Properties

Label 2034.3.d.a.2033.30
Level $2034$
Weight $3$
Character 2034.2033
Analytic conductor $55.422$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,3,Mod(2033,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.2033"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2034.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.4224857709\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2033.30
Character \(\chi\) \(=\) 2034.2033
Dual form 2034.3.d.a.2033.29

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +4.53197 q^{5} -2.50747 q^{7} -2.82843i q^{8} +6.40918i q^{10} -10.4528i q^{11} +10.6901 q^{13} -3.54610i q^{14} +4.00000 q^{16} -23.2826 q^{17} -10.6047i q^{19} -9.06395 q^{20} +14.7825 q^{22} -2.83074 q^{23} -4.46121 q^{25} +15.1181i q^{26} +5.01495 q^{28} +8.27065 q^{29} -36.1400 q^{31} +5.65685i q^{32} -32.9265i q^{34} -11.3638 q^{35} -11.9538i q^{37} +14.9973 q^{38} -12.8184i q^{40} +74.2703i q^{41} +3.48304i q^{43} +20.9056i q^{44} -4.00328i q^{46} -40.4399 q^{47} -42.7126 q^{49} -6.30911i q^{50} -21.3802 q^{52} +2.68929i q^{53} -47.3719i q^{55} +7.09221i q^{56} +11.6965i q^{58} -44.5471 q^{59} -57.4009 q^{61} -51.1097i q^{62} -8.00000 q^{64} +48.4472 q^{65} +23.6418i q^{67} +46.5651 q^{68} -16.0709i q^{70} +92.5662 q^{71} +109.176i q^{73} +16.9052 q^{74} +21.2094i q^{76} +26.2102i q^{77} +74.3503i q^{79} +18.1279 q^{80} -105.034 q^{82} -86.6042i q^{83} -105.516 q^{85} -4.92576 q^{86} -29.5650 q^{88} -120.422 q^{89} -26.8051 q^{91} +5.66149 q^{92} -57.1906i q^{94} -48.0601i q^{95} -5.77622 q^{97} -60.4047i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} - 8 q^{7} + 144 q^{16} + 36 q^{25} + 16 q^{28} + 64 q^{31} + 108 q^{49} - 80 q^{61} - 288 q^{64} + 248 q^{82} - 164 q^{85} + 516 q^{91} - 420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 4.53197 0.906395 0.453197 0.891410i \(-0.350283\pi\)
0.453197 + 0.891410i \(0.350283\pi\)
\(6\) 0 0
\(7\) −2.50747 −0.358211 −0.179105 0.983830i \(-0.557320\pi\)
−0.179105 + 0.983830i \(0.557320\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 6.40918i 0.640918i
\(11\) 10.4528i 0.950256i −0.879917 0.475128i \(-0.842402\pi\)
0.879917 0.475128i \(-0.157598\pi\)
\(12\) 0 0
\(13\) 10.6901 0.822314 0.411157 0.911565i \(-0.365125\pi\)
0.411157 + 0.911565i \(0.365125\pi\)
\(14\) 3.54610i 0.253293i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −23.2826 −1.36956 −0.684781 0.728749i \(-0.740102\pi\)
−0.684781 + 0.728749i \(0.740102\pi\)
\(18\) 0 0
\(19\) 10.6047i 0.558141i −0.960271 0.279071i \(-0.909974\pi\)
0.960271 0.279071i \(-0.0900263\pi\)
\(20\) −9.06395 −0.453197
\(21\) 0 0
\(22\) 14.7825 0.671932
\(23\) −2.83074 −0.123076 −0.0615379 0.998105i \(-0.519601\pi\)
−0.0615379 + 0.998105i \(0.519601\pi\)
\(24\) 0 0
\(25\) −4.46121 −0.178449
\(26\) 15.1181i 0.581464i
\(27\) 0 0
\(28\) 5.01495 0.179105
\(29\) 8.27065 0.285195 0.142597 0.989781i \(-0.454455\pi\)
0.142597 + 0.989781i \(0.454455\pi\)
\(30\) 0 0
\(31\) −36.1400 −1.16581 −0.582904 0.812541i \(-0.698084\pi\)
−0.582904 + 0.812541i \(0.698084\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 32.9265i 0.968427i
\(35\) −11.3638 −0.324680
\(36\) 0 0
\(37\) 11.9538i 0.323076i −0.986867 0.161538i \(-0.948355\pi\)
0.986867 0.161538i \(-0.0516454\pi\)
\(38\) 14.9973 0.394665
\(39\) 0 0
\(40\) 12.8184i 0.320459i
\(41\) 74.2703i 1.81147i 0.423843 + 0.905735i \(0.360681\pi\)
−0.423843 + 0.905735i \(0.639319\pi\)
\(42\) 0 0
\(43\) 3.48304i 0.0810009i 0.999180 + 0.0405004i \(0.0128952\pi\)
−0.999180 + 0.0405004i \(0.987105\pi\)
\(44\) 20.9056i 0.475128i
\(45\) 0 0
\(46\) 4.00328i 0.0870278i
\(47\) −40.4399 −0.860423 −0.430211 0.902728i \(-0.641561\pi\)
−0.430211 + 0.902728i \(0.641561\pi\)
\(48\) 0 0
\(49\) −42.7126 −0.871685
\(50\) 6.30911i 0.126182i
\(51\) 0 0
\(52\) −21.3802 −0.411157
\(53\) 2.68929i 0.0507413i 0.999678 + 0.0253706i \(0.00807659\pi\)
−0.999678 + 0.0253706i \(0.991923\pi\)
\(54\) 0 0
\(55\) 47.3719i 0.861307i
\(56\) 7.09221i 0.126647i
\(57\) 0 0
\(58\) 11.6965i 0.201663i
\(59\) −44.5471 −0.755036 −0.377518 0.926002i \(-0.623222\pi\)
−0.377518 + 0.926002i \(0.623222\pi\)
\(60\) 0 0
\(61\) −57.4009 −0.940998 −0.470499 0.882401i \(-0.655926\pi\)
−0.470499 + 0.882401i \(0.655926\pi\)
\(62\) 51.1097i 0.824350i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 48.4472 0.745341
\(66\) 0 0
\(67\) 23.6418i 0.352863i 0.984313 + 0.176431i \(0.0564554\pi\)
−0.984313 + 0.176431i \(0.943545\pi\)
\(68\) 46.5651 0.684781
\(69\) 0 0
\(70\) 16.0709i 0.229584i
\(71\) 92.5662 1.30375 0.651875 0.758327i \(-0.273983\pi\)
0.651875 + 0.758327i \(0.273983\pi\)
\(72\) 0 0
\(73\) 109.176i 1.49555i 0.663949 + 0.747777i \(0.268879\pi\)
−0.663949 + 0.747777i \(0.731121\pi\)
\(74\) 16.9052 0.228449
\(75\) 0 0
\(76\) 21.2094i 0.279071i
\(77\) 26.2102i 0.340392i
\(78\) 0 0
\(79\) 74.3503i 0.941143i 0.882362 + 0.470571i \(0.155952\pi\)
−0.882362 + 0.470571i \(0.844048\pi\)
\(80\) 18.1279 0.226599
\(81\) 0 0
\(82\) −105.034 −1.28090
\(83\) 86.6042i 1.04342i −0.853122 0.521712i \(-0.825293\pi\)
0.853122 0.521712i \(-0.174707\pi\)
\(84\) 0 0
\(85\) −105.516 −1.24136
\(86\) −4.92576 −0.0572763
\(87\) 0 0
\(88\) −29.5650 −0.335966
\(89\) −120.422 −1.35305 −0.676526 0.736419i \(-0.736515\pi\)
−0.676526 + 0.736419i \(0.736515\pi\)
\(90\) 0 0
\(91\) −26.8051 −0.294562
\(92\) 5.66149 0.0615379
\(93\) 0 0
\(94\) 57.1906i 0.608411i
\(95\) 48.0601i 0.505896i
\(96\) 0 0
\(97\) −5.77622 −0.0595486 −0.0297743 0.999557i \(-0.509479\pi\)
−0.0297743 + 0.999557i \(0.509479\pi\)
\(98\) 60.4047i 0.616374i
\(99\) 0 0
\(100\) 8.92243 0.0892243
\(101\) 118.153 1.16983 0.584915 0.811094i \(-0.301128\pi\)
0.584915 + 0.811094i \(0.301128\pi\)
\(102\) 0 0
\(103\) 95.5937i 0.928094i 0.885811 + 0.464047i \(0.153603\pi\)
−0.885811 + 0.464047i \(0.846397\pi\)
\(104\) 30.2361i 0.290732i
\(105\) 0 0
\(106\) −3.80323 −0.0358795
\(107\) −191.852 −1.79301 −0.896503 0.443037i \(-0.853901\pi\)
−0.896503 + 0.443037i \(0.853901\pi\)
\(108\) 0 0
\(109\) −80.1645 −0.735454 −0.367727 0.929934i \(-0.619864\pi\)
−0.367727 + 0.929934i \(0.619864\pi\)
\(110\) 66.9940 0.609036
\(111\) 0 0
\(112\) −10.0299 −0.0895526
\(113\) 27.4200 109.623i 0.242655 0.970113i
\(114\) 0 0
\(115\) −12.8289 −0.111555
\(116\) −16.5413 −0.142597
\(117\) 0 0
\(118\) 62.9991i 0.533891i
\(119\) 58.3804 0.490592
\(120\) 0 0
\(121\) 11.7387 0.0970139
\(122\) 81.1771i 0.665386i
\(123\) 0 0
\(124\) 72.2801 0.582904
\(125\) −133.517 −1.06814
\(126\) 0 0
\(127\) 37.0985 0.292114 0.146057 0.989276i \(-0.453342\pi\)
0.146057 + 0.989276i \(0.453342\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 68.5147i 0.527036i
\(131\) 32.0853i 0.244926i −0.992473 0.122463i \(-0.960921\pi\)
0.992473 0.122463i \(-0.0390792\pi\)
\(132\) 0 0
\(133\) 26.5910i 0.199932i
\(134\) −33.4346 −0.249512
\(135\) 0 0
\(136\) 65.8530i 0.484213i
\(137\) 123.004 0.897841 0.448921 0.893572i \(-0.351809\pi\)
0.448921 + 0.893572i \(0.351809\pi\)
\(138\) 0 0
\(139\) −111.579 −0.802725 −0.401362 0.915919i \(-0.631463\pi\)
−0.401362 + 0.915919i \(0.631463\pi\)
\(140\) 22.7276 0.162340
\(141\) 0 0
\(142\) 130.908i 0.921890i
\(143\) 111.741i 0.781409i
\(144\) 0 0
\(145\) 37.4824 0.258499
\(146\) −154.397 −1.05752
\(147\) 0 0
\(148\) 23.9076i 0.161538i
\(149\) 70.2763i 0.471653i 0.971795 + 0.235827i \(0.0757797\pi\)
−0.971795 + 0.235827i \(0.924220\pi\)
\(150\) 0 0
\(151\) 40.4940i 0.268172i −0.990970 0.134086i \(-0.957190\pi\)
0.990970 0.134086i \(-0.0428099\pi\)
\(152\) −29.9946 −0.197333
\(153\) 0 0
\(154\) −37.0668 −0.240693
\(155\) −163.786 −1.05668
\(156\) 0 0
\(157\) −275.611 −1.75548 −0.877741 0.479135i \(-0.840951\pi\)
−0.877741 + 0.479135i \(0.840951\pi\)
\(158\) −105.147 −0.665488
\(159\) 0 0
\(160\) 25.6367i 0.160229i
\(161\) 7.09802 0.0440871
\(162\) 0 0
\(163\) −261.514 −1.60438 −0.802191 0.597068i \(-0.796332\pi\)
−0.802191 + 0.597068i \(0.796332\pi\)
\(164\) 148.541i 0.905735i
\(165\) 0 0
\(166\) 122.477 0.737812
\(167\) −102.373 −0.613013 −0.306506 0.951869i \(-0.599160\pi\)
−0.306506 + 0.951869i \(0.599160\pi\)
\(168\) 0 0
\(169\) −54.7221 −0.323799
\(170\) 149.222i 0.877777i
\(171\) 0 0
\(172\) 6.96607i 0.0405004i
\(173\) 73.0612i 0.422319i −0.977452 0.211160i \(-0.932276\pi\)
0.977452 0.211160i \(-0.0677240\pi\)
\(174\) 0 0
\(175\) 11.1864 0.0639221
\(176\) 41.8113i 0.237564i
\(177\) 0 0
\(178\) 170.302i 0.956752i
\(179\) 332.549 1.85782 0.928908 0.370312i \(-0.120749\pi\)
0.928908 + 0.370312i \(0.120749\pi\)
\(180\) 0 0
\(181\) 188.226i 1.03992i 0.854189 + 0.519962i \(0.174054\pi\)
−0.854189 + 0.519962i \(0.825946\pi\)
\(182\) 37.9082i 0.208287i
\(183\) 0 0
\(184\) 8.00655i 0.0435139i
\(185\) 54.1743i 0.292834i
\(186\) 0 0
\(187\) 243.368i 1.30143i
\(188\) 80.8797 0.430211
\(189\) 0 0
\(190\) 67.9673 0.357723
\(191\) 230.515 1.20689 0.603443 0.797406i \(-0.293795\pi\)
0.603443 + 0.797406i \(0.293795\pi\)
\(192\) 0 0
\(193\) 147.626i 0.764903i −0.923976 0.382452i \(-0.875080\pi\)
0.923976 0.382452i \(-0.124920\pi\)
\(194\) 8.16880i 0.0421072i
\(195\) 0 0
\(196\) 85.4251 0.435843
\(197\) 257.345 1.30632 0.653161 0.757219i \(-0.273442\pi\)
0.653161 + 0.757219i \(0.273442\pi\)
\(198\) 0 0
\(199\) 372.393i 1.87132i −0.352898 0.935662i \(-0.614804\pi\)
0.352898 0.935662i \(-0.385196\pi\)
\(200\) 12.6182i 0.0630911i
\(201\) 0 0
\(202\) 167.093i 0.827195i
\(203\) −20.7384 −0.102160
\(204\) 0 0
\(205\) 336.591i 1.64191i
\(206\) −135.190 −0.656262
\(207\) 0 0
\(208\) 42.7603 0.205579
\(209\) −110.849 −0.530377
\(210\) 0 0
\(211\) −188.536 −0.893536 −0.446768 0.894650i \(-0.647425\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(212\) 5.37857i 0.0253706i
\(213\) 0 0
\(214\) 271.319i 1.26785i
\(215\) 15.7850i 0.0734188i
\(216\) 0 0
\(217\) 90.6202 0.417605
\(218\) 113.370i 0.520045i
\(219\) 0 0
\(220\) 94.7438i 0.430653i
\(221\) −248.893 −1.12621
\(222\) 0 0
\(223\) 11.5760i 0.0519101i 0.999663 + 0.0259551i \(0.00826268\pi\)
−0.999663 + 0.0259551i \(0.991737\pi\)
\(224\) 14.1844i 0.0633233i
\(225\) 0 0
\(226\) 155.030 + 38.7777i 0.685973 + 0.171583i
\(227\) 292.117i 1.28686i −0.765505 0.643430i \(-0.777511\pi\)
0.765505 0.643430i \(-0.222489\pi\)
\(228\) 0 0
\(229\) 142.048i 0.620297i −0.950688 0.310149i \(-0.899621\pi\)
0.950688 0.310149i \(-0.100379\pi\)
\(230\) 18.1427i 0.0788815i
\(231\) 0 0
\(232\) 23.3929i 0.100832i
\(233\) 316.029i 1.35635i 0.734902 + 0.678173i \(0.237228\pi\)
−0.734902 + 0.678173i \(0.762772\pi\)
\(234\) 0 0
\(235\) −183.272 −0.779883
\(236\) 89.0942 0.377518
\(237\) 0 0
\(238\) 82.5624i 0.346901i
\(239\) 202.335i 0.846589i −0.905992 0.423295i \(-0.860874\pi\)
0.905992 0.423295i \(-0.139126\pi\)
\(240\) 0 0
\(241\) −428.030 −1.77606 −0.888030 0.459786i \(-0.847926\pi\)
−0.888030 + 0.459786i \(0.847926\pi\)
\(242\) 16.6010i 0.0685992i
\(243\) 0 0
\(244\) 114.802 0.470499
\(245\) −193.572 −0.790091
\(246\) 0 0
\(247\) 113.365i 0.458967i
\(248\) 102.219i 0.412175i
\(249\) 0 0
\(250\) 188.822i 0.755289i
\(251\) 82.2970i 0.327876i −0.986471 0.163938i \(-0.947580\pi\)
0.986471 0.163938i \(-0.0524198\pi\)
\(252\) 0 0
\(253\) 29.5892i 0.116954i
\(254\) 52.4651i 0.206556i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 223.093i 0.868065i −0.900897 0.434032i \(-0.857090\pi\)
0.900897 0.434032i \(-0.142910\pi\)
\(258\) 0 0
\(259\) 29.9739i 0.115729i
\(260\) −96.8944 −0.372671
\(261\) 0 0
\(262\) 45.3754 0.173189
\(263\) 312.042 1.18647 0.593236 0.805028i \(-0.297850\pi\)
0.593236 + 0.805028i \(0.297850\pi\)
\(264\) 0 0
\(265\) 12.1878i 0.0459916i
\(266\) −37.6053 −0.141373
\(267\) 0 0
\(268\) 47.2836i 0.176431i
\(269\) −327.667 −1.21809 −0.609047 0.793134i \(-0.708448\pi\)
−0.609047 + 0.793134i \(0.708448\pi\)
\(270\) 0 0
\(271\) 230.322i 0.849898i −0.905217 0.424949i \(-0.860292\pi\)
0.905217 0.424949i \(-0.139708\pi\)
\(272\) −93.1302 −0.342391
\(273\) 0 0
\(274\) 173.954i 0.634870i
\(275\) 46.6322i 0.169572i
\(276\) 0 0
\(277\) −265.431 −0.958235 −0.479118 0.877751i \(-0.659043\pi\)
−0.479118 + 0.877751i \(0.659043\pi\)
\(278\) 157.796i 0.567612i
\(279\) 0 0
\(280\) 32.1417i 0.114792i
\(281\) 24.3973 0.0868232 0.0434116 0.999057i \(-0.486177\pi\)
0.0434116 + 0.999057i \(0.486177\pi\)
\(282\) 0 0
\(283\) −136.388 −0.481935 −0.240968 0.970533i \(-0.577465\pi\)
−0.240968 + 0.970533i \(0.577465\pi\)
\(284\) −185.132 −0.651875
\(285\) 0 0
\(286\) 158.026 0.552539
\(287\) 186.231i 0.648888i
\(288\) 0 0
\(289\) 253.078 0.875701
\(290\) 53.0081i 0.182787i
\(291\) 0 0
\(292\) 218.351i 0.747777i
\(293\) −174.136 −0.594322 −0.297161 0.954827i \(-0.596040\pi\)
−0.297161 + 0.954827i \(0.596040\pi\)
\(294\) 0 0
\(295\) −201.886 −0.684360
\(296\) −33.8105 −0.114225
\(297\) 0 0
\(298\) −99.3857 −0.333509
\(299\) −30.2609 −0.101207
\(300\) 0 0
\(301\) 8.73363i 0.0290154i
\(302\) 57.2671 0.189626
\(303\) 0 0
\(304\) 42.4187i 0.139535i
\(305\) −260.139 −0.852915
\(306\) 0 0
\(307\) 222.583 0.725026 0.362513 0.931979i \(-0.381919\pi\)
0.362513 + 0.931979i \(0.381919\pi\)
\(308\) 52.4203i 0.170196i
\(309\) 0 0
\(310\) 231.628i 0.747187i
\(311\) 340.171i 1.09380i −0.837199 0.546899i \(-0.815808\pi\)
0.837199 0.546899i \(-0.184192\pi\)
\(312\) 0 0
\(313\) −355.514 −1.13583 −0.567914 0.823088i \(-0.692249\pi\)
−0.567914 + 0.823088i \(0.692249\pi\)
\(314\) 389.773i 1.24131i
\(315\) 0 0
\(316\) 148.701i 0.470571i
\(317\) 170.673i 0.538402i −0.963084 0.269201i \(-0.913240\pi\)
0.963084 0.269201i \(-0.0867596\pi\)
\(318\) 0 0
\(319\) 86.4516i 0.271008i
\(320\) −36.2558 −0.113299
\(321\) 0 0
\(322\) 10.0381i 0.0311743i
\(323\) 246.904i 0.764409i
\(324\) 0 0
\(325\) −47.6907 −0.146741
\(326\) 369.837i 1.13447i
\(327\) 0 0
\(328\) 210.068 0.640452
\(329\) 101.402 0.308213
\(330\) 0 0
\(331\) 230.899 0.697579 0.348789 0.937201i \(-0.386593\pi\)
0.348789 + 0.937201i \(0.386593\pi\)
\(332\) 173.208i 0.521712i
\(333\) 0 0
\(334\) 144.777i 0.433465i
\(335\) 107.144i 0.319833i
\(336\) 0 0
\(337\) 284.567 0.844413 0.422207 0.906500i \(-0.361256\pi\)
0.422207 + 0.906500i \(0.361256\pi\)
\(338\) 77.3887i 0.228961i
\(339\) 0 0
\(340\) 211.032 0.620682
\(341\) 377.765i 1.10782i
\(342\) 0 0
\(343\) 229.967 0.670457
\(344\) 9.85152 0.0286381
\(345\) 0 0
\(346\) 103.324 0.298625
\(347\) 225.262i 0.649169i −0.945857 0.324585i \(-0.894776\pi\)
0.945857 0.324585i \(-0.105224\pi\)
\(348\) 0 0
\(349\) 230.146i 0.659445i −0.944078 0.329722i \(-0.893045\pi\)
0.944078 0.329722i \(-0.106955\pi\)
\(350\) 15.8199i 0.0451998i
\(351\) 0 0
\(352\) 59.1300 0.167983
\(353\) 116.697i 0.330586i 0.986245 + 0.165293i \(0.0528569\pi\)
−0.986245 + 0.165293i \(0.947143\pi\)
\(354\) 0 0
\(355\) 419.508 1.18171
\(356\) 240.843 0.676526
\(357\) 0 0
\(358\) 470.295i 1.31367i
\(359\) 320.214 0.891961 0.445981 0.895043i \(-0.352855\pi\)
0.445981 + 0.895043i \(0.352855\pi\)
\(360\) 0 0
\(361\) 248.541 0.688478
\(362\) −266.192 −0.735338
\(363\) 0 0
\(364\) 53.6102 0.147281
\(365\) 494.781i 1.35556i
\(366\) 0 0
\(367\) −171.409 −0.467055 −0.233527 0.972350i \(-0.575027\pi\)
−0.233527 + 0.972350i \(0.575027\pi\)
\(368\) −11.3230 −0.0307690
\(369\) 0 0
\(370\) 76.6141 0.207065
\(371\) 6.74332i 0.0181761i
\(372\) 0 0
\(373\) 78.5907i 0.210699i 0.994435 + 0.105349i \(0.0335961\pi\)
−0.994435 + 0.105349i \(0.966404\pi\)
\(374\) −344.175 −0.920253
\(375\) 0 0
\(376\) 114.381i 0.304205i
\(377\) 88.4140 0.234520
\(378\) 0 0
\(379\) 90.6148i 0.239089i 0.992829 + 0.119545i \(0.0381434\pi\)
−0.992829 + 0.119545i \(0.961857\pi\)
\(380\) 96.1203i 0.252948i
\(381\) 0 0
\(382\) 325.998i 0.853397i
\(383\) 152.480i 0.398121i −0.979987 0.199060i \(-0.936211\pi\)
0.979987 0.199060i \(-0.0637890\pi\)
\(384\) 0 0
\(385\) 118.784i 0.308529i
\(386\) 208.775 0.540868
\(387\) 0 0
\(388\) 11.5524 0.0297743
\(389\) 373.242i 0.959490i −0.877408 0.479745i \(-0.840729\pi\)
0.877408 0.479745i \(-0.159271\pi\)
\(390\) 0 0
\(391\) 65.9070 0.168560
\(392\) 120.809i 0.308187i
\(393\) 0 0
\(394\) 363.941i 0.923709i
\(395\) 336.954i 0.853047i
\(396\) 0 0
\(397\) 356.580i 0.898186i −0.893485 0.449093i \(-0.851747\pi\)
0.893485 0.449093i \(-0.148253\pi\)
\(398\) 526.644 1.32323
\(399\) 0 0
\(400\) −17.8449 −0.0446121
\(401\) 208.230i 0.519278i 0.965706 + 0.259639i \(0.0836035\pi\)
−0.965706 + 0.259639i \(0.916396\pi\)
\(402\) 0 0
\(403\) −386.340 −0.958660
\(404\) −236.306 −0.584915
\(405\) 0 0
\(406\) 29.3286i 0.0722379i
\(407\) −124.951 −0.307005
\(408\) 0 0
\(409\) 297.771i 0.728046i 0.931390 + 0.364023i \(0.118597\pi\)
−0.931390 + 0.364023i \(0.881403\pi\)
\(410\) −476.012 −1.16100
\(411\) 0 0
\(412\) 191.187i 0.464047i
\(413\) 111.701 0.270462
\(414\) 0 0
\(415\) 392.488i 0.945754i
\(416\) 60.4722i 0.145366i
\(417\) 0 0
\(418\) 156.764i 0.375033i
\(419\) −78.5814 −0.187545 −0.0937725 0.995594i \(-0.529893\pi\)
−0.0937725 + 0.995594i \(0.529893\pi\)
\(420\) 0 0
\(421\) −141.234 −0.335472 −0.167736 0.985832i \(-0.553646\pi\)
−0.167736 + 0.985832i \(0.553646\pi\)
\(422\) 266.630i 0.631825i
\(423\) 0 0
\(424\) 7.60645 0.0179397
\(425\) 103.868 0.244396
\(426\) 0 0
\(427\) 143.931 0.337075
\(428\) 383.703 0.896503
\(429\) 0 0
\(430\) −22.3234 −0.0519149
\(431\) 361.441 0.838610 0.419305 0.907845i \(-0.362274\pi\)
0.419305 + 0.907845i \(0.362274\pi\)
\(432\) 0 0
\(433\) 722.880i 1.66947i 0.550653 + 0.834734i \(0.314379\pi\)
−0.550653 + 0.834734i \(0.685621\pi\)
\(434\) 128.156i 0.295291i
\(435\) 0 0
\(436\) 160.329 0.367727
\(437\) 30.0191i 0.0686937i
\(438\) 0 0
\(439\) 191.501 0.436220 0.218110 0.975924i \(-0.430011\pi\)
0.218110 + 0.975924i \(0.430011\pi\)
\(440\) −133.988 −0.304518
\(441\) 0 0
\(442\) 351.987i 0.796351i
\(443\) 767.622i 1.73278i 0.499367 + 0.866391i \(0.333566\pi\)
−0.499367 + 0.866391i \(0.666434\pi\)
\(444\) 0 0
\(445\) −545.748 −1.22640
\(446\) −16.3709 −0.0367060
\(447\) 0 0
\(448\) 20.0598 0.0447763
\(449\) 233.838 0.520798 0.260399 0.965501i \(-0.416146\pi\)
0.260399 + 0.965501i \(0.416146\pi\)
\(450\) 0 0
\(451\) 776.334 1.72136
\(452\) −54.8400 + 219.245i −0.121327 + 0.485056i
\(453\) 0 0
\(454\) 413.116 0.909947
\(455\) −121.480 −0.266989
\(456\) 0 0
\(457\) 331.622i 0.725649i 0.931858 + 0.362824i \(0.118188\pi\)
−0.931858 + 0.362824i \(0.881812\pi\)
\(458\) 200.886 0.438617
\(459\) 0 0
\(460\) 25.6577 0.0557776
\(461\) 315.892i 0.685232i −0.939475 0.342616i \(-0.888687\pi\)
0.939475 0.342616i \(-0.111313\pi\)
\(462\) 0 0
\(463\) 362.231 0.782355 0.391178 0.920315i \(-0.372068\pi\)
0.391178 + 0.920315i \(0.372068\pi\)
\(464\) 33.0826 0.0712987
\(465\) 0 0
\(466\) −446.932 −0.959082
\(467\) 114.462i 0.245101i 0.992462 + 0.122550i \(0.0391073\pi\)
−0.992462 + 0.122550i \(0.960893\pi\)
\(468\) 0 0
\(469\) 59.2812i 0.126399i
\(470\) 259.186i 0.551460i
\(471\) 0 0
\(472\) 125.998i 0.266945i
\(473\) 36.4075 0.0769715
\(474\) 0 0
\(475\) 47.3097i 0.0995995i
\(476\) −116.761 −0.245296
\(477\) 0 0
\(478\) 286.145 0.598629
\(479\) 625.572 1.30600 0.652998 0.757359i \(-0.273511\pi\)
0.652998 + 0.757359i \(0.273511\pi\)
\(480\) 0 0
\(481\) 127.787i 0.265670i
\(482\) 605.326i 1.25586i
\(483\) 0 0
\(484\) −23.4774 −0.0485069
\(485\) −26.1777 −0.0539746
\(486\) 0 0
\(487\) 123.163i 0.252901i 0.991973 + 0.126451i \(0.0403586\pi\)
−0.991973 + 0.126451i \(0.959641\pi\)
\(488\) 162.354i 0.332693i
\(489\) 0 0
\(490\) 273.753i 0.558679i
\(491\) −460.379 −0.937636 −0.468818 0.883295i \(-0.655320\pi\)
−0.468818 + 0.883295i \(0.655320\pi\)
\(492\) 0 0
\(493\) −192.562 −0.390592
\(494\) 160.322 0.324539
\(495\) 0 0
\(496\) −144.560 −0.291452
\(497\) −232.107 −0.467017
\(498\) 0 0
\(499\) 218.951i 0.438780i −0.975637 0.219390i \(-0.929593\pi\)
0.975637 0.219390i \(-0.0704068\pi\)
\(500\) 267.035 0.534070
\(501\) 0 0
\(502\) 116.386 0.231844
\(503\) 746.918i 1.48493i 0.669887 + 0.742463i \(0.266343\pi\)
−0.669887 + 0.742463i \(0.733657\pi\)
\(504\) 0 0
\(505\) 535.466 1.06033
\(506\) −41.8455 −0.0826986
\(507\) 0 0
\(508\) −74.1969 −0.146057
\(509\) 850.423i 1.67077i −0.549663 0.835386i \(-0.685244\pi\)
0.549663 0.835386i \(-0.314756\pi\)
\(510\) 0 0
\(511\) 273.755i 0.535724i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 315.501 0.613815
\(515\) 433.228i 0.841220i
\(516\) 0 0
\(517\) 422.710i 0.817622i
\(518\) −42.3894 −0.0818329
\(519\) 0 0
\(520\) 137.029i 0.263518i
\(521\) 324.251i 0.622364i 0.950350 + 0.311182i \(0.100725\pi\)
−0.950350 + 0.311182i \(0.899275\pi\)
\(522\) 0 0
\(523\) 576.554i 1.10240i 0.834374 + 0.551199i \(0.185830\pi\)
−0.834374 + 0.551199i \(0.814170\pi\)
\(524\) 64.1705i 0.122463i
\(525\) 0 0
\(526\) 441.294i 0.838963i
\(527\) 841.432 1.59665
\(528\) 0 0
\(529\) −520.987 −0.984852
\(530\) −17.2361 −0.0325210
\(531\) 0 0
\(532\) 53.1819i 0.0999660i
\(533\) 793.956i 1.48960i
\(534\) 0 0
\(535\) −869.467 −1.62517
\(536\) 66.8691 0.124756
\(537\) 0 0
\(538\) 463.392i 0.861323i
\(539\) 446.467i 0.828324i
\(540\) 0 0
\(541\) 322.630i 0.596359i 0.954510 + 0.298180i \(0.0963795\pi\)
−0.954510 + 0.298180i \(0.903621\pi\)
\(542\) 325.725 0.600969
\(543\) 0 0
\(544\) 131.706i 0.242107i
\(545\) −363.303 −0.666612
\(546\) 0 0
\(547\) −269.141 −0.492031 −0.246015 0.969266i \(-0.579121\pi\)
−0.246015 + 0.969266i \(0.579121\pi\)
\(548\) −246.009 −0.448921
\(549\) 0 0
\(550\) −65.9479 −0.119905
\(551\) 87.7077i 0.159179i
\(552\) 0 0
\(553\) 186.431i 0.337127i
\(554\) 375.376i 0.677575i
\(555\) 0 0
\(556\) 223.158 0.401362
\(557\) 477.847i 0.857894i −0.903330 0.428947i \(-0.858885\pi\)
0.903330 0.428947i \(-0.141115\pi\)
\(558\) 0 0
\(559\) 37.2340i 0.0666082i
\(560\) −45.4552 −0.0811701
\(561\) 0 0
\(562\) 34.5030i 0.0613933i
\(563\) 291.541i 0.517834i −0.965900 0.258917i \(-0.916634\pi\)
0.965900 0.258917i \(-0.0833657\pi\)
\(564\) 0 0
\(565\) 124.267 496.807i 0.219941 0.879305i
\(566\) 192.881i 0.340780i
\(567\) 0 0
\(568\) 261.817i 0.460945i
\(569\) 340.585i 0.598568i 0.954164 + 0.299284i \(0.0967479\pi\)
−0.954164 + 0.299284i \(0.903252\pi\)
\(570\) 0 0
\(571\) 516.530i 0.904606i −0.891864 0.452303i \(-0.850603\pi\)
0.891864 0.452303i \(-0.149397\pi\)
\(572\) 223.483i 0.390704i
\(573\) 0 0
\(574\) 263.370 0.458833
\(575\) 12.6286 0.0219627
\(576\) 0 0
\(577\) 14.9577i 0.0259232i 0.999916 + 0.0129616i \(0.00412593\pi\)
−0.999916 + 0.0129616i \(0.995874\pi\)
\(578\) 357.906i 0.619214i
\(579\) 0 0
\(580\) −74.9648 −0.129250
\(581\) 217.158i 0.373766i
\(582\) 0 0
\(583\) 28.1106 0.0482172
\(584\) 308.795 0.528758
\(585\) 0 0
\(586\) 246.266i 0.420249i
\(587\) 578.114i 0.984861i 0.870352 + 0.492431i \(0.163892\pi\)
−0.870352 + 0.492431i \(0.836108\pi\)
\(588\) 0 0
\(589\) 383.254i 0.650685i
\(590\) 285.510i 0.483916i
\(591\) 0 0
\(592\) 47.8152i 0.0807690i
\(593\) 1183.03i 1.99499i 0.0707239 + 0.997496i \(0.477469\pi\)
−0.0707239 + 0.997496i \(0.522531\pi\)
\(594\) 0 0
\(595\) 264.579 0.444670
\(596\) 140.553i 0.235827i
\(597\) 0 0
\(598\) 42.7954i 0.0715642i
\(599\) −785.388 −1.31116 −0.655582 0.755124i \(-0.727577\pi\)
−0.655582 + 0.755124i \(0.727577\pi\)
\(600\) 0 0
\(601\) 346.207 0.576051 0.288026 0.957623i \(-0.407001\pi\)
0.288026 + 0.957623i \(0.407001\pi\)
\(602\) 12.3512 0.0205170
\(603\) 0 0
\(604\) 80.9880i 0.134086i
\(605\) 53.1994 0.0879329
\(606\) 0 0
\(607\) 640.284i 1.05483i −0.849607 0.527417i \(-0.823161\pi\)
0.849607 0.527417i \(-0.176839\pi\)
\(608\) 59.9891 0.0986664
\(609\) 0 0
\(610\) 367.892i 0.603102i
\(611\) −432.306 −0.707538
\(612\) 0 0
\(613\) 55.2509i 0.0901320i −0.998984 0.0450660i \(-0.985650\pi\)
0.998984 0.0450660i \(-0.0143498\pi\)
\(614\) 314.780i 0.512671i
\(615\) 0 0
\(616\) 74.1335 0.120347
\(617\) 92.6432i 0.150151i −0.997178 0.0750755i \(-0.976080\pi\)
0.997178 0.0750755i \(-0.0239198\pi\)
\(618\) 0 0
\(619\) 843.835i 1.36322i 0.731714 + 0.681612i \(0.238721\pi\)
−0.731714 + 0.681612i \(0.761279\pi\)
\(620\) 327.571 0.528341
\(621\) 0 0
\(622\) 481.075 0.773432
\(623\) 301.954 0.484678
\(624\) 0 0
\(625\) −493.567 −0.789708
\(626\) 502.773i 0.803152i
\(627\) 0 0
\(628\) 551.222 0.877741
\(629\) 278.315i 0.442473i
\(630\) 0 0
\(631\) 506.192i 0.802206i 0.916033 + 0.401103i \(0.131373\pi\)
−0.916033 + 0.401103i \(0.868627\pi\)
\(632\) 210.294 0.332744
\(633\) 0 0
\(634\) 241.369 0.380708
\(635\) 168.129 0.264770
\(636\) 0 0
\(637\) −456.601 −0.716799
\(638\) 122.261 0.191632
\(639\) 0 0
\(640\) 51.2734i 0.0801147i
\(641\) 1233.98 1.92508 0.962541 0.271136i \(-0.0873992\pi\)
0.962541 + 0.271136i \(0.0873992\pi\)
\(642\) 0 0
\(643\) 830.851i 1.29215i 0.763275 + 0.646074i \(0.223590\pi\)
−0.763275 + 0.646074i \(0.776410\pi\)
\(644\) −14.1960 −0.0220435
\(645\) 0 0
\(646\) −349.175 −0.540519
\(647\) 804.573i 1.24354i −0.783198 0.621772i \(-0.786413\pi\)
0.783198 0.621772i \(-0.213587\pi\)
\(648\) 0 0
\(649\) 465.643i 0.717477i
\(650\) 67.4449i 0.103761i
\(651\) 0 0
\(652\) 523.028 0.802191
\(653\) 516.423i 0.790847i 0.918499 + 0.395424i \(0.129402\pi\)
−0.918499 + 0.395424i \(0.870598\pi\)
\(654\) 0 0
\(655\) 145.410i 0.221999i
\(656\) 297.081i 0.452868i
\(657\) 0 0
\(658\) 143.404i 0.217939i
\(659\) −604.207 −0.916854 −0.458427 0.888732i \(-0.651587\pi\)
−0.458427 + 0.888732i \(0.651587\pi\)
\(660\) 0 0
\(661\) 515.621i 0.780062i 0.920802 + 0.390031i \(0.127536\pi\)
−0.920802 + 0.390031i \(0.872464\pi\)
\(662\) 326.540i 0.493263i
\(663\) 0 0
\(664\) −244.954 −0.368906
\(665\) 120.510i 0.181217i
\(666\) 0 0
\(667\) −23.4121 −0.0351006
\(668\) 204.746 0.306506
\(669\) 0 0
\(670\) −151.525 −0.226156
\(671\) 600.001i 0.894189i
\(672\) 0 0
\(673\) 313.504i 0.465831i −0.972497 0.232915i \(-0.925173\pi\)
0.972497 0.232915i \(-0.0748265\pi\)
\(674\) 402.439i 0.597090i
\(675\) 0 0
\(676\) 109.444 0.161900
\(677\) 90.9903i 0.134402i −0.997739 0.0672011i \(-0.978593\pi\)
0.997739 0.0672011i \(-0.0214069\pi\)
\(678\) 0 0
\(679\) 14.4837 0.0213309
\(680\) 298.444i 0.438889i
\(681\) 0 0
\(682\) −534.240 −0.783344
\(683\) −1208.48 −1.76937 −0.884683 0.466193i \(-0.845625\pi\)
−0.884683 + 0.466193i \(0.845625\pi\)
\(684\) 0 0
\(685\) 557.452 0.813799
\(686\) 325.222i 0.474085i
\(687\) 0 0
\(688\) 13.9321i 0.0202502i
\(689\) 28.7487i 0.0417253i
\(690\) 0 0
\(691\) 293.476 0.424712 0.212356 0.977192i \(-0.431886\pi\)
0.212356 + 0.977192i \(0.431886\pi\)
\(692\) 146.122i 0.211160i
\(693\) 0 0
\(694\) 318.568 0.459032
\(695\) −505.672 −0.727586
\(696\) 0 0
\(697\) 1729.20i 2.48092i
\(698\) 325.476 0.466298
\(699\) 0 0
\(700\) −22.3728 −0.0319611
\(701\) 765.869 1.09254 0.546269 0.837610i \(-0.316048\pi\)
0.546269 + 0.837610i \(0.316048\pi\)
\(702\) 0 0
\(703\) −126.766 −0.180322
\(704\) 83.6225i 0.118782i
\(705\) 0 0
\(706\) −165.034 −0.233759
\(707\) −296.265 −0.419046
\(708\) 0 0
\(709\) −956.994 −1.34978 −0.674890 0.737918i \(-0.735809\pi\)
−0.674890 + 0.737918i \(0.735809\pi\)
\(710\) 593.273i 0.835596i
\(711\) 0 0
\(712\) 340.604i 0.478376i
\(713\) 102.303 0.143483
\(714\) 0 0
\(715\) 506.409i 0.708265i
\(716\) −665.098 −0.928908
\(717\) 0 0
\(718\) 452.851i 0.630712i
\(719\) 747.120i 1.03911i 0.854437 + 0.519555i \(0.173902\pi\)
−0.854437 + 0.519555i \(0.826098\pi\)
\(720\) 0 0
\(721\) 239.699i 0.332453i
\(722\) 351.490i 0.486828i
\(723\) 0 0
\(724\) 376.453i 0.519962i
\(725\) −36.8971 −0.0508926
\(726\) 0 0
\(727\) −503.837 −0.693036 −0.346518 0.938043i \(-0.612636\pi\)
−0.346518 + 0.938043i \(0.612636\pi\)
\(728\) 75.8163i 0.104143i
\(729\) 0 0
\(730\) −699.725 −0.958528
\(731\) 81.0940i 0.110936i
\(732\) 0 0
\(733\) 1311.04i 1.78859i −0.447480 0.894294i \(-0.647678\pi\)
0.447480 0.894294i \(-0.352322\pi\)
\(734\) 242.409i 0.330258i
\(735\) 0 0
\(736\) 16.0131i 0.0217569i
\(737\) 247.123 0.335310
\(738\) 0 0
\(739\) 864.763 1.17018 0.585090 0.810968i \(-0.301059\pi\)
0.585090 + 0.810968i \(0.301059\pi\)
\(740\) 108.349i 0.146417i
\(741\) 0 0
\(742\) 9.53649 0.0128524
\(743\) −280.253 −0.377191 −0.188595 0.982055i \(-0.560393\pi\)
−0.188595 + 0.982055i \(0.560393\pi\)
\(744\) 0 0
\(745\) 318.490i 0.427504i
\(746\) −111.144 −0.148987
\(747\) 0 0
\(748\) 486.737i 0.650717i
\(749\) 481.063 0.642274
\(750\) 0 0
\(751\) 854.087i 1.13727i 0.822591 + 0.568633i \(0.192527\pi\)
−0.822591 + 0.568633i \(0.807473\pi\)
\(752\) −161.759 −0.215106
\(753\) 0 0
\(754\) 125.036i 0.165831i
\(755\) 183.518i 0.243070i
\(756\) 0 0
\(757\) 1313.66i 1.73534i 0.497136 + 0.867672i \(0.334385\pi\)
−0.497136 + 0.867672i \(0.665615\pi\)
\(758\) −128.149 −0.169062
\(759\) 0 0
\(760\) −135.935 −0.178861
\(761\) 1040.57i 1.36737i 0.729778 + 0.683684i \(0.239623\pi\)
−0.729778 + 0.683684i \(0.760377\pi\)
\(762\) 0 0
\(763\) 201.010 0.263447
\(764\) −461.030 −0.603443
\(765\) 0 0
\(766\) 215.640 0.281514
\(767\) −476.212 −0.620877
\(768\) 0 0
\(769\) −264.999 −0.344602 −0.172301 0.985044i \(-0.555120\pi\)
−0.172301 + 0.985044i \(0.555120\pi\)
\(770\) −167.986 −0.218163
\(771\) 0 0
\(772\) 295.253i 0.382452i
\(773\) 617.295i 0.798571i 0.916827 + 0.399286i \(0.130742\pi\)
−0.916827 + 0.399286i \(0.869258\pi\)
\(774\) 0 0
\(775\) 161.228 0.208037
\(776\) 16.3376i 0.0210536i
\(777\) 0 0
\(778\) 527.844 0.678462
\(779\) 787.613 1.01106
\(780\) 0 0
\(781\) 967.577i 1.23890i
\(782\) 93.2065i 0.119190i
\(783\) 0 0
\(784\) −170.850 −0.217921
\(785\) −1249.06 −1.59116
\(786\) 0 0
\(787\) 172.487 0.219170 0.109585 0.993977i \(-0.465048\pi\)
0.109585 + 0.993977i \(0.465048\pi\)
\(788\) −514.691 −0.653161
\(789\) 0 0
\(790\) −476.524 −0.603195
\(791\) −68.7549 + 274.876i −0.0869215 + 0.347505i
\(792\) 0 0
\(793\) −613.620 −0.773796
\(794\) 504.280 0.635113
\(795\) 0 0
\(796\) 744.787i 0.935662i
\(797\) 118.504 0.148687 0.0743436 0.997233i \(-0.476314\pi\)
0.0743436 + 0.997233i \(0.476314\pi\)
\(798\) 0 0
\(799\) 941.544 1.17840
\(800\) 25.2364i 0.0315455i
\(801\) 0 0
\(802\) −294.482 −0.367185
\(803\) 1141.19 1.42116
\(804\) 0 0
\(805\) 32.1680 0.0399603
\(806\) 546.367i 0.677875i
\(807\) 0 0
\(808\) 334.187i 0.413598i
\(809\) 489.657i 0.605262i 0.953108 + 0.302631i \(0.0978650\pi\)
−0.953108 + 0.302631i \(0.902135\pi\)
\(810\) 0 0
\(811\) 1279.07i 1.57716i −0.614935 0.788578i \(-0.710818\pi\)
0.614935 0.788578i \(-0.289182\pi\)
\(812\) 41.4769 0.0510799
\(813\) 0 0
\(814\) 176.707i 0.217085i
\(815\) −1185.18 −1.45420
\(816\) 0 0
\(817\) 36.9365 0.0452099
\(818\) −421.111 −0.514806
\(819\) 0 0
\(820\) 673.182i 0.820954i
\(821\) 661.166i 0.805318i 0.915350 + 0.402659i \(0.131914\pi\)
−0.915350 + 0.402659i \(0.868086\pi\)
\(822\) 0 0
\(823\) 553.375 0.672388 0.336194 0.941793i \(-0.390860\pi\)
0.336194 + 0.941793i \(0.390860\pi\)
\(824\) 270.380 0.328131
\(825\) 0 0
\(826\) 157.969i 0.191245i
\(827\) 905.937i 1.09545i −0.836658 0.547725i \(-0.815494\pi\)
0.836658 0.547725i \(-0.184506\pi\)
\(828\) 0 0
\(829\) 784.873i 0.946771i −0.880855 0.473386i \(-0.843032\pi\)
0.880855 0.473386i \(-0.156968\pi\)
\(830\) 555.062 0.668749
\(831\) 0 0
\(832\) −85.5207 −0.102789
\(833\) 994.458 1.19383
\(834\) 0 0
\(835\) −463.952 −0.555631
\(836\) 221.698 0.265188
\(837\) 0 0
\(838\) 111.131i 0.132614i
\(839\) 441.773 0.526547 0.263273 0.964721i \(-0.415198\pi\)
0.263273 + 0.964721i \(0.415198\pi\)
\(840\) 0 0
\(841\) −772.596 −0.918664
\(842\) 199.735i 0.237214i
\(843\) 0 0
\(844\) 377.072 0.446768
\(845\) −247.999 −0.293490
\(846\) 0 0
\(847\) −29.4344 −0.0347514
\(848\) 10.7571i 0.0126853i
\(849\) 0 0
\(850\) 146.892i 0.172814i
\(851\) 33.8382i 0.0397628i
\(852\) 0 0
\(853\) 361.609 0.423926 0.211963 0.977278i \(-0.432014\pi\)
0.211963 + 0.977278i \(0.432014\pi\)
\(854\) 203.549i 0.238348i
\(855\) 0 0
\(856\) 542.638i 0.633923i
\(857\) −1168.59 −1.36359 −0.681794 0.731545i \(-0.738800\pi\)
−0.681794 + 0.731545i \(0.738800\pi\)
\(858\) 0 0
\(859\) 1038.31i 1.20874i −0.796704 0.604369i \(-0.793425\pi\)
0.796704 0.604369i \(-0.206575\pi\)
\(860\) 31.5701i 0.0367094i
\(861\) 0 0
\(862\) 511.155i 0.592987i
\(863\) 1004.91i 1.16444i −0.813032 0.582219i \(-0.802185\pi\)
0.813032 0.582219i \(-0.197815\pi\)
\(864\) 0 0
\(865\) 331.112i 0.382788i
\(866\) −1022.31 −1.18049
\(867\) 0 0
\(868\) −181.240 −0.208802
\(869\) 777.170 0.894326
\(870\) 0 0
\(871\) 252.733i 0.290164i
\(872\) 226.739i 0.260022i
\(873\) 0 0
\(874\) −42.4535 −0.0485738
\(875\) 334.792 0.382619
\(876\) 0 0
\(877\) 1544.85i 1.76152i 0.473563 + 0.880760i \(0.342968\pi\)
−0.473563 + 0.880760i \(0.657032\pi\)
\(878\) 270.823i 0.308454i
\(879\) 0 0
\(880\) 189.488i 0.215327i
\(881\) 1444.64 1.63978 0.819888 0.572524i \(-0.194036\pi\)
0.819888 + 0.572524i \(0.194036\pi\)
\(882\) 0 0
\(883\) 207.853i 0.235394i −0.993050 0.117697i \(-0.962449\pi\)
0.993050 0.117697i \(-0.0375512\pi\)
\(884\) 497.785 0.563105
\(885\) 0 0
\(886\) −1085.58 −1.22526
\(887\) 1688.88 1.90404 0.952020 0.306037i \(-0.0990030\pi\)
0.952020 + 0.306037i \(0.0990030\pi\)
\(888\) 0 0
\(889\) −93.0234 −0.104638
\(890\) 771.804i 0.867195i
\(891\) 0 0
\(892\) 23.1519i 0.0259551i
\(893\) 428.852i 0.480237i
\(894\) 0 0
\(895\) 1507.10 1.68391
\(896\) 28.3688i 0.0316616i
\(897\) 0 0
\(898\) 330.697i 0.368260i
\(899\) −298.902 −0.332482
\(900\) 0 0
\(901\) 62.6135i 0.0694933i
\(902\) 1097.90i 1.21719i
\(903\) 0 0
\(904\) −310.060 77.5554i −0.342987 0.0857914i
\(905\) 853.037i 0.942582i
\(906\) 0 0
\(907\) 833.634i 0.919112i −0.888149 0.459556i \(-0.848009\pi\)
0.888149 0.459556i \(-0.151991\pi\)
\(908\) 584.234i 0.643430i
\(909\) 0 0
\(910\) 171.799i 0.188790i
\(911\) 451.928i 0.496079i −0.968750 0.248039i \(-0.920214\pi\)
0.968750 0.248039i \(-0.0797863\pi\)
\(912\) 0 0
\(913\) −905.258 −0.991520
\(914\) −468.984 −0.513111
\(915\) 0 0
\(916\) 284.096i 0.310149i
\(917\) 80.4530i 0.0877350i
\(918\) 0 0
\(919\) 337.761 0.367531 0.183766 0.982970i \(-0.441171\pi\)
0.183766 + 0.982970i \(0.441171\pi\)
\(920\) 36.2855i 0.0394408i
\(921\) 0 0
\(922\) 446.739 0.484532
\(923\) 989.540 1.07209
\(924\) 0 0
\(925\) 53.3285i 0.0576524i
\(926\) 512.271i 0.553209i
\(927\) 0 0
\(928\) 46.7859i 0.0504158i
\(929\) 1269.43i 1.36645i −0.730207 0.683226i \(-0.760576\pi\)
0.730207 0.683226i \(-0.239424\pi\)
\(930\) 0 0
\(931\) 452.953i 0.486523i
\(932\) 632.057i 0.678173i
\(933\) 0 0
\(934\) −161.874 −0.173312
\(935\) 1102.94i 1.17961i
\(936\) 0 0
\(937\) 127.691i 0.136277i −0.997676 0.0681383i \(-0.978294\pi\)
0.997676 0.0681383i \(-0.0217059\pi\)
\(938\) 83.8363 0.0893777
\(939\) 0 0
\(940\) 366.545 0.389941
\(941\) −84.4296 −0.0897233 −0.0448616 0.998993i \(-0.514285\pi\)
−0.0448616 + 0.998993i \(0.514285\pi\)
\(942\) 0 0
\(943\) 210.240i 0.222948i
\(944\) −178.188 −0.188759
\(945\) 0 0
\(946\) 51.4880i 0.0544271i
\(947\) −255.008 −0.269280 −0.134640 0.990895i \(-0.542988\pi\)
−0.134640 + 0.990895i \(0.542988\pi\)
\(948\) 0 0
\(949\) 1167.10i 1.22982i
\(950\) −66.9061 −0.0704275
\(951\) 0 0
\(952\) 165.125i 0.173450i
\(953\) 1535.63i 1.61136i 0.592350 + 0.805681i \(0.298200\pi\)
−0.592350 + 0.805681i \(0.701800\pi\)
\(954\) 0 0
\(955\) 1044.69 1.09391
\(956\) 404.670i 0.423295i
\(957\) 0 0
\(958\) 884.693i 0.923479i
\(959\) −308.430 −0.321616
\(960\) 0 0
\(961\) 345.102 0.359107
\(962\) 180.718 0.187857
\(963\) 0 0
\(964\) 856.061 0.888030
\(965\) 669.039i 0.693304i
\(966\) 0 0
\(967\) 914.969 0.946193 0.473097 0.881011i \(-0.343136\pi\)
0.473097 + 0.881011i \(0.343136\pi\)
\(968\) 33.2020i 0.0342996i
\(969\) 0 0
\(970\) 37.0208i 0.0381658i
\(971\) −281.015 −0.289407 −0.144704 0.989475i \(-0.546223\pi\)
−0.144704 + 0.989475i \(0.546223\pi\)
\(972\) 0 0
\(973\) 279.781 0.287545
\(974\) −174.179 −0.178828
\(975\) 0 0
\(976\) −229.603 −0.235249
\(977\) 523.821 0.536153 0.268076 0.963398i \(-0.413612\pi\)
0.268076 + 0.963398i \(0.413612\pi\)
\(978\) 0 0
\(979\) 1258.74i 1.28575i
\(980\) 387.145 0.395045
\(981\) 0 0
\(982\) 651.075i 0.663009i
\(983\) −394.148 −0.400964 −0.200482 0.979697i \(-0.564251\pi\)
−0.200482 + 0.979697i \(0.564251\pi\)
\(984\) 0 0
\(985\) 1166.28 1.18404
\(986\) 272.324i 0.276190i
\(987\) 0 0
\(988\) 226.730i 0.229484i
\(989\) 9.85959i 0.00996925i
\(990\) 0 0
\(991\) 201.396 0.203225 0.101613 0.994824i \(-0.467600\pi\)
0.101613 + 0.994824i \(0.467600\pi\)
\(992\) 204.439i 0.206088i
\(993\) 0 0
\(994\) 328.249i 0.330231i
\(995\) 1687.68i 1.69616i
\(996\) 0 0
\(997\) 1462.47i 1.46687i −0.679760 0.733435i \(-0.737916\pi\)
0.679760 0.733435i \(-0.262084\pi\)
\(998\) 309.644 0.310265
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.3.d.a.2033.30 yes 36
3.2 odd 2 inner 2034.3.d.a.2033.21 36
113.112 even 2 inner 2034.3.d.a.2033.22 yes 36
339.338 odd 2 inner 2034.3.d.a.2033.29 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2034.3.d.a.2033.21 36 3.2 odd 2 inner
2034.3.d.a.2033.22 yes 36 113.112 even 2 inner
2034.3.d.a.2033.29 yes 36 339.338 odd 2 inner
2034.3.d.a.2033.30 yes 36 1.1 even 1 trivial