.27815i
\(134\) −53.9918 −0.402924
\(135\) 0 0
\(136\) 32.3313i 0.237730i
\(137\) 182.536 1.33238 0.666189 0.745783i \(-0.267924\pi\)
0.666189 + 0.745783i \(0.267924\pi\)
\(138\) 0 0
\(139\) 112.153 0.806858 0.403429 0.915011i \(-0.367818\pi\)
0.403429 + 0.915011i \(0.367818\pi\)
\(140\) 61.2884 0.437774
\(141\) 0 0
\(142\) 110.398i 0.777451i
\(143\) 108.071i 0.755742i
\(144\) 0 0
\(145\) −122.268 −0.843226
\(146\) 132.262 0.905905
\(147\) 0 0
\(148\) 22.9527i 0.155086i
\(149\) 48.7209i 0.326986i −0.986545 0.163493i \(-0.947724\pi\)
0.986545 0.163493i \(-0.0522761\pi\)
\(150\) 0 0
\(151\) 287.813i 1.90604i −0.302902 0.953022i \(-0.597955\pi\)
0.302902 0.953022i \(-0.402045\pi\)
\(152\) −48.4171 −0.318534
\(153\) 0 0
\(154\) −93.3771 −0.606345
\(155\) 72.7216 0.469172
\(156\) 0 0
\(157\) 272.135 1.73334 0.866672 0.498879i \(-0.166255\pi\)
0.866672 + 0.498879i \(0.166255\pi\)
\(158\) 163.008 1.03170
\(159\) 0 0
\(160\) 17.4559i 0.109099i
\(161\) 258.109 1.60316
\(162\) 0 0
\(163\) −44.3800 −0.272270 −0.136135 0.990690i \(-0.543468\pi\)
−0.136135 + 0.990690i \(0.543468\pi\)
\(164\) 26.4095i 0.161034i
\(165\) 0 0
\(166\) −14.9283 −0.0899296
\(167\) 9.87958 0.0591592 0.0295796 0.999562i \(-0.490583\pi\)
0.0295796 + 0.999562i \(0.490583\pi\)
\(168\) 0 0
\(169\) 95.1986 0.563305
\(170\) 49.8839i 0.293435i
\(171\) 0 0
\(172\) 119.919i 0.697202i
\(173\) 206.845i 1.19563i −0.801633 0.597817i \(-0.796035\pi\)
0.801633 0.597817i \(-0.203965\pi\)
\(174\) 0 0
\(175\) −153.706 −0.878322
\(176\) 26.5953i 0.151110i
\(177\) 0 0
\(178\) 15.6087i 0.0876893i
\(179\) 20.2691 0.113235 0.0566176 0.998396i \(-0.481968\pi\)
0.0566176 + 0.998396i \(0.481968\pi\)
\(180\) 0 0
\(181\) 234.124i 1.29350i −0.762701 0.646752i \(-0.776127\pi\)
0.762701 0.646752i \(-0.223873\pi\)
\(182\) 228.276i 1.25427i
\(183\) 0 0
\(184\) 73.5136i 0.399530i
\(185\) 35.4137i 0.191426i
\(186\) 0 0
\(187\) 76.0016i 0.406426i
\(188\) 37.9981 0.202117
\(189\) 0 0
\(190\) −74.7027 −0.393172
\(191\) 185.869 0.973139 0.486569 0.873642i \(-0.338248\pi\)
0.486569 + 0.873642i \(0.338248\pi\)
\(192\) 0 0
\(193\) 172.224i 0.892355i 0.894945 + 0.446177i \(0.147215\pi\)
−0.894945 + 0.446177i \(0.852785\pi\)
\(194\) 218.461i 1.12609i
\(195\) 0 0
\(196\) −99.2384 −0.506318
\(197\) 280.846 1.42561 0.712807 0.701360i \(-0.247424\pi\)
0.712807 + 0.701360i \(0.247424\pi\)
\(198\) 0 0
\(199\) 181.951i 0.914329i −0.889382 0.457164i \(-0.848865\pi\)
0.889382 0.457164i \(-0.151135\pi\)
\(200\) 43.7780i 0.218890i
\(201\) 0 0
\(202\) 20.4793i 0.101383i
\(203\) 393.483 1.93834
\(204\) 0 0
\(205\) 40.7472i 0.198767i
\(206\) 184.490 0.895580
\(207\) 0 0
\(208\) −65.0167 −0.312580
\(209\) 113.815 0.544568
\(210\) 0 0
\(211\) −297.802 −1.41138 −0.705692 0.708519i \(-0.749364\pi\)
−0.705692 + 0.708519i \(0.749364\pi\)
\(212\) 36.7516i 0.173357i
\(213\) 0 0
\(214\) 191.184i 0.893382i
\(215\) 185.022i 0.860569i
\(216\) 0 0
\(217\) −234.033 −1.07849
\(218\) 192.963i 0.885151i
\(219\) 0 0
\(220\) 41.0338i 0.186517i
\(221\) 185.799 0.840720
\(222\) 0 0
\(223\) 0.537524i 0.00241042i −0.999999 0.00120521i \(-0.999616\pi\)
0.999999 0.00120521i \(-0.000383631\pi\)
\(224\) 56.1766i 0.250789i
\(225\) 0 0
\(226\) 78.0419 139.454i 0.345318 0.617054i
\(227\) 329.581i 1.45190i −0.687748 0.725950i \(-0.741400\pi\)
0.687748 0.725950i \(-0.258600\pi\)
\(228\) 0 0
\(229\) 177.884i 0.776786i 0.921494 + 0.388393i \(0.126970\pi\)
−0.921494 + 0.388393i \(0.873030\pi\)
\(230\) 113.424i 0.493148i
\(231\) 0 0
\(232\) 112.070i 0.483061i
\(233\) 161.269i 0.692144i −0.938208 0.346072i \(-0.887515\pi\)
0.938208 0.346072i \(-0.112485\pi\)
\(234\) 0 0
\(235\) 58.6272 0.249477
\(236\) 9.58320 0.0406068
\(237\) 0 0
\(238\) 160.537i 0.674523i
\(239\) 122.560i 0.512805i 0.966570 + 0.256402i \(0.0825372\pi\)
−0.966570 + 0.256402i \(0.917463\pi\)
\(240\) 0 0
\(241\) −215.979 −0.896180 −0.448090 0.893988i \(-0.647896\pi\)
−0.448090 + 0.893988i \(0.647896\pi\)
\(242\) 108.602i 0.448769i
\(243\) 0 0
\(244\) 144.147 0.590767
\(245\) −153.115 −0.624958
\(246\) 0 0
\(247\) 278.240i 1.12648i
\(248\) 66.6563i 0.268775i
\(249\) 0 0
\(250\) 176.644i 0.706578i
\(251\) 199.135i 0.793368i −0.917955 0.396684i \(-0.870161\pi\)
0.917955 0.396684i \(-0.129839\pi\)
\(252\) 0 0
\(253\) 172.809i 0.683041i
\(254\) 127.693i 0.502730i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 13.1179i 0.0510422i 0.999674 + 0.0255211i \(0.00812451\pi\)
−0.999674 + 0.0255211i \(0.991875\pi\)
\(258\) 0 0
\(259\) 113.969i 0.440033i
\(260\) −100.314 −0.385824
\(261\) 0 0
\(262\) 156.753 0.598295
\(263\) −190.551 −0.724529 −0.362265 0.932075i \(-0.617996\pi\)
−0.362265 + 0.932075i \(0.617996\pi\)
\(264\) 0 0
\(265\) 56.7040i 0.213977i
\(266\) 240.409 0.903791
\(267\) 0 0
\(268\) 76.3559i 0.284910i
\(269\) −147.829 −0.549549 −0.274775 0.961509i \(-0.588603\pi\)
−0.274775 + 0.961509i \(0.588603\pi\)
\(270\) 0 0
\(271\) 101.501i 0.374542i −0.982308 0.187271i \(-0.940036\pi\)
0.982308 0.187271i \(-0.0599642\pi\)
\(272\) −45.7234 −0.168101
\(273\) 0 0
\(274\) 258.145i 0.942134i
\(275\) 102.909i 0.374216i
\(276\) 0 0
\(277\) −63.8668 −0.230566 −0.115283 0.993333i \(-0.536778\pi\)
−0.115283 + 0.993333i \(0.536778\pi\)
\(278\) 158.609i 0.570535i
\(279\) 0 0
\(280\) 86.6748i 0.309553i
\(281\) −188.990 −0.672563 −0.336281 0.941762i \(-0.609169\pi\)
−0.336281 + 0.941762i \(0.609169\pi\)
\(282\) 0 0
\(283\) −2.22240 −0.00785301 −0.00392651 0.999992i \(-0.501250\pi\)
−0.00392651 + 0.999992i \(0.501250\pi\)
\(284\) 156.126 0.549741
\(285\) 0 0
\(286\) 152.836 0.534390
\(287\) 131.133i 0.456908i
\(288\) 0 0
\(289\) −158.336 −0.547875
\(290\) 172.913i 0.596251i
\(291\) 0 0
\(292\) 187.047i 0.640571i
\(293\) −490.066 −1.67258 −0.836291 0.548286i \(-0.815280\pi\)
−0.836291 + 0.548286i \(0.815280\pi\)
\(294\) 0 0
\(295\) 14.7859 0.0501217
\(296\) 32.4601 0.109662
\(297\) 0 0
\(298\) 68.9017 0.231214
\(299\) −422.462 −1.41292
\(300\) 0 0
\(301\) 595.439i 1.97820i
\(302\) 407.028 1.34778
\(303\) 0 0
\(304\) 68.4722i 0.225237i
\(305\) 222.405 0.729195
\(306\) 0 0
\(307\) 382.392 1.24558 0.622789 0.782390i \(-0.285999\pi\)
0.622789 + 0.782390i \(0.285999\pi\)
\(308\) 132.055i 0.428750i
\(309\) 0 0
\(310\) 102.844i 0.331755i
\(311\) 42.9026i 0.137951i 0.997618 + 0.0689753i \(0.0219730\pi\)
−0.997618 + 0.0689753i \(0.978027\pi\)
\(312\) 0 0
\(313\) −421.051 −1.34521 −0.672606 0.740001i \(-0.734825\pi\)
−0.672606 + 0.740001i \(0.734825\pi\)
\(314\) 384.857i 1.22566i
\(315\) 0 0
\(316\) 230.528i 0.729520i
\(317\) 476.330i 1.50262i 0.659951 + 0.751309i \(0.270577\pi\)
−0.659951 + 0.751309i \(0.729423\pi\)
\(318\) 0 0
\(319\) 263.445i 0.825845i
\(320\) 24.6864 0.0771449
\(321\) 0 0
\(322\) 365.021i 1.13361i
\(323\) 195.674i 0.605801i
\(324\) 0 0
\(325\) 251.580 0.774092
\(326\) 62.7628i 0.192524i
\(327\) 0 0
\(328\) 37.3487 0.113868
\(329\) −188.674 −0.573478
\(330\) 0 0
\(331\) −382.628 −1.15598 −0.577988 0.816045i \(-0.696162\pi\)
−0.577988 + 0.816045i \(0.696162\pi\)
\(332\) 21.1118i 0.0635898i
\(333\) 0 0
\(334\) 13.9718i 0.0418318i
\(335\) 117.809i 0.351670i
\(336\) 0 0
\(337\) 3.07317 0.00911919 0.00455960 0.999990i \(-0.498549\pi\)
0.00455960 + 0.999990i \(0.498549\pi\)
\(338\) 134.631i 0.398317i
\(339\) 0 0
\(340\) −70.5465 −0.207490
\(341\) 156.690i 0.459501i
\(342\) 0 0
\(343\) 6.14906 0.0179273
\(344\) −169.591 −0.492996
\(345\) 0 0
\(346\) 292.522 0.845441
\(347\) 173.667i 0.500480i −0.968184 0.250240i \(-0.919490\pi\)
0.968184 0.250240i \(-0.0805095\pi\)
\(348\) 0 0
\(349\) 110.693i 0.317172i −0.987345 0.158586i \(-0.949306\pi\)
0.987345 0.158586i \(-0.0506935\pi\)
\(350\) 217.373i 0.621067i
\(351\) 0 0
\(352\) −37.6114 −0.106851
\(353\) 95.1212i 0.269465i −0.990882 0.134733i \(-0.956982\pi\)
0.990882 0.134733i \(-0.0430175\pi\)
\(354\) 0 0
\(355\) 240.887 0.678555
\(356\) −22.0740 −0.0620057
\(357\) 0 0
\(358\) 28.6648i 0.0800694i
\(359\) 332.555 0.926338 0.463169 0.886270i \(-0.346712\pi\)
0.463169 + 0.886270i \(0.346712\pi\)
\(360\) 0 0
\(361\) 67.9726 0.188290
\(362\) 331.101 0.914645
\(363\) 0 0
\(364\) 322.832 0.886900
\(365\) 288.594i 0.790669i
\(366\) 0 0
\(367\) 166.688 0.454190 0.227095 0.973873i \(-0.427077\pi\)
0.227095 + 0.973873i \(0.427077\pi\)
\(368\) 103.964 0.282511
\(369\) 0 0
\(370\) 50.0826 0.135358
\(371\) 182.485i 0.491873i
\(372\) 0 0
\(373\) 590.608i 1.58340i 0.610911 + 0.791699i \(0.290803\pi\)
−0.610911 + 0.791699i \(0.709197\pi\)
\(374\) 107.483 0.287386
\(375\) 0 0
\(376\) 53.7374i 0.142919i
\(377\) −644.036 −1.70832
\(378\) 0 0
\(379\) 384.629i 1.01485i −0.861696 0.507426i \(-0.830597\pi\)
0.861696 0.507426i \(-0.169403\pi\)
\(380\) 105.646i 0.278015i
\(381\) 0 0
\(382\) 262.859i 0.688113i
\(383\) 366.115i 0.955914i 0.878383 + 0.477957i \(0.158623\pi\)
−0.878383 + 0.477957i \(0.841377\pi\)
\(384\) 0 0
\(385\) 203.748i 0.529215i
\(386\) −243.562 −0.630990
\(387\) 0 0
\(388\) 308.950 0.796263
\(389\) 97.4432i 0.250497i 0.992125 + 0.125248i \(0.0399728\pi\)
−0.992125 + 0.125248i \(0.960027\pi\)
\(390\) 0 0
\(391\) −297.099 −0.759843
\(392\) 140.344i 0.358021i
\(393\) 0 0
\(394\) 397.176i 1.00806i
\(395\) 355.682i 0.900461i
\(396\) 0 0
\(397\) 222.848i 0.561330i −0.959806 0.280665i \(-0.909445\pi\)
0.959806 0.280665i \(-0.0905550\pi\)
\(398\) 257.318 0.646528
\(399\) 0 0
\(400\) −61.9114 −0.154779
\(401\) 93.1428i 0.232276i 0.993233 + 0.116138i \(0.0370515\pi\)
−0.993233 + 0.116138i \(0.962948\pi\)
\(402\) 0 0
\(403\) 383.055 0.950510
\(404\) −28.9621 −0.0716884
\(405\) 0 0
\(406\) 556.468i 1.37061i
\(407\) −76.3043 −0.187480
\(408\) 0 0
\(409\) 196.636i 0.480773i −0.970677 0.240386i \(-0.922726\pi\)
0.970677 0.240386i \(-0.0772741\pi\)
\(410\) 57.6252 0.140549
\(411\) 0 0
\(412\) 260.908i 0.633271i
\(413\) −47.5840 −0.115216
\(414\) 0 0
\(415\) 32.5734i 0.0784901i
\(416\) 91.9476i 0.221028i
\(417\) 0 0
\(418\) 160.958i 0.385068i
\(419\) 256.014 0.611012 0.305506 0.952190i \(-0.401174\pi\)
0.305506 + 0.952190i \(0.401174\pi\)
\(420\) 0 0
\(421\) 567.774 1.34863 0.674316 0.738443i \(-0.264439\pi\)
0.674316 + 0.738443i \(0.264439\pi\)
\(422\) 421.155i 0.997999i
\(423\) 0 0
\(424\) 51.9746 0.122582
\(425\) 176.925 0.416294
\(426\) 0 0
\(427\) −715.743 −1.67621
\(428\) 270.375 0.631716
\(429\) 0 0
\(430\) −261.661 −0.608514
\(431\) 267.837 0.621430 0.310715 0.950503i \(-0.399431\pi\)
0.310715 + 0.950503i \(0.399431\pi\)
\(432\) 0 0
\(433\) 335.852i 0.775639i −0.921735 0.387820i \(-0.873228\pi\)
0.921735 0.387820i \(-0.126772\pi\)
\(434\) 330.973i 0.762610i
\(435\) 0 0
\(436\) −272.891 −0.625896
\(437\) 444.915i 1.01811i
\(438\) 0 0
\(439\) 149.156 0.339764 0.169882 0.985464i \(-0.445661\pi\)
0.169882 + 0.985464i \(0.445661\pi\)
\(440\) −58.0306 −0.131888
\(441\) 0 0
\(442\) 262.760i 0.594479i
\(443\) 192.893i 0.435423i −0.976013 0.217712i \(-0.930141\pi\)
0.976013 0.217712i \(-0.0698592\pi\)
\(444\) 0 0
\(445\) −34.0580 −0.0765348
\(446\) 0.760174 0.00170443
\(447\) 0 0
\(448\) −79.4458 −0.177334
\(449\) −782.374 −1.74248 −0.871240 0.490857i \(-0.836684\pi\)
−0.871240 + 0.490857i \(0.836684\pi\)
\(450\) 0 0
\(451\) −87.7960 −0.194670
\(452\) 197.218 + 110.368i 0.436323 + 0.244177i
\(453\) 0 0
\(454\) 466.098 1.02665
\(455\) 498.096 1.09472
\(456\) 0 0
\(457\) 591.567i 1.29446i −0.762296 0.647229i \(-0.775928\pi\)
0.762296 0.647229i \(-0.224072\pi\)
\(458\) −251.566 −0.549271
\(459\) 0 0
\(460\) 160.406 0.348708
\(461\) 39.4066i 0.0854807i 0.999086 + 0.0427403i \(0.0136088\pi\)
−0.999086 + 0.0427403i \(0.986391\pi\)
\(462\) 0 0
\(463\) 35.5663 0.0768171 0.0384086 0.999262i \(-0.487771\pi\)
0.0384086 + 0.999262i \(0.487771\pi\)
\(464\) 158.491 0.341576
\(465\) 0 0
\(466\) 228.069 0.489420
\(467\) 336.601i 0.720772i −0.932803 0.360386i \(-0.882645\pi\)
0.932803 0.360386i \(-0.117355\pi\)
\(468\) 0 0
\(469\) 379.134i 0.808389i
\(470\) 82.9113i 0.176407i
\(471\) 0 0
\(472\) 13.5527i 0.0287133i
\(473\) 398.659 0.842830
\(474\) 0 0
\(475\) 264.951i 0.557791i
\(476\) 227.033 0.476960
\(477\) 0 0
\(478\) −173.327 −0.362608
\(479\) −818.386 −1.70853 −0.854265 0.519838i \(-0.825992\pi\)
−0.854265 + 0.519838i \(0.825992\pi\)
\(480\) 0 0
\(481\) 186.539i 0.387815i
\(482\) 305.441i 0.633695i
\(483\) 0 0
\(484\) −153.586 −0.317327
\(485\) 476.679 0.982843
\(486\) 0 0
\(487\) 252.480i 0.518439i 0.965818 + 0.259219i \(0.0834653\pi\)
−0.965818 + 0.259219i \(0.916535\pi\)
\(488\) 203.855i 0.417736i
\(489\) 0 0
\(490\) 216.537i 0.441912i
\(491\) −400.644 −0.815976 −0.407988 0.912987i \(-0.633769\pi\)
−0.407988 + 0.912987i \(0.633769\pi\)
\(492\) 0 0
\(493\) −452.922 −0.918705
\(494\) −393.491 −0.796540
\(495\) 0 0
\(496\) −94.2663 −0.190053
\(497\) −775.223 −1.55981
\(498\) 0 0
\(499\) 559.404i 1.12105i 0.828137 + 0.560525i \(0.189401\pi\)
−0.828137 + 0.560525i \(0.810599\pi\)
\(500\) −249.813 −0.499626
\(501\) 0 0
\(502\) 281.620 0.560996
\(503\) 718.782i 1.42899i −0.699640 0.714495i \(-0.746656\pi\)
0.699640 0.714495i \(-0.253344\pi\)
\(504\) 0 0
\(505\) −44.6856 −0.0884863
\(506\) −244.389 −0.482983
\(507\) 0 0
\(508\) 180.586 0.355483
\(509\) 551.808i 1.08410i 0.840345 + 0.542051i \(0.182352\pi\)
−0.840345 + 0.542051i \(0.817648\pi\)
\(510\) 0 0
\(511\) 928.755i 1.81752i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −18.5514 −0.0360923
\(515\) 402.554i 0.781658i
\(516\) 0 0
\(517\) 126.321i 0.244335i
\(518\) −161.176 −0.311150
\(519\) 0 0
\(520\) 141.866i 0.272819i
\(521\) 771.969i 1.48171i 0.671667 + 0.740854i \(0.265579\pi\)
−0.671667 + 0.740854i \(0.734421\pi\)
\(522\) 0 0
\(523\) 704.974i 1.34794i 0.738757 + 0.673972i \(0.235413\pi\)
−0.738757 + 0.673972i \(0.764587\pi\)
\(524\) 221.683i 0.423059i
\(525\) 0 0
\(526\) 269.480i 0.512319i
\(527\) 269.386 0.511168
\(528\) 0 0
\(529\) 146.531 0.276996
\(530\) 80.1916 0.151305
\(531\) 0 0
\(532\) 339.989i 0.639077i
\(533\) 214.632i 0.402688i
\(534\) 0 0
\(535\) 417.161 0.779739
\(536\) 107.984 0.201462
\(537\) 0 0
\(538\) 209.061i 0.388590i
\(539\) 329.909i 0.612076i
\(540\) 0 0
\(541\) 234.260i 0.433013i −0.976281 0.216506i \(-0.930534\pi\)
0.976281 0.216506i \(-0.0694662\pi\)
\(542\) 143.544 0.264841
\(543\) 0 0
\(544\) 64.6626i 0.118865i
\(545\) −421.043 −0.772555
\(546\) 0 0
\(547\) 427.068 0.780746 0.390373 0.920657i \(-0.372346\pi\)
0.390373 + 0.920657i \(0.372346\pi\)
\(548\) −365.072 −0.666189
\(549\) 0 0
\(550\) 145.536 0.264611
\(551\) 678.264i 1.23097i
\(552\) 0 0
\(553\) 1144.66i 2.06990i
\(554\) 90.3214i 0.163035i
\(555\) 0 0
\(556\) −224.307 −0.403429
\(557\) 185.693i 0.333380i −0.986009 0.166690i \(-0.946692\pi\)
0.986009 0.166690i \(-0.0533080\pi\)
\(558\) 0 0
\(559\) 974.590i 1.74345i
\(560\) −122.577 −0.218887
\(561\) 0 0
\(562\) 267.272i 0.475574i
\(563\) 681.947i 1.21127i −0.795742 0.605636i \(-0.792919\pi\)
0.795742 0.605636i \(-0.207081\pi\)
\(564\) 0 0
\(565\) 304.287 + 170.286i 0.538562 + 0.301392i
\(566\) 3.14295i 0.00555292i
\(567\) 0 0
\(568\) 220.796i 0.388725i
\(569\) 741.053i 1.30238i 0.758916 + 0.651189i \(0.225729\pi\)
−0.758916 + 0.651189i \(0.774271\pi\)
\(570\) 0 0
\(571\) 629.420i 1.10231i −0.834402 0.551156i \(-0.814187\pi\)
0.834402 0.551156i \(-0.185813\pi\)
\(572\) 216.142i 0.377871i
\(573\) 0 0
\(574\) −185.450 −0.323083
\(575\) −402.285 −0.699625
\(576\) 0 0
\(577\) 331.909i 0.575232i −0.957746 0.287616i \(-0.907137\pi\)
0.957746 0.287616i \(-0.0928626\pi\)
\(578\) 223.921i 0.387406i
\(579\) 0 0
\(580\) 244.536 0.421613
\(581\) 104.828i 0.180426i
\(582\) 0 0
\(583\) −122.177 −0.209567
\(584\) −264.524 −0.452952
\(585\) 0 0
\(586\) 693.059i 1.18269i
\(587\) 226.511i 0.385879i −0.981211 0.192940i \(-0.938198\pi\)
0.981211 0.192940i \(-0.0618022\pi\)
\(588\) 0 0
\(589\) 403.414i 0.684913i
\(590\) 20.9104i 0.0354414i
\(591\) 0 0
\(592\) 45.9054i 0.0775430i
\(593\) 233.106i 0.393096i 0.980494 + 0.196548i \(0.0629732\pi\)
−0.980494 + 0.196548i \(0.937027\pi\)
\(594\) 0 0
\(595\) 350.289 0.588721
\(596\) 97.4418i 0.163493i
\(597\) 0 0
\(598\) 597.452i 0.999083i
\(599\) −824.557 −1.37656 −0.688278 0.725447i \(-0.741633\pi\)
−0.688278 + 0.725447i \(0.741633\pi\)
\(600\) 0 0
\(601\) −415.557 −0.691443 −0.345721 0.938337i \(-0.612366\pi\)
−0.345721 + 0.938337i \(0.612366\pi\)
\(602\) 842.079 1.39880
\(603\) 0 0
\(604\) 575.625i 0.953022i
\(605\) −236.968 −0.391683
\(606\) 0 0
\(607\) 920.990i 1.51728i −0.651509 0.758641i \(-0.725864\pi\)
0.651509 0.758641i \(-0.274136\pi\)
\(608\) 96.8343 0.159267
\(609\) 0 0
\(610\) 314.528i 0.515619i
\(611\) 308.814 0.505424
\(612\) 0 0
\(613\) 929.866i 1.51691i 0.651726 + 0.758455i \(0.274045\pi\)
−0.651726 + 0.758455i \(0.725955\pi\)
\(614\) 540.785i 0.880757i
\(615\) 0 0
\(616\) 186.754 0.303172
\(617\) 700.176i 1.13481i 0.823440 + 0.567404i \(0.192052\pi\)
−0.823440 + 0.567404i \(0.807948\pi\)
\(618\) 0 0
\(619\) 649.235i 1.04884i 0.851458 + 0.524422i \(0.175719\pi\)
−0.851458 + 0.524422i \(0.824281\pi\)
\(620\) −145.443 −0.234586
\(621\) 0 0
\(622\) −60.6735 −0.0975458
\(623\) 109.606 0.175932
\(624\) 0 0
\(625\) 1.51054 0.00241686
\(626\) 595.456i 0.951208i
\(627\) 0 0
\(628\) −544.270 −0.866672
\(629\) 131.185i 0.208560i
\(630\) 0 0
\(631\) 324.064i 0.513573i 0.966468 + 0.256786i \(0.0826637\pi\)
−0.966468 + 0.256786i \(0.917336\pi\)
\(632\) −326.016 −0.515849
\(633\) 0 0
\(634\) −673.632 −1.06251
\(635\) 278.625 0.438780
\(636\) 0 0
\(637\) −806.520 −1.26612
\(638\) −372.567 −0.583961
\(639\) 0 0
\(640\) 34.9118i 0.0545497i
\(641\) 301.933 0.471034 0.235517 0.971870i \(-0.424322\pi\)
0.235517 + 0.971870i \(0.424322\pi\)
\(642\) 0 0
\(643\) 746.370i 1.16076i 0.814345 + 0.580381i \(0.197096\pi\)
−0.814345 + 0.580381i \(0.802904\pi\)
\(644\) −516.218 −0.801581
\(645\) 0 0
\(646\) −276.724 −0.428366
\(647\) 434.769i 0.671976i 0.941866 + 0.335988i \(0.109070\pi\)
−0.941866 + 0.335988i \(0.890930\pi\)
\(648\) 0 0
\(649\) 31.8585i 0.0490885i
\(650\) 355.788i 0.547366i
\(651\) 0 0
\(652\) 88.7601 0.136135
\(653\) 1200.32i 1.83816i 0.394067 + 0.919082i \(0.371068\pi\)
−0.394067 + 0.919082i \(0.628932\pi\)
\(654\) 0 0
\(655\) 342.034i 0.522189i
\(656\) 52.8190i 0.0805168i
\(657\) 0 0
\(658\) 266.825i 0.405510i
\(659\) 124.323 0.188654 0.0943271 0.995541i \(-0.469930\pi\)
0.0943271 + 0.995541i \(0.469930\pi\)
\(660\) 0 0
\(661\) 316.557i 0.478906i 0.970908 + 0.239453i \(0.0769681\pi\)
−0.970908 + 0.239453i \(0.923032\pi\)
\(662\) 541.118i 0.817399i
\(663\) 0 0
\(664\) 29.8566 0.0449648
\(665\) 524.568i 0.788825i
\(666\) 0 0
\(667\) 1029.83 1.54398
\(668\) −19.7592 −0.0295796
\(669\) 0 0
\(670\) 166.608 0.248668
\(671\) 479.204i 0.714165i
\(672\) 0 0
\(673\) 452.720i 0.672689i −0.941739 0.336345i \(-0.890809\pi\)
0.941739 0.336345i \(-0.109191\pi\)
\(674\) 4.34612i 0.00644824i
\(675\) 0 0
\(676\) −190.397 −0.281653
\(677\) 1036.15i 1.53050i 0.643734 + 0.765249i \(0.277384\pi\)
−0.643734 + 0.765249i \(0.722616\pi\)
\(678\) 0 0
\(679\) −1534.05 −2.25928
\(680\) 99.7679i 0.146717i
\(681\) 0 0
\(682\) 221.593 0.324916
\(683\) 683.266 1.00039 0.500194 0.865913i \(-0.333262\pi\)
0.500194 + 0.865913i \(0.333262\pi\)
\(684\) 0 0
\(685\) −563.269 −0.822290
\(686\) 8.69609i 0.0126765i
\(687\) 0 0
\(688\) 239.837i 0.348601i
\(689\) 298.684i 0.433503i
\(690\) 0 0
\(691\) 191.165 0.276650 0.138325 0.990387i \(-0.455828\pi\)
0.138325 + 0.990387i \(0.455828\pi\)
\(692\) 413.689i 0.597817i
\(693\) 0 0
\(694\) 245.602 0.353893
\(695\) −346.082 −0.497960
\(696\) 0 0
\(697\) 150.941i 0.216559i
\(698\) 156.544 0.224275
\(699\) 0 0
\(700\) 307.413 0.439161
\(701\) −1011.63 −1.44313 −0.721563 0.692348i \(-0.756576\pi\)
−0.721563 + 0.692348i \(0.756576\pi\)
\(702\) 0 0
\(703\) 196.453 0.279449
\(704\) 53.1906i 0.0755548i
\(705\) 0 0
\(706\) 134.522 0.190541
\(707\) 143.807 0.203405
\(708\) 0 0
\(709\) 602.388 0.849630 0.424815 0.905280i \(-0.360339\pi\)
0.424815 + 0.905280i \(0.360339\pi\)
\(710\) 340.666i 0.479811i
\(711\) 0 0
\(712\) 31.2174i 0.0438447i
\(713\) −612.518 −0.859072
\(714\) 0 0
\(715\) 333.486i 0.466413i
\(716\) −40.5382 −0.0566176
\(717\) 0 0
\(718\) 470.304i 0.655020i
\(719\) 196.665i 0.273525i −0.990604 0.136763i \(-0.956330\pi\)
0.990604 0.136763i \(-0.0436698\pi\)
\(720\) 0 0
\(721\) 1295.50i 1.79681i
\(722\) 96.1277i 0.133141i
\(723\) 0 0
\(724\) 468.248i 0.646752i
\(725\) −613.275 −0.845897
\(726\) 0 0
\(727\) −448.058 −0.616311 −0.308155 0.951336i \(-0.599712\pi\)
−0.308155 + 0.951336i \(0.599712\pi\)
\(728\) 456.553i 0.627133i
\(729\) 0 0
\(730\) −408.134 −0.559088
\(731\) 685.386i 0.937600i
\(732\) 0 0
\(733\) 732.969i 0.999957i −0.866038 0.499979i \(-0.833341\pi\)
0.866038 0.499979i \(-0.166659\pi\)
\(734\) 235.732i 0.321161i
\(735\) 0 0
\(736\) 147.027i 0.199765i
\(737\) −253.838 −0.344421
\(738\) 0 0
\(739\) 570.332 0.771762 0.385881 0.922549i \(-0.373897\pi\)
0.385881 + 0.922549i \(0.373897\pi\)
\(740\) 70.8274i 0.0957128i
\(741\) 0 0
\(742\) −258.073 −0.347807
\(743\) −964.878 −1.29862 −0.649312 0.760522i \(-0.724943\pi\)
−0.649312 + 0.760522i \(0.724943\pi\)
\(744\) 0 0
\(745\) 150.343i 0.201802i
\(746\) −835.245 −1.11963
\(747\) 0 0
\(748\) 152.003i 0.203213i
\(749\) −1342.51 −1.79240
\(750\) 0 0
\(751\) 841.431i 1.12041i 0.828353 + 0.560207i \(0.189278\pi\)
−0.828353 + 0.560207i \(0.810722\pi\)
\(752\) −75.9961 −0.101059
\(753\) 0 0
\(754\) 910.804i 1.20796i
\(755\) 888.131i 1.17633i
\(756\) 0 0
\(757\) 905.223i 1.19580i 0.801570 + 0.597901i \(0.203999\pi\)
−0.801570 + 0.597901i \(0.796001\pi\)
\(758\) 543.947 0.717608
\(759\) 0 0
\(760\) 149.405 0.196586
\(761\) 759.093i 0.997495i −0.866747 0.498747i \(-0.833794\pi\)
0.866747 0.498747i \(-0.166206\pi\)
\(762\) 0 0
\(763\) 1355.00 1.77588
\(764\) −371.739 −0.486569
\(765\) 0 0
\(766\) −517.765 −0.675933
\(767\) 77.8835 0.101543
\(768\) 0 0
\(769\) −433.755 −0.564050 −0.282025 0.959407i \(-0.591006\pi\)
−0.282025 + 0.959407i \(0.591006\pi\)
\(770\) 288.143 0.374211
\(771\) 0 0
\(772\) 344.449i 0.446177i
\(773\) 1393.98i 1.80334i −0.432430 0.901668i \(-0.642344\pi\)
0.432430 0.901668i \(-0.357656\pi\)
\(774\) 0 0
\(775\) 364.760 0.470658
\(776\) 436.922i 0.563043i
\(777\) 0 0
\(778\) −137.806 −0.177128
\(779\) 226.040 0.290166
\(780\) 0 0
\(781\) 519.028i 0.664568i
\(782\) 420.161i 0.537290i
\(783\) 0 0
\(784\) 198.477 0.253159
\(785\) −839.753 −1.06975
\(786\) 0 0
\(787\) 1070.58 1.36033 0.680166 0.733059i \(-0.261908\pi\)
0.680166 + 0.733059i \(0.261908\pi\)
\(788\) −561.692 −0.712807
\(789\) 0 0
\(790\) −503.010 −0.636722
\(791\) −979.258 548.016i −1.23800 0.692814i
\(792\) 0 0
\(793\) 1171.50 1.47730
\(794\) 315.155 0.396920
\(795\) 0 0
\(796\) 363.903i 0.457164i
\(797\) 161.414 0.202527 0.101263 0.994860i \(-0.467712\pi\)
0.101263 + 0.994860i \(0.467712\pi\)
\(798\) 0 0
\(799\) 217.175 0.271809
\(800\) 87.5560i 0.109445i
\(801\) 0 0
\(802\) −131.724 −0.164244
\(803\) 621.820 0.774371
\(804\) 0 0
\(805\) −796.472 −0.989407
\(806\) 541.722i 0.672112i
\(807\) 0 0
\(808\) 40.9586i 0.0506913i
\(809\) 1060.54i 1.31092i 0.755229 + 0.655461i \(0.227526\pi\)
−0.755229 + 0.655461i \(0.772474\pi\)
\(810\) 0 0
\(811\) 1011.36i 1.24705i 0.781804 + 0.623524i \(0.214300\pi\)
−0.781804 + 0.623524i \(0.785700\pi\)
\(812\) −786.965 −0.969169
\(813\) 0 0
\(814\) 107.911i 0.132568i
\(815\) 136.948 0.168034
\(816\) 0 0
\(817\) −1026.39 −1.25629
\(818\) 278.085 0.339958
\(819\) 0 0
\(820\) 81.4944i 0.0993834i
\(821\) 494.520i 0.602338i −0.953571 0.301169i \(-0.902623\pi\)
0.953571 0.301169i \(-0.0973769\pi\)
\(822\) 0 0
\(823\) −1311.69 −1.59379 −0.796897 0.604115i \(-0.793527\pi\)
−0.796897 + 0.604115i \(0.793527\pi\)
\(824\) −368.979 −0.447790
\(825\) 0 0
\(826\) 67.2940i 0.0814697i
\(827\) 1053.56i 1.27395i 0.770884 + 0.636975i \(0.219815\pi\)
−0.770884 + 0.636975i \(0.780185\pi\)
\(828\) 0 0
\(829\) 1378.27i 1.66257i 0.555845 + 0.831286i \(0.312395\pi\)
−0.555845 + 0.831286i \(0.687605\pi\)
\(830\) 46.0657 0.0555009
\(831\) 0 0
\(832\) 130.033 0.156290
\(833\) −567.189 −0.680900
\(834\) 0 0
\(835\) −30.4864 −0.0365106
\(836\) −227.630 −0.272284
\(837\) 0 0
\(838\) 362.059i 0.432051i
\(839\) −318.616 −0.379757 −0.189879 0.981808i \(-0.560809\pi\)
−0.189879 + 0.981808i \(0.560809\pi\)
\(840\) 0 0
\(841\) 728.963 0.866782
\(842\) 802.954i 0.953627i
\(843\) 0 0
\(844\) 595.604 0.705692
\(845\) −293.763 −0.347649
\(846\) 0 0
\(847\) 762.612 0.900368
\(848\) 73.5032i 0.0866783i
\(849\) 0 0
\(850\) 250.210i 0.294364i
\(851\) 298.282i 0.350507i
\(852\) 0 0
\(853\) −662.642 −0.776837 −0.388419 0.921483i \(-0.626979\pi\)
−0.388419 + 0.921483i \(0.626979\pi\)
\(854\) 1012.21i 1.18526i
\(855\) 0 0
\(856\) 382.367i 0.446691i
\(857\) −346.429 −0.404235 −0.202117 0.979361i \(-0.564782\pi\)
−0.202117 + 0.979361i \(0.564782\pi\)
\(858\) 0 0
\(859\) 228.923i 0.266499i 0.991082 + 0.133250i \(0.0425412\pi\)
−0.991082 + 0.133250i \(0.957459\pi\)
\(860\) 370.045i 0.430285i
\(861\) 0 0
\(862\) 378.778i 0.439418i
\(863\) 1299.15i 1.50538i 0.658373 + 0.752692i \(0.271245\pi\)
−0.658373 + 0.752692i \(0.728755\pi\)
\(864\) 0 0
\(865\) 638.280i 0.737896i
\(866\) 474.966 0.548460
\(867\) 0 0
\(868\) 468.066 0.539246
\(869\) 766.371 0.881900
\(870\) 0 0
\(871\) 620.551i 0.712458i
\(872\) 385.926i 0.442575i
\(873\) 0 0
\(874\) 629.204 0.719913
\(875\) 1240.41 1.41761
\(876\) 0 0
\(877\) 1265.56i 1.44305i −0.692387 0.721526i \(-0.743441\pi\)
0.692387 0.721526i \(-0.256559\pi\)
\(878\) 210.939i 0.240250i
\(879\) 0 0
\(880\) 82.0676i 0.0932587i
\(881\) 956.965 1.08623 0.543113 0.839660i \(-0.317246\pi\)
0.543113 + 0.839660i \(0.317246\pi\)
\(882\) 0 0
\(883\) 1551.15i 1.75668i 0.478037 + 0.878340i \(0.341348\pi\)
−0.478037 + 0.878340i \(0.658652\pi\)
\(884\) −371.598 −0.420360
\(885\) 0 0
\(886\) 272.791 0.307891
\(887\) −1053.78 −1.18803 −0.594014 0.804455i \(-0.702458\pi\)
−0.594014 + 0.804455i \(0.702458\pi\)
\(888\) 0 0
\(889\) −896.673 −1.00863
\(890\) 48.1653i 0.0541183i
\(891\) 0 0
\(892\) 1.07505i 0.00120521i
\(893\) 325.226i 0.364195i
\(894\) 0 0
\(895\) −62.5463 −0.0698842
\(896\) 112.353i 0.125394i
\(897\) 0 0
\(898\) 1106.44i 1.23212i
\(899\) −933.772 −1.03868
\(900\) 0 0
\(901\) 210.051i 0.233131i
\(902\) 124.162i 0.137652i
\(903\) 0 0
\(904\) −156.084 + 278.908i −0.172659 + 0.308527i
\(905\) 722.459i 0.798298i
\(906\) 0 0
\(907\) 328.354i 0.362022i −0.983481 0.181011i \(-0.942063\pi\)
0.983481 0.181011i \(-0.0579370\pi\)
\(908\) 659.163i 0.725950i
\(909\) 0 0
\(910\) 704.414i 0.774082i
\(911\) 232.472i 0.255184i −0.991827 0.127592i \(-0.959275\pi\)
0.991827 0.127592i \(-0.0407248\pi\)
\(912\) 0 0
\(913\) −70.1843 −0.0768722
\(914\) 836.602 0.915320
\(915\) 0 0
\(916\) 355.768i 0.388393i
\(917\) 1100.73i 1.20036i
\(918\) 0 0
\(919\) 687.097 0.747658 0.373829 0.927498i \(-0.378045\pi\)
0.373829 + 0.927498i \(0.378045\pi\)
\(920\) 226.848i 0.246574i
\(921\) 0 0
\(922\) −55.7293 −0.0604440
\(923\) 1268.85 1.37471
\(924\) 0 0
\(925\) 177.630i 0.192032i
\(926\) 50.2984i 0.0543179i
\(927\) 0 0
\(928\) 224.140i 0.241530i
\(929\) 1075.68i 1.15789i 0.815366 + 0.578945i \(0.196536\pi\)
−0.815366 + 0.578945i \(0.803464\pi\)
\(930\) 0 0
\(931\) 849.384i 0.912335i
\(932\) 322.539i 0.346072i
\(933\) 0 0
\(934\) 476.025 0.509663
\(935\) 234.526i 0.250829i
\(936\) 0 0
\(937\) 291.373i 0.310964i −0.987839 0.155482i \(-0.950307\pi\)
0.987839 0.155482i \(-0.0496930\pi\)
\(938\) −536.177 −0.571617
\(939\) 0 0
\(940\) −117.254 −0.124739
\(941\) −663.623 −0.705232 −0.352616 0.935768i \(-0.614708\pi\)
−0.352616 + 0.935768i \(0.614708\pi\)
\(942\) 0 0
\(943\) 343.204i 0.363949i
\(944\) −19.1664 −0.0203034
\(945\) 0 0
\(946\) 563.789i 0.595971i
\(947\) 1654.71 1.74732 0.873660 0.486537i \(-0.161740\pi\)
0.873660 + 0.486537i \(0.161740\pi\)
\(948\) 0 0
\(949\) 1520.15i 1.60184i
\(950\) −374.697 −0.394418
\(951\) 0 0
\(952\) 321.073i 0.337262i
\(953\) 1728.14i 1.81337i −0.421807 0.906686i \(-0.638604\pi\)
0.421807 0.906686i \(-0.361396\pi\)
\(954\) 0 0
\(955\) −573.556 −0.600582
\(956\) 245.121i 0.256402i
\(957\) 0 0
\(958\) 1157.37i 1.20811i
\(959\) 1812.71 1.89021
\(960\) 0 0
\(961\) −405.617 −0.422078
\(962\) 263.806 0.274226
\(963\) 0 0
\(964\) 431.959 0.448090
\(965\) 531.450i 0.550725i
\(966\) 0 0
\(967\) −420.476 −0.434825 −0.217412 0.976080i \(-0.569762\pi\)
−0.217412 + 0.976080i \(0.569762\pi\)
\(968\) 217.204i 0.224384i
\(969\) 0 0
\(970\) 674.126i 0.694975i
\(971\) −1661.65 −1.71128 −0.855641 0.517570i \(-0.826837\pi\)
−0.855641 + 0.517570i \(0.826837\pi\)
\(972\) 0 0
\(973\) 1113.76 1.14467
\(974\) −357.060 −0.366592
\(975\) 0 0
\(976\) −288.294 −0.295384
\(977\) −62.6869 −0.0641626 −0.0320813 0.999485i \(-0.510214\pi\)
−0.0320813 + 0.999485i \(0.510214\pi\)
\(978\) 0 0
\(979\) 73.3831i 0.0749572i
\(980\) 306.230 0.312479
\(981\) 0 0
\(982\) 566.597i 0.576982i
\(983\) −99.5296 −0.101251 −0.0506255 0.998718i \(-0.516121\pi\)
−0.0506255 + 0.998718i \(0.516121\pi\)
\(984\) 0 0
\(985\) −866.633 −0.879831
\(986\) 640.528i 0.649623i
\(987\) 0 0
\(988\) 556.480i 0.563239i
\(989\) 1558.40i 1.57573i
\(990\) 0 0
\(991\) 196.425 0.198209 0.0991043 0.995077i \(-0.468402\pi\)
0.0991043 + 0.995077i \(0.468402\pi\)
\(992\) 133.313i 0.134388i
\(993\) 0 0
\(994\) 1096.33i 1.10295i
\(995\) 561.465i 0.564286i
\(996\) 0 0
\(997\) 1180.54i 1.18410i −0.805903 0.592048i \(-0.798320\pi\)
0.805903 0.592048i \(-0.201680\pi\)
\(998\) −791.117 −0.792702
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.3.d.a.2033.32 yes 36
3.2 odd 2 inner 2034.3.d.a.2033.13 36
113.112 even 2 inner 2034.3.d.a.2033.14 yes 36
339.338 odd 2 inner 2034.3.d.a.2033.31 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2034.3.d.a.2033.13 36 3.2 odd 2 inner
2034.3.d.a.2033.14 yes 36 113.112 even 2 inner
2034.3.d.a.2033.31 yes 36 339.338 odd 2 inner
2034.3.d.a.2033.32 yes 36 1.1 even 1 trivial