Properties

Label 2034.3.d.a.2033.20
Level $2034$
Weight $3$
Character 2034.2033
Analytic conductor $55.422$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,3,Mod(2033,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.2033"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2034.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.4224857709\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2033.20
Character \(\chi\) \(=\) 2034.2033
Dual form 2034.3.d.a.2033.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +4.78233 q^{5} -4.28693 q^{7} -2.82843i q^{8} +6.76323i q^{10} +2.61042i q^{11} -21.6969 q^{13} -6.06264i q^{14} +4.00000 q^{16} +16.9553 q^{17} -14.8684i q^{19} -9.56466 q^{20} -3.69169 q^{22} +33.3382 q^{23} -2.12933 q^{25} -30.6841i q^{26} +8.57387 q^{28} +6.75614 q^{29} +34.8616 q^{31} +5.65685i q^{32} +23.9784i q^{34} -20.5015 q^{35} -7.05401i q^{37} +21.0271 q^{38} -13.5265i q^{40} +59.9148i q^{41} +23.0449i q^{43} -5.22083i q^{44} +47.1473i q^{46} -9.91720 q^{47} -30.6222 q^{49} -3.01132i q^{50} +43.3938 q^{52} -19.5523i q^{53} +12.4839i q^{55} +12.1253i q^{56} +9.55462i q^{58} -4.01614 q^{59} +42.7166 q^{61} +49.3017i q^{62} -8.00000 q^{64} -103.762 q^{65} +123.748i q^{67} -33.9105 q^{68} -28.9935i q^{70} +61.3106 q^{71} -35.4491i q^{73} +9.97587 q^{74} +29.7368i q^{76} -11.1907i q^{77} +92.5692i q^{79} +19.1293 q^{80} -84.7324 q^{82} -27.2279i q^{83} +81.0857 q^{85} -32.5904 q^{86} +7.38338 q^{88} +133.262 q^{89} +93.0132 q^{91} -66.6763 q^{92} -14.0250i q^{94} -71.1055i q^{95} +164.696 q^{97} -43.3063i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} - 8 q^{7} + 144 q^{16} + 36 q^{25} + 16 q^{28} + 64 q^{31} + 108 q^{49} - 80 q^{61} - 288 q^{64} + 248 q^{82} - 164 q^{85} + 516 q^{91} - 420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 4.78233 0.956466 0.478233 0.878233i \(-0.341277\pi\)
0.478233 + 0.878233i \(0.341277\pi\)
\(6\) 0 0
\(7\) −4.28693 −0.612419 −0.306210 0.951964i \(-0.599061\pi\)
−0.306210 + 0.951964i \(0.599061\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 6.76323i 0.676323i
\(11\) 2.61042i 0.237311i 0.992936 + 0.118655i \(0.0378584\pi\)
−0.992936 + 0.118655i \(0.962142\pi\)
\(12\) 0 0
\(13\) −21.6969 −1.66899 −0.834496 0.551014i \(-0.814241\pi\)
−0.834496 + 0.551014i \(0.814241\pi\)
\(14\) 6.06264i 0.433046i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 16.9553 0.997369 0.498684 0.866784i \(-0.333817\pi\)
0.498684 + 0.866784i \(0.333817\pi\)
\(18\) 0 0
\(19\) 14.8684i 0.782547i −0.920275 0.391273i \(-0.872035\pi\)
0.920275 0.391273i \(-0.127965\pi\)
\(20\) −9.56466 −0.478233
\(21\) 0 0
\(22\) −3.69169 −0.167804
\(23\) 33.3382 1.44949 0.724743 0.689020i \(-0.241959\pi\)
0.724743 + 0.689020i \(0.241959\pi\)
\(24\) 0 0
\(25\) −2.12933 −0.0851730
\(26\) 30.6841i 1.18016i
\(27\) 0 0
\(28\) 8.57387 0.306210
\(29\) 6.75614 0.232970 0.116485 0.993192i \(-0.462837\pi\)
0.116485 + 0.993192i \(0.462837\pi\)
\(30\) 0 0
\(31\) 34.8616 1.12457 0.562284 0.826944i \(-0.309923\pi\)
0.562284 + 0.826944i \(0.309923\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 23.9784i 0.705246i
\(35\) −20.5015 −0.585758
\(36\) 0 0
\(37\) 7.05401i 0.190649i −0.995446 0.0953244i \(-0.969611\pi\)
0.995446 0.0953244i \(-0.0303888\pi\)
\(38\) 21.0271 0.553344
\(39\) 0 0
\(40\) 13.5265i 0.338162i
\(41\) 59.9148i 1.46134i 0.682732 + 0.730669i \(0.260792\pi\)
−0.682732 + 0.730669i \(0.739208\pi\)
\(42\) 0 0
\(43\) 23.0449i 0.535928i 0.963429 + 0.267964i \(0.0863508\pi\)
−0.963429 + 0.267964i \(0.913649\pi\)
\(44\) 5.22083i 0.118655i
\(45\) 0 0
\(46\) 47.1473i 1.02494i
\(47\) −9.91720 −0.211004 −0.105502 0.994419i \(-0.533645\pi\)
−0.105502 + 0.994419i \(0.533645\pi\)
\(48\) 0 0
\(49\) −30.6222 −0.624943
\(50\) 3.01132i 0.0602264i
\(51\) 0 0
\(52\) 43.3938 0.834496
\(53\) 19.5523i 0.368911i −0.982841 0.184456i \(-0.940948\pi\)
0.982841 0.184456i \(-0.0590522\pi\)
\(54\) 0 0
\(55\) 12.4839i 0.226980i
\(56\) 12.1253i 0.216523i
\(57\) 0 0
\(58\) 9.55462i 0.164735i
\(59\) −4.01614 −0.0680701 −0.0340351 0.999421i \(-0.510836\pi\)
−0.0340351 + 0.999421i \(0.510836\pi\)
\(60\) 0 0
\(61\) 42.7166 0.700272 0.350136 0.936699i \(-0.386135\pi\)
0.350136 + 0.936699i \(0.386135\pi\)
\(62\) 49.3017i 0.795189i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −103.762 −1.59633
\(66\) 0 0
\(67\) 123.748i 1.84698i 0.383621 + 0.923491i \(0.374677\pi\)
−0.383621 + 0.923491i \(0.625323\pi\)
\(68\) −33.9105 −0.498684
\(69\) 0 0
\(70\) 28.9935i 0.414193i
\(71\) 61.3106 0.863529 0.431765 0.901986i \(-0.357891\pi\)
0.431765 + 0.901986i \(0.357891\pi\)
\(72\) 0 0
\(73\) 35.4491i 0.485604i −0.970076 0.242802i \(-0.921933\pi\)
0.970076 0.242802i \(-0.0780666\pi\)
\(74\) 9.97587 0.134809
\(75\) 0 0
\(76\) 29.7368i 0.391273i
\(77\) 11.1907i 0.145334i
\(78\) 0 0
\(79\) 92.5692i 1.17176i 0.810397 + 0.585881i \(0.199252\pi\)
−0.810397 + 0.585881i \(0.800748\pi\)
\(80\) 19.1293 0.239116
\(81\) 0 0
\(82\) −84.7324 −1.03332
\(83\) 27.2279i 0.328047i −0.986456 0.164023i \(-0.947553\pi\)
0.986456 0.164023i \(-0.0524473\pi\)
\(84\) 0 0
\(85\) 81.0857 0.953949
\(86\) −32.5904 −0.378958
\(87\) 0 0
\(88\) 7.38338 0.0839020
\(89\) 133.262 1.49733 0.748664 0.662950i \(-0.230696\pi\)
0.748664 + 0.662950i \(0.230696\pi\)
\(90\) 0 0
\(91\) 93.0132 1.02212
\(92\) −66.6763 −0.724743
\(93\) 0 0
\(94\) 14.0250i 0.149203i
\(95\) 71.1055i 0.748479i
\(96\) 0 0
\(97\) 164.696 1.69790 0.848950 0.528472i \(-0.177235\pi\)
0.848950 + 0.528472i \(0.177235\pi\)
\(98\) 43.3063i 0.441901i
\(99\) 0 0
\(100\) 4.25865 0.0425865
\(101\) −80.7404 −0.799410 −0.399705 0.916644i \(-0.630887\pi\)
−0.399705 + 0.916644i \(0.630887\pi\)
\(102\) 0 0
\(103\) 17.6842i 0.171691i −0.996308 0.0858455i \(-0.972641\pi\)
0.996308 0.0858455i \(-0.0273591\pi\)
\(104\) 61.3681i 0.590078i
\(105\) 0 0
\(106\) 27.6511 0.260860
\(107\) −37.9739 −0.354897 −0.177448 0.984130i \(-0.556784\pi\)
−0.177448 + 0.984130i \(0.556784\pi\)
\(108\) 0 0
\(109\) 2.55319 0.0234237 0.0117119 0.999931i \(-0.496272\pi\)
0.0117119 + 0.999931i \(0.496272\pi\)
\(110\) −17.6549 −0.160499
\(111\) 0 0
\(112\) −17.1477 −0.153105
\(113\) 64.9644 + 92.4588i 0.574906 + 0.818219i
\(114\) 0 0
\(115\) 159.434 1.38638
\(116\) −13.5123 −0.116485
\(117\) 0 0
\(118\) 5.67968i 0.0481329i
\(119\) −72.6861 −0.610808
\(120\) 0 0
\(121\) 114.186 0.943684
\(122\) 60.4104i 0.495167i
\(123\) 0 0
\(124\) −69.7232 −0.562284
\(125\) −129.741 −1.03793
\(126\) 0 0
\(127\) 46.9636 0.369792 0.184896 0.982758i \(-0.440805\pi\)
0.184896 + 0.982758i \(0.440805\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 146.741i 1.12878i
\(131\) 185.810i 1.41839i 0.705010 + 0.709197i \(0.250942\pi\)
−0.705010 + 0.709197i \(0.749058\pi\)
\(132\) 0 0
\(133\) 63.7398i 0.479246i
\(134\) −175.006 −1.30601
\(135\) 0 0
\(136\) 47.9567i 0.352623i
\(137\) 168.520 1.23007 0.615037 0.788498i \(-0.289141\pi\)
0.615037 + 0.788498i \(0.289141\pi\)
\(138\) 0 0
\(139\) 0.332327 0.00239084 0.00119542 0.999999i \(-0.499619\pi\)
0.00119542 + 0.999999i \(0.499619\pi\)
\(140\) 41.0031 0.292879
\(141\) 0 0
\(142\) 86.7062i 0.610607i
\(143\) 56.6380i 0.396070i
\(144\) 0 0
\(145\) 32.3101 0.222828
\(146\) 50.1326 0.343374
\(147\) 0 0
\(148\) 14.1080i 0.0953244i
\(149\) 204.457i 1.37220i 0.727509 + 0.686098i \(0.240678\pi\)
−0.727509 + 0.686098i \(0.759322\pi\)
\(150\) 0 0
\(151\) 43.3642i 0.287180i −0.989637 0.143590i \(-0.954135\pi\)
0.989637 0.143590i \(-0.0458647\pi\)
\(152\) −42.0541 −0.276672
\(153\) 0 0
\(154\) 15.8260 0.102766
\(155\) 166.720 1.07561
\(156\) 0 0
\(157\) 45.3556 0.288889 0.144444 0.989513i \(-0.453860\pi\)
0.144444 + 0.989513i \(0.453860\pi\)
\(158\) −130.913 −0.828561
\(159\) 0 0
\(160\) 27.0529i 0.169081i
\(161\) −142.918 −0.887692
\(162\) 0 0
\(163\) −17.7282 −0.108762 −0.0543808 0.998520i \(-0.517319\pi\)
−0.0543808 + 0.998520i \(0.517319\pi\)
\(164\) 119.830i 0.730669i
\(165\) 0 0
\(166\) 38.5060 0.231964
\(167\) 44.6081 0.267115 0.133557 0.991041i \(-0.457360\pi\)
0.133557 + 0.991041i \(0.457360\pi\)
\(168\) 0 0
\(169\) 301.755 1.78554
\(170\) 114.672i 0.674544i
\(171\) 0 0
\(172\) 46.0898i 0.267964i
\(173\) 23.5228i 0.135970i −0.997686 0.0679850i \(-0.978343\pi\)
0.997686 0.0679850i \(-0.0216570\pi\)
\(174\) 0 0
\(175\) 9.12828 0.0521616
\(176\) 10.4417i 0.0593277i
\(177\) 0 0
\(178\) 188.461i 1.05877i
\(179\) −298.526 −1.66774 −0.833871 0.551959i \(-0.813881\pi\)
−0.833871 + 0.551959i \(0.813881\pi\)
\(180\) 0 0
\(181\) 149.275i 0.824723i 0.911020 + 0.412362i \(0.135296\pi\)
−0.911020 + 0.412362i \(0.864704\pi\)
\(182\) 131.540i 0.722750i
\(183\) 0 0
\(184\) 94.2946i 0.512470i
\(185\) 33.7346i 0.182349i
\(186\) 0 0
\(187\) 44.2603i 0.236686i
\(188\) 19.8344 0.105502
\(189\) 0 0
\(190\) 100.558 0.529255
\(191\) −351.745 −1.84159 −0.920797 0.390042i \(-0.872461\pi\)
−0.920797 + 0.390042i \(0.872461\pi\)
\(192\) 0 0
\(193\) 165.323i 0.856597i 0.903637 + 0.428299i \(0.140887\pi\)
−0.903637 + 0.428299i \(0.859113\pi\)
\(194\) 232.916i 1.20060i
\(195\) 0 0
\(196\) 61.2444 0.312471
\(197\) 189.756 0.963229 0.481614 0.876383i \(-0.340051\pi\)
0.481614 + 0.876383i \(0.340051\pi\)
\(198\) 0 0
\(199\) 20.0124i 0.100565i −0.998735 0.0502823i \(-0.983988\pi\)
0.998735 0.0502823i \(-0.0160121\pi\)
\(200\) 6.02264i 0.0301132i
\(201\) 0 0
\(202\) 114.184i 0.565268i
\(203\) −28.9631 −0.142675
\(204\) 0 0
\(205\) 286.532i 1.39772i
\(206\) 25.0092 0.121404
\(207\) 0 0
\(208\) −86.7876 −0.417248
\(209\) 38.8127 0.185707
\(210\) 0 0
\(211\) 57.7762 0.273821 0.136910 0.990583i \(-0.456283\pi\)
0.136910 + 0.990583i \(0.456283\pi\)
\(212\) 39.1046i 0.184456i
\(213\) 0 0
\(214\) 53.7033i 0.250950i
\(215\) 110.208i 0.512596i
\(216\) 0 0
\(217\) −149.449 −0.688707
\(218\) 3.61075i 0.0165631i
\(219\) 0 0
\(220\) 24.9678i 0.113490i
\(221\) −367.877 −1.66460
\(222\) 0 0
\(223\) 94.7696i 0.424976i 0.977164 + 0.212488i \(0.0681566\pi\)
−0.977164 + 0.212488i \(0.931843\pi\)
\(224\) 24.2506i 0.108261i
\(225\) 0 0
\(226\) −130.756 + 91.8735i −0.578569 + 0.406520i
\(227\) 116.202i 0.511902i 0.966690 + 0.255951i \(0.0823885\pi\)
−0.966690 + 0.255951i \(0.917611\pi\)
\(228\) 0 0
\(229\) 250.845i 1.09539i −0.836676 0.547697i \(-0.815504\pi\)
0.836676 0.547697i \(-0.184496\pi\)
\(230\) 225.474i 0.980321i
\(231\) 0 0
\(232\) 19.1092i 0.0823674i
\(233\) 201.921i 0.866613i 0.901247 + 0.433307i \(0.142653\pi\)
−0.901247 + 0.433307i \(0.857347\pi\)
\(234\) 0 0
\(235\) −47.4273 −0.201818
\(236\) 8.03228 0.0340351
\(237\) 0 0
\(238\) 102.794i 0.431906i
\(239\) 250.281i 1.04720i −0.851964 0.523600i \(-0.824589\pi\)
0.851964 0.523600i \(-0.175411\pi\)
\(240\) 0 0
\(241\) 145.425 0.603423 0.301712 0.953399i \(-0.402442\pi\)
0.301712 + 0.953399i \(0.402442\pi\)
\(242\) 161.483i 0.667285i
\(243\) 0 0
\(244\) −85.4332 −0.350136
\(245\) −146.445 −0.597737
\(246\) 0 0
\(247\) 322.598i 1.30606i
\(248\) 98.6035i 0.397595i
\(249\) 0 0
\(250\) 183.482i 0.733928i
\(251\) 151.472i 0.603475i 0.953391 + 0.301737i \(0.0975666\pi\)
−0.953391 + 0.301737i \(0.902433\pi\)
\(252\) 0 0
\(253\) 87.0265i 0.343978i
\(254\) 66.4166i 0.261483i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 29.8406i 0.116111i −0.998313 0.0580557i \(-0.981510\pi\)
0.998313 0.0580557i \(-0.0184901\pi\)
\(258\) 0 0
\(259\) 30.2401i 0.116757i
\(260\) 207.523 0.798167
\(261\) 0 0
\(262\) −262.774 −1.00296
\(263\) −44.0729 −0.167578 −0.0837888 0.996484i \(-0.526702\pi\)
−0.0837888 + 0.996484i \(0.526702\pi\)
\(264\) 0 0
\(265\) 93.5055i 0.352851i
\(266\) −90.1416 −0.338878
\(267\) 0 0
\(268\) 247.496i 0.923491i
\(269\) 410.011 1.52420 0.762101 0.647458i \(-0.224168\pi\)
0.762101 + 0.647458i \(0.224168\pi\)
\(270\) 0 0
\(271\) 124.888i 0.460840i 0.973091 + 0.230420i \(0.0740101\pi\)
−0.973091 + 0.230420i \(0.925990\pi\)
\(272\) 67.8211 0.249342
\(273\) 0 0
\(274\) 238.324i 0.869794i
\(275\) 5.55843i 0.0202125i
\(276\) 0 0
\(277\) −37.3166 −0.134717 −0.0673584 0.997729i \(-0.521457\pi\)
−0.0673584 + 0.997729i \(0.521457\pi\)
\(278\) 0.469981i 0.00169058i
\(279\) 0 0
\(280\) 57.9871i 0.207097i
\(281\) 173.254 0.616562 0.308281 0.951295i \(-0.400246\pi\)
0.308281 + 0.951295i \(0.400246\pi\)
\(282\) 0 0
\(283\) −458.213 −1.61913 −0.809563 0.587033i \(-0.800296\pi\)
−0.809563 + 0.587033i \(0.800296\pi\)
\(284\) −122.621 −0.431765
\(285\) 0 0
\(286\) 80.0982 0.280064
\(287\) 256.851i 0.894951i
\(288\) 0 0
\(289\) −1.51878 −0.00525528
\(290\) 45.6933i 0.157563i
\(291\) 0 0
\(292\) 70.8982i 0.242802i
\(293\) 399.154 1.36230 0.681151 0.732143i \(-0.261480\pi\)
0.681151 + 0.732143i \(0.261480\pi\)
\(294\) 0 0
\(295\) −19.2065 −0.0651068
\(296\) −19.9517 −0.0674045
\(297\) 0 0
\(298\) −289.146 −0.970289
\(299\) −723.335 −2.41918
\(300\) 0 0
\(301\) 98.7919i 0.328212i
\(302\) 61.3263 0.203067
\(303\) 0 0
\(304\) 59.4735i 0.195637i
\(305\) 204.285 0.669786
\(306\) 0 0
\(307\) −301.988 −0.983675 −0.491838 0.870687i \(-0.663675\pi\)
−0.491838 + 0.870687i \(0.663675\pi\)
\(308\) 22.3814i 0.0726668i
\(309\) 0 0
\(310\) 235.777i 0.760572i
\(311\) 161.873i 0.520494i 0.965542 + 0.260247i \(0.0838039\pi\)
−0.965542 + 0.260247i \(0.916196\pi\)
\(312\) 0 0
\(313\) 400.548 1.27971 0.639853 0.768497i \(-0.278995\pi\)
0.639853 + 0.768497i \(0.278995\pi\)
\(314\) 64.1425i 0.204275i
\(315\) 0 0
\(316\) 185.138i 0.585881i
\(317\) 192.010i 0.605711i −0.953037 0.302855i \(-0.902060\pi\)
0.953037 0.302855i \(-0.0979399\pi\)
\(318\) 0 0
\(319\) 17.6363i 0.0552863i
\(320\) −38.2586 −0.119558
\(321\) 0 0
\(322\) 202.117i 0.627693i
\(323\) 252.097i 0.780488i
\(324\) 0 0
\(325\) 46.1998 0.142153
\(326\) 25.0714i 0.0769061i
\(327\) 0 0
\(328\) 169.465 0.516661
\(329\) 42.5144 0.129223
\(330\) 0 0
\(331\) −333.921 −1.00882 −0.504412 0.863463i \(-0.668291\pi\)
−0.504412 + 0.863463i \(0.668291\pi\)
\(332\) 54.4558i 0.164023i
\(333\) 0 0
\(334\) 63.0854i 0.188879i
\(335\) 591.803i 1.76657i
\(336\) 0 0
\(337\) 35.9196 0.106586 0.0532931 0.998579i \(-0.483028\pi\)
0.0532931 + 0.998579i \(0.483028\pi\)
\(338\) 426.747i 1.26256i
\(339\) 0 0
\(340\) −162.171 −0.476975
\(341\) 91.0033i 0.266872i
\(342\) 0 0
\(343\) 341.335 0.995146
\(344\) 65.1808 0.189479
\(345\) 0 0
\(346\) 33.2663 0.0961453
\(347\) 9.25373i 0.0266678i −0.999911 0.0133339i \(-0.995756\pi\)
0.999911 0.0133339i \(-0.00424444\pi\)
\(348\) 0 0
\(349\) 56.7279i 0.162544i 0.996692 + 0.0812721i \(0.0258983\pi\)
−0.996692 + 0.0812721i \(0.974102\pi\)
\(350\) 12.9093i 0.0368838i
\(351\) 0 0
\(352\) −14.7668 −0.0419510
\(353\) 552.577i 1.56537i −0.622416 0.782687i \(-0.713849\pi\)
0.622416 0.782687i \(-0.286151\pi\)
\(354\) 0 0
\(355\) 293.207 0.825936
\(356\) −266.524 −0.748664
\(357\) 0 0
\(358\) 422.179i 1.17927i
\(359\) 302.972 0.843932 0.421966 0.906612i \(-0.361340\pi\)
0.421966 + 0.906612i \(0.361340\pi\)
\(360\) 0 0
\(361\) 139.931 0.387621
\(362\) −211.107 −0.583167
\(363\) 0 0
\(364\) −186.026 −0.511061
\(365\) 169.529i 0.464464i
\(366\) 0 0
\(367\) 534.252 1.45573 0.727864 0.685721i \(-0.240513\pi\)
0.727864 + 0.685721i \(0.240513\pi\)
\(368\) 133.353 0.362371
\(369\) 0 0
\(370\) 47.7079 0.128940
\(371\) 83.8193i 0.225928i
\(372\) 0 0
\(373\) 574.967i 1.54147i 0.637158 + 0.770734i \(0.280110\pi\)
−0.637158 + 0.770734i \(0.719890\pi\)
\(374\) −62.5936 −0.167362
\(375\) 0 0
\(376\) 28.0501i 0.0746013i
\(377\) −146.587 −0.388826
\(378\) 0 0
\(379\) 655.400i 1.72929i −0.502385 0.864644i \(-0.667544\pi\)
0.502385 0.864644i \(-0.332456\pi\)
\(380\) 142.211i 0.374240i
\(381\) 0 0
\(382\) 497.442i 1.30220i
\(383\) 418.637i 1.09305i −0.837444 0.546524i \(-0.815951\pi\)
0.837444 0.546524i \(-0.184049\pi\)
\(384\) 0 0
\(385\) 53.5175i 0.139007i
\(386\) −233.802 −0.605706
\(387\) 0 0
\(388\) −329.393 −0.848950
\(389\) 98.2947i 0.252686i 0.991987 + 0.126343i \(0.0403239\pi\)
−0.991987 + 0.126343i \(0.959676\pi\)
\(390\) 0 0
\(391\) 565.258 1.44567
\(392\) 86.6127i 0.220951i
\(393\) 0 0
\(394\) 268.356i 0.681105i
\(395\) 442.697i 1.12075i
\(396\) 0 0
\(397\) 588.597i 1.48261i 0.671168 + 0.741306i \(0.265793\pi\)
−0.671168 + 0.741306i \(0.734207\pi\)
\(398\) 28.3018 0.0711099
\(399\) 0 0
\(400\) −8.51730 −0.0212933
\(401\) 655.042i 1.63352i 0.576977 + 0.816760i \(0.304232\pi\)
−0.576977 + 0.816760i \(0.695768\pi\)
\(402\) 0 0
\(403\) −756.389 −1.87689
\(404\) 161.481 0.399705
\(405\) 0 0
\(406\) 40.9600i 0.100887i
\(407\) 18.4139 0.0452430
\(408\) 0 0
\(409\) 613.209i 1.49929i 0.661841 + 0.749644i \(0.269775\pi\)
−0.661841 + 0.749644i \(0.730225\pi\)
\(410\) −405.218 −0.988337
\(411\) 0 0
\(412\) 35.3683i 0.0858455i
\(413\) 17.2169 0.0416875
\(414\) 0 0
\(415\) 130.213i 0.313766i
\(416\) 122.736i 0.295039i
\(417\) 0 0
\(418\) 54.8894i 0.131314i
\(419\) −368.494 −0.879461 −0.439731 0.898130i \(-0.644926\pi\)
−0.439731 + 0.898130i \(0.644926\pi\)
\(420\) 0 0
\(421\) −116.678 −0.277144 −0.138572 0.990352i \(-0.544251\pi\)
−0.138572 + 0.990352i \(0.544251\pi\)
\(422\) 81.7078i 0.193620i
\(423\) 0 0
\(424\) −55.3022 −0.130430
\(425\) −36.1033 −0.0849489
\(426\) 0 0
\(427\) −183.123 −0.428860
\(428\) 75.9479 0.177448
\(429\) 0 0
\(430\) −155.858 −0.362460
\(431\) 248.188 0.575841 0.287921 0.957654i \(-0.407036\pi\)
0.287921 + 0.957654i \(0.407036\pi\)
\(432\) 0 0
\(433\) 381.341i 0.880695i −0.897827 0.440348i \(-0.854855\pi\)
0.897827 0.440348i \(-0.145145\pi\)
\(434\) 211.353i 0.486989i
\(435\) 0 0
\(436\) −5.10637 −0.0117119
\(437\) 495.685i 1.13429i
\(438\) 0 0
\(439\) −706.752 −1.60991 −0.804956 0.593334i \(-0.797811\pi\)
−0.804956 + 0.593334i \(0.797811\pi\)
\(440\) 35.3097 0.0802494
\(441\) 0 0
\(442\) 520.256i 1.17705i
\(443\) 425.622i 0.960771i 0.877057 + 0.480386i \(0.159503\pi\)
−0.877057 + 0.480386i \(0.840497\pi\)
\(444\) 0 0
\(445\) 637.304 1.43214
\(446\) −134.024 −0.300503
\(447\) 0 0
\(448\) 34.2955 0.0765524
\(449\) −247.871 −0.552051 −0.276025 0.961150i \(-0.589017\pi\)
−0.276025 + 0.961150i \(0.589017\pi\)
\(450\) 0 0
\(451\) −156.403 −0.346791
\(452\) −129.929 184.918i −0.287453 0.409110i
\(453\) 0 0
\(454\) −164.334 −0.361969
\(455\) 444.820 0.977625
\(456\) 0 0
\(457\) 803.585i 1.75839i −0.476460 0.879196i \(-0.658080\pi\)
0.476460 0.879196i \(-0.341920\pi\)
\(458\) 354.749 0.774561
\(459\) 0 0
\(460\) −318.868 −0.693192
\(461\) 226.687i 0.491729i −0.969304 0.245865i \(-0.920928\pi\)
0.969304 0.245865i \(-0.0790718\pi\)
\(462\) 0 0
\(463\) 101.395 0.218997 0.109498 0.993987i \(-0.465076\pi\)
0.109498 + 0.993987i \(0.465076\pi\)
\(464\) 27.0246 0.0582426
\(465\) 0 0
\(466\) −285.559 −0.612788
\(467\) 719.470i 1.54062i −0.637669 0.770310i \(-0.720101\pi\)
0.637669 0.770310i \(-0.279899\pi\)
\(468\) 0 0
\(469\) 530.498i 1.13113i
\(470\) 67.0723i 0.142707i
\(471\) 0 0
\(472\) 11.3594i 0.0240664i
\(473\) −60.1568 −0.127181
\(474\) 0 0
\(475\) 31.6596i 0.0666519i
\(476\) 145.372 0.305404
\(477\) 0 0
\(478\) 353.951 0.740482
\(479\) −303.865 −0.634374 −0.317187 0.948363i \(-0.602738\pi\)
−0.317187 + 0.948363i \(0.602738\pi\)
\(480\) 0 0
\(481\) 153.050i 0.318191i
\(482\) 205.662i 0.426685i
\(483\) 0 0
\(484\) −228.371 −0.471842
\(485\) 787.632 1.62398
\(486\) 0 0
\(487\) 612.269i 1.25723i −0.777718 0.628613i \(-0.783623\pi\)
0.777718 0.628613i \(-0.216377\pi\)
\(488\) 120.821i 0.247584i
\(489\) 0 0
\(490\) 207.105i 0.422664i
\(491\) 325.265 0.662454 0.331227 0.943551i \(-0.392537\pi\)
0.331227 + 0.943551i \(0.392537\pi\)
\(492\) 0 0
\(493\) 114.552 0.232357
\(494\) −456.222 −0.923527
\(495\) 0 0
\(496\) 139.446 0.281142
\(497\) −262.834 −0.528842
\(498\) 0 0
\(499\) 374.732i 0.750966i −0.926829 0.375483i \(-0.877477\pi\)
0.926829 0.375483i \(-0.122523\pi\)
\(500\) 259.483 0.518965
\(501\) 0 0
\(502\) −214.214 −0.426721
\(503\) 184.219i 0.366240i −0.983091 0.183120i \(-0.941380\pi\)
0.983091 0.183120i \(-0.0586197\pi\)
\(504\) 0 0
\(505\) −386.127 −0.764608
\(506\) −123.074 −0.243229
\(507\) 0 0
\(508\) −93.9272 −0.184896
\(509\) 248.911i 0.489019i 0.969647 + 0.244510i \(0.0786270\pi\)
−0.969647 + 0.244510i \(0.921373\pi\)
\(510\) 0 0
\(511\) 151.968i 0.297393i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) 42.2010 0.0821031
\(515\) 84.5715i 0.164217i
\(516\) 0 0
\(517\) 25.8880i 0.0500736i
\(518\) −42.7659 −0.0825596
\(519\) 0 0
\(520\) 293.482i 0.564389i
\(521\) 603.346i 1.15805i −0.815308 0.579027i \(-0.803433\pi\)
0.815308 0.579027i \(-0.196567\pi\)
\(522\) 0 0
\(523\) 140.214i 0.268095i −0.990975 0.134048i \(-0.957202\pi\)
0.990975 0.134048i \(-0.0427975\pi\)
\(524\) 371.619i 0.709197i
\(525\) 0 0
\(526\) 62.3285i 0.118495i
\(527\) 591.088 1.12161
\(528\) 0 0
\(529\) 582.433 1.10101
\(530\) 132.237 0.249503
\(531\) 0 0
\(532\) 127.480i 0.239623i
\(533\) 1299.97i 2.43896i
\(534\) 0 0
\(535\) −181.604 −0.339446
\(536\) 350.012 0.653007
\(537\) 0 0
\(538\) 579.843i 1.07777i
\(539\) 79.9367i 0.148306i
\(540\) 0 0
\(541\) 712.625i 1.31724i 0.752477 + 0.658618i \(0.228859\pi\)
−0.752477 + 0.658618i \(0.771141\pi\)
\(542\) −176.618 −0.325863
\(543\) 0 0
\(544\) 95.9135i 0.176312i
\(545\) 12.2102 0.0224040
\(546\) 0 0
\(547\) −334.655 −0.611800 −0.305900 0.952064i \(-0.598957\pi\)
−0.305900 + 0.952064i \(0.598957\pi\)
\(548\) −337.040 −0.615037
\(549\) 0 0
\(550\) 7.86081 0.0142924
\(551\) 100.453i 0.182310i
\(552\) 0 0
\(553\) 396.838i 0.717610i
\(554\) 52.7736i 0.0952592i
\(555\) 0 0
\(556\) −0.664653 −0.00119542
\(557\) 337.054i 0.605125i −0.953130 0.302562i \(-0.902158\pi\)
0.953130 0.302562i \(-0.0978421\pi\)
\(558\) 0 0
\(559\) 500.003i 0.894459i
\(560\) −82.0061 −0.146439
\(561\) 0 0
\(562\) 245.018i 0.435975i
\(563\) 234.004i 0.415638i 0.978167 + 0.207819i \(0.0666365\pi\)
−0.978167 + 0.207819i \(0.933364\pi\)
\(564\) 0 0
\(565\) 310.681 + 442.168i 0.549878 + 0.782599i
\(566\) 648.011i 1.14490i
\(567\) 0 0
\(568\) 173.412i 0.305304i
\(569\) 651.311i 1.14466i −0.820024 0.572329i \(-0.806040\pi\)
0.820024 0.572329i \(-0.193960\pi\)
\(570\) 0 0
\(571\) 727.882i 1.27475i −0.770554 0.637374i \(-0.780020\pi\)
0.770554 0.637374i \(-0.219980\pi\)
\(572\) 113.276i 0.198035i
\(573\) 0 0
\(574\) 363.242 0.632826
\(575\) −70.9878 −0.123457
\(576\) 0 0
\(577\) 41.1833i 0.0713748i −0.999363 0.0356874i \(-0.988638\pi\)
0.999363 0.0356874i \(-0.0113621\pi\)
\(578\) 2.14788i 0.00371605i
\(579\) 0 0
\(580\) −64.6202 −0.111414
\(581\) 116.724i 0.200902i
\(582\) 0 0
\(583\) 51.0396 0.0875465
\(584\) −100.265 −0.171687
\(585\) 0 0
\(586\) 564.490i 0.963293i
\(587\) 81.1730i 0.138285i 0.997607 + 0.0691423i \(0.0220262\pi\)
−0.997607 + 0.0691423i \(0.977974\pi\)
\(588\) 0 0
\(589\) 518.336i 0.880027i
\(590\) 27.1621i 0.0460374i
\(591\) 0 0
\(592\) 28.2160i 0.0476622i
\(593\) 77.3160i 0.130381i 0.997873 + 0.0651906i \(0.0207655\pi\)
−0.997873 + 0.0651906i \(0.979234\pi\)
\(594\) 0 0
\(595\) −347.609 −0.584217
\(596\) 408.914i 0.686098i
\(597\) 0 0
\(598\) 1022.95i 1.71062i
\(599\) −209.698 −0.350080 −0.175040 0.984561i \(-0.556005\pi\)
−0.175040 + 0.984561i \(0.556005\pi\)
\(600\) 0 0
\(601\) 123.967 0.206268 0.103134 0.994667i \(-0.467113\pi\)
0.103134 + 0.994667i \(0.467113\pi\)
\(602\) 139.713 0.232081
\(603\) 0 0
\(604\) 86.7284i 0.143590i
\(605\) 546.074 0.902601
\(606\) 0 0
\(607\) 1044.75i 1.72117i 0.509309 + 0.860584i \(0.329901\pi\)
−0.509309 + 0.860584i \(0.670099\pi\)
\(608\) 84.1083 0.138336
\(609\) 0 0
\(610\) 288.902i 0.473610i
\(611\) 215.172 0.352164
\(612\) 0 0
\(613\) 728.098i 1.18776i −0.804553 0.593881i \(-0.797595\pi\)
0.804553 0.593881i \(-0.202405\pi\)
\(614\) 427.076i 0.695563i
\(615\) 0 0
\(616\) −31.6520 −0.0513832
\(617\) 324.372i 0.525724i −0.964833 0.262862i \(-0.915334\pi\)
0.964833 0.262862i \(-0.0846664\pi\)
\(618\) 0 0
\(619\) 215.105i 0.347503i 0.984790 + 0.173752i \(0.0555890\pi\)
−0.984790 + 0.173752i \(0.944411\pi\)
\(620\) −333.439 −0.537805
\(621\) 0 0
\(622\) −228.924 −0.368045
\(623\) −571.286 −0.916992
\(624\) 0 0
\(625\) −567.233 −0.907573
\(626\) 566.460i 0.904889i
\(627\) 0 0
\(628\) −90.7111 −0.144444
\(629\) 119.603i 0.190147i
\(630\) 0 0
\(631\) 869.843i 1.37851i 0.724517 + 0.689257i \(0.242063\pi\)
−0.724517 + 0.689257i \(0.757937\pi\)
\(632\) 261.825 0.414281
\(633\) 0 0
\(634\) 271.544 0.428302
\(635\) 224.595 0.353694
\(636\) 0 0
\(637\) 664.407 1.04302
\(638\) −24.9415 −0.0390933
\(639\) 0 0
\(640\) 54.1059i 0.0845404i
\(641\) 1217.38 1.89919 0.949596 0.313478i \(-0.101494\pi\)
0.949596 + 0.313478i \(0.101494\pi\)
\(642\) 0 0
\(643\) 27.9082i 0.0434031i −0.999764 0.0217015i \(-0.993092\pi\)
0.999764 0.0217015i \(-0.00690836\pi\)
\(644\) 285.837 0.443846
\(645\) 0 0
\(646\) 356.520 0.551888
\(647\) 368.570i 0.569661i −0.958578 0.284830i \(-0.908063\pi\)
0.958578 0.284830i \(-0.0919372\pi\)
\(648\) 0 0
\(649\) 10.4838i 0.0161538i
\(650\) 65.3364i 0.100517i
\(651\) 0 0
\(652\) 35.4563 0.0543808
\(653\) 413.673i 0.633496i 0.948510 + 0.316748i \(0.102591\pi\)
−0.948510 + 0.316748i \(0.897409\pi\)
\(654\) 0 0
\(655\) 888.603i 1.35665i
\(656\) 239.659i 0.365334i
\(657\) 0 0
\(658\) 60.1244i 0.0913745i
\(659\) 235.713 0.357683 0.178842 0.983878i \(-0.442765\pi\)
0.178842 + 0.983878i \(0.442765\pi\)
\(660\) 0 0
\(661\) 353.474i 0.534756i 0.963592 + 0.267378i \(0.0861572\pi\)
−0.963592 + 0.267378i \(0.913843\pi\)
\(662\) 472.235i 0.713346i
\(663\) 0 0
\(664\) −77.0121 −0.115982
\(665\) 304.825i 0.458383i
\(666\) 0 0
\(667\) 225.237 0.337687
\(668\) −89.2163 −0.133557
\(669\) 0 0
\(670\) −836.935 −1.24916
\(671\) 111.508i 0.166182i
\(672\) 0 0
\(673\) 583.249i 0.866640i −0.901240 0.433320i \(-0.857342\pi\)
0.901240 0.433320i \(-0.142658\pi\)
\(674\) 50.7979i 0.0753679i
\(675\) 0 0
\(676\) −603.511 −0.892768
\(677\) 688.358i 1.01678i 0.861128 + 0.508389i \(0.169759\pi\)
−0.861128 + 0.508389i \(0.830241\pi\)
\(678\) 0 0
\(679\) −706.042 −1.03983
\(680\) 229.345i 0.337272i
\(681\) 0 0
\(682\) −128.698 −0.188707
\(683\) 841.455 1.23200 0.616000 0.787746i \(-0.288752\pi\)
0.616000 + 0.787746i \(0.288752\pi\)
\(684\) 0 0
\(685\) 805.919 1.17652
\(686\) 482.721i 0.703674i
\(687\) 0 0
\(688\) 92.1796i 0.133982i
\(689\) 424.224i 0.615710i
\(690\) 0 0
\(691\) 910.864 1.31818 0.659091 0.752063i \(-0.270941\pi\)
0.659091 + 0.752063i \(0.270941\pi\)
\(692\) 47.0456i 0.0679850i
\(693\) 0 0
\(694\) 13.0867 0.0188570
\(695\) 1.58930 0.00228676
\(696\) 0 0
\(697\) 1015.87i 1.45749i
\(698\) −80.2254 −0.114936
\(699\) 0 0
\(700\) −18.2566 −0.0260808
\(701\) 435.611 0.621413 0.310707 0.950506i \(-0.399434\pi\)
0.310707 + 0.950506i \(0.399434\pi\)
\(702\) 0 0
\(703\) −104.882 −0.149192
\(704\) 20.8833i 0.0296638i
\(705\) 0 0
\(706\) 781.462 1.10689
\(707\) 346.129 0.489574
\(708\) 0 0
\(709\) 206.833 0.291725 0.145862 0.989305i \(-0.453404\pi\)
0.145862 + 0.989305i \(0.453404\pi\)
\(710\) 414.658i 0.584025i
\(711\) 0 0
\(712\) 376.922i 0.529385i
\(713\) 1162.22 1.63004
\(714\) 0 0
\(715\) 270.861i 0.378827i
\(716\) 597.052 0.833871
\(717\) 0 0
\(718\) 428.467i 0.596750i
\(719\) 1143.77i 1.59079i −0.606095 0.795393i \(-0.707265\pi\)
0.606095 0.795393i \(-0.292735\pi\)
\(720\) 0 0
\(721\) 75.8109i 0.105147i
\(722\) 197.893i 0.274089i
\(723\) 0 0
\(724\) 298.550i 0.412362i
\(725\) −14.3860 −0.0198428
\(726\) 0 0
\(727\) 1210.10 1.66451 0.832255 0.554392i \(-0.187049\pi\)
0.832255 + 0.554392i \(0.187049\pi\)
\(728\) 263.081i 0.361375i
\(729\) 0 0
\(730\) 239.751 0.328426
\(731\) 390.732i 0.534518i
\(732\) 0 0
\(733\) 583.236i 0.795683i 0.917454 + 0.397842i \(0.130241\pi\)
−0.917454 + 0.397842i \(0.869759\pi\)
\(734\) 755.547i 1.02936i
\(735\) 0 0
\(736\) 188.589i 0.256235i
\(737\) −323.033 −0.438308
\(738\) 0 0
\(739\) −1031.13 −1.39530 −0.697652 0.716437i \(-0.745772\pi\)
−0.697652 + 0.716437i \(0.745772\pi\)
\(740\) 67.4692i 0.0911746i
\(741\) 0 0
\(742\) −118.538 −0.159755
\(743\) −1067.07 −1.43616 −0.718081 0.695960i \(-0.754979\pi\)
−0.718081 + 0.695960i \(0.754979\pi\)
\(744\) 0 0
\(745\) 977.782i 1.31246i
\(746\) −813.127 −1.08998
\(747\) 0 0
\(748\) 88.5207i 0.118343i
\(749\) 162.792 0.217345
\(750\) 0 0
\(751\) 797.207i 1.06153i 0.847520 + 0.530763i \(0.178095\pi\)
−0.847520 + 0.530763i \(0.821905\pi\)
\(752\) −39.6688 −0.0527511
\(753\) 0 0
\(754\) 207.306i 0.274941i
\(755\) 207.382i 0.274678i
\(756\) 0 0
\(757\) 331.601i 0.438047i −0.975720 0.219023i \(-0.929713\pi\)
0.975720 0.219023i \(-0.0702871\pi\)
\(758\) 926.876 1.22279
\(759\) 0 0
\(760\) −201.117 −0.264627
\(761\) 857.953i 1.12740i −0.825979 0.563701i \(-0.809377\pi\)
0.825979 0.563701i \(-0.190623\pi\)
\(762\) 0 0
\(763\) −10.9453 −0.0143451
\(764\) 703.489 0.920797
\(765\) 0 0
\(766\) 592.042 0.772901
\(767\) 87.1378 0.113609
\(768\) 0 0
\(769\) −477.211 −0.620561 −0.310281 0.950645i \(-0.600423\pi\)
−0.310281 + 0.950645i \(0.600423\pi\)
\(770\) 75.6852 0.0982925
\(771\) 0 0
\(772\) 330.647i 0.428299i
\(773\) 963.778i 1.24680i −0.781902 0.623401i \(-0.785751\pi\)
0.781902 0.623401i \(-0.214249\pi\)
\(774\) 0 0
\(775\) −74.2317 −0.0957829
\(776\) 465.832i 0.600299i
\(777\) 0 0
\(778\) −139.010 −0.178676
\(779\) 890.837 1.14356
\(780\) 0 0
\(781\) 160.046i 0.204925i
\(782\) 799.395i 1.02224i
\(783\) 0 0
\(784\) −122.489 −0.156236
\(785\) 216.905 0.276312
\(786\) 0 0
\(787\) 1229.87 1.56273 0.781365 0.624074i \(-0.214524\pi\)
0.781365 + 0.624074i \(0.214524\pi\)
\(788\) −379.512 −0.481614
\(789\) 0 0
\(790\) −626.068 −0.792491
\(791\) −278.498 396.365i −0.352083 0.501093i
\(792\) 0 0
\(793\) −926.818 −1.16875
\(794\) −832.401 −1.04836
\(795\) 0 0
\(796\) 40.0247i 0.0502823i
\(797\) −102.871 −0.129073 −0.0645367 0.997915i \(-0.520557\pi\)
−0.0645367 + 0.997915i \(0.520557\pi\)
\(798\) 0 0
\(799\) −168.149 −0.210449
\(800\) 12.0453i 0.0150566i
\(801\) 0 0
\(802\) −926.369 −1.15507
\(803\) 92.5370 0.115239
\(804\) 0 0
\(805\) −683.483 −0.849047
\(806\) 1069.70i 1.32717i
\(807\) 0 0
\(808\) 228.368i 0.282634i
\(809\) 23.3365i 0.0288461i 0.999896 + 0.0144230i \(0.00459116\pi\)
−0.999896 + 0.0144230i \(0.995409\pi\)
\(810\) 0 0
\(811\) 761.616i 0.939108i −0.882904 0.469554i \(-0.844415\pi\)
0.882904 0.469554i \(-0.155585\pi\)
\(812\) 57.9262 0.0713377
\(813\) 0 0
\(814\) 26.0412i 0.0319916i
\(815\) −84.7819 −0.104027
\(816\) 0 0
\(817\) 342.640 0.419388
\(818\) −867.208 −1.06016
\(819\) 0 0
\(820\) 573.065i 0.698860i
\(821\) 1316.60i 1.60366i −0.597554 0.801829i \(-0.703861\pi\)
0.597554 0.801829i \(-0.296139\pi\)
\(822\) 0 0
\(823\) −285.112 −0.346430 −0.173215 0.984884i \(-0.555416\pi\)
−0.173215 + 0.984884i \(0.555416\pi\)
\(824\) −50.0184 −0.0607019
\(825\) 0 0
\(826\) 24.3484i 0.0294775i
\(827\) 475.326i 0.574759i 0.957817 + 0.287379i \(0.0927840\pi\)
−0.957817 + 0.287379i \(0.907216\pi\)
\(828\) 0 0
\(829\) 269.455i 0.325036i −0.986706 0.162518i \(-0.948038\pi\)
0.986706 0.162518i \(-0.0519615\pi\)
\(830\) 184.149 0.221866
\(831\) 0 0
\(832\) 173.575 0.208624
\(833\) −519.208 −0.623299
\(834\) 0 0
\(835\) 213.331 0.255486
\(836\) −77.6254 −0.0928533
\(837\) 0 0
\(838\) 521.130i 0.621873i
\(839\) 653.011 0.778320 0.389160 0.921170i \(-0.372765\pi\)
0.389160 + 0.921170i \(0.372765\pi\)
\(840\) 0 0
\(841\) −795.355 −0.945725
\(842\) 165.007i 0.195970i
\(843\) 0 0
\(844\) −115.552 −0.136910
\(845\) 1443.09 1.70780
\(846\) 0 0
\(847\) −489.507 −0.577930
\(848\) 78.2091i 0.0922278i
\(849\) 0 0
\(850\) 51.0578i 0.0600680i
\(851\) 235.168i 0.276343i
\(852\) 0 0
\(853\) −624.206 −0.731777 −0.365889 0.930659i \(-0.619235\pi\)
−0.365889 + 0.930659i \(0.619235\pi\)
\(854\) 258.975i 0.303250i
\(855\) 0 0
\(856\) 107.407i 0.125475i
\(857\) −961.461 −1.12189 −0.560946 0.827852i \(-0.689562\pi\)
−0.560946 + 0.827852i \(0.689562\pi\)
\(858\) 0 0
\(859\) 1042.43i 1.21354i −0.794879 0.606768i \(-0.792466\pi\)
0.794879 0.606768i \(-0.207534\pi\)
\(860\) 220.416i 0.256298i
\(861\) 0 0
\(862\) 350.990i 0.407181i
\(863\) 688.236i 0.797492i −0.917061 0.398746i \(-0.869445\pi\)
0.917061 0.398746i \(-0.130555\pi\)
\(864\) 0 0
\(865\) 112.494i 0.130051i
\(866\) 539.298 0.622746
\(867\) 0 0
\(868\) 298.899 0.344353
\(869\) −241.644 −0.278072
\(870\) 0 0
\(871\) 2684.94i 3.08260i
\(872\) 7.22150i 0.00828153i
\(873\) 0 0
\(874\) 701.004 0.802064
\(875\) 556.193 0.635649
\(876\) 0 0
\(877\) 1685.88i 1.92233i −0.275977 0.961164i \(-0.589001\pi\)
0.275977 0.961164i \(-0.410999\pi\)
\(878\) 999.498i 1.13838i
\(879\) 0 0
\(880\) 49.9355i 0.0567449i
\(881\) −1170.78 −1.32892 −0.664461 0.747323i \(-0.731339\pi\)
−0.664461 + 0.747323i \(0.731339\pi\)
\(882\) 0 0
\(883\) 760.596i 0.861377i −0.902501 0.430689i \(-0.858271\pi\)
0.902501 0.430689i \(-0.141729\pi\)
\(884\) 735.754 0.832301
\(885\) 0 0
\(886\) −601.920 −0.679368
\(887\) −38.0266 −0.0428710 −0.0214355 0.999770i \(-0.506824\pi\)
−0.0214355 + 0.999770i \(0.506824\pi\)
\(888\) 0 0
\(889\) −201.330 −0.226468
\(890\) 901.284i 1.01268i
\(891\) 0 0
\(892\) 189.539i 0.212488i
\(893\) 147.453i 0.165121i
\(894\) 0 0
\(895\) −1427.65 −1.59514
\(896\) 48.5011i 0.0541307i
\(897\) 0 0
\(898\) 350.542i 0.390359i
\(899\) 235.530 0.261991
\(900\) 0 0
\(901\) 331.514i 0.367940i
\(902\) 221.187i 0.245218i
\(903\) 0 0
\(904\) 261.513 183.747i 0.289284 0.203260i
\(905\) 713.882i 0.788819i
\(906\) 0 0
\(907\) 1632.97i 1.80041i 0.435468 + 0.900204i \(0.356583\pi\)
−0.435468 + 0.900204i \(0.643417\pi\)
\(908\) 232.403i 0.255951i
\(909\) 0 0
\(910\) 629.070i 0.691286i
\(911\) 865.703i 0.950278i −0.879911 0.475139i \(-0.842398\pi\)
0.879911 0.475139i \(-0.157602\pi\)
\(912\) 0 0
\(913\) 71.0761 0.0778490
\(914\) 1136.44 1.24337
\(915\) 0 0
\(916\) 501.691i 0.547697i
\(917\) 796.553i 0.868651i
\(918\) 0 0
\(919\) 687.911 0.748543 0.374272 0.927319i \(-0.377893\pi\)
0.374272 + 0.927319i \(0.377893\pi\)
\(920\) 450.948i 0.490160i
\(921\) 0 0
\(922\) 320.584 0.347705
\(923\) −1330.25 −1.44122
\(924\) 0 0
\(925\) 15.0203i 0.0162381i
\(926\) 143.395i 0.154854i
\(927\) 0 0
\(928\) 38.2185i 0.0411837i
\(929\) 80.0055i 0.0861200i −0.999072 0.0430600i \(-0.986289\pi\)
0.999072 0.0430600i \(-0.0137107\pi\)
\(930\) 0 0
\(931\) 455.303i 0.489047i
\(932\) 403.842i 0.433307i
\(933\) 0 0
\(934\) 1017.48 1.08938
\(935\) 211.667i 0.226382i
\(936\) 0 0
\(937\) 633.675i 0.676281i 0.941096 + 0.338141i \(0.109798\pi\)
−0.941096 + 0.338141i \(0.890202\pi\)
\(938\) 750.238 0.799827
\(939\) 0 0
\(940\) 94.8546 0.100909
\(941\) −172.479 −0.183293 −0.0916466 0.995792i \(-0.529213\pi\)
−0.0916466 + 0.995792i \(0.529213\pi\)
\(942\) 0 0
\(943\) 1997.45i 2.11819i
\(944\) −16.0646 −0.0170175
\(945\) 0 0
\(946\) 85.0745i 0.0899308i
\(947\) −628.992 −0.664194 −0.332097 0.943245i \(-0.607756\pi\)
−0.332097 + 0.943245i \(0.607756\pi\)
\(948\) 0 0
\(949\) 769.136i 0.810470i
\(950\) −44.7735 −0.0471300
\(951\) 0 0
\(952\) 205.587i 0.215953i
\(953\) 920.153i 0.965533i −0.875749 0.482767i \(-0.839632\pi\)
0.875749 0.482767i \(-0.160368\pi\)
\(954\) 0 0
\(955\) −1682.16 −1.76142
\(956\) 500.562i 0.523600i
\(957\) 0 0
\(958\) 429.730i 0.448570i
\(959\) −722.435 −0.753321
\(960\) 0 0
\(961\) 254.331 0.264652
\(962\) −216.446 −0.224995
\(963\) 0 0
\(964\) −290.850 −0.301712
\(965\) 790.630i 0.819306i
\(966\) 0 0
\(967\) −898.472 −0.929133 −0.464567 0.885538i \(-0.653790\pi\)
−0.464567 + 0.885538i \(0.653790\pi\)
\(968\) 322.966i 0.333643i
\(969\) 0 0
\(970\) 1113.88i 1.14833i
\(971\) −260.558 −0.268340 −0.134170 0.990958i \(-0.542837\pi\)
−0.134170 + 0.990958i \(0.542837\pi\)
\(972\) 0 0
\(973\) −1.42466 −0.00146420
\(974\) 865.880 0.888994
\(975\) 0 0
\(976\) 170.866 0.175068
\(977\) −884.936 −0.905768 −0.452884 0.891569i \(-0.649605\pi\)
−0.452884 + 0.891569i \(0.649605\pi\)
\(978\) 0 0
\(979\) 347.870i 0.355332i
\(980\) 292.891 0.298868
\(981\) 0 0
\(982\) 459.994i 0.468426i
\(983\) 1471.31 1.49676 0.748379 0.663271i \(-0.230832\pi\)
0.748379 + 0.663271i \(0.230832\pi\)
\(984\) 0 0
\(985\) 907.476 0.921295
\(986\) 162.001i 0.164301i
\(987\) 0 0
\(988\) 645.196i 0.653032i
\(989\) 768.274i 0.776819i
\(990\) 0 0
\(991\) 473.236 0.477534 0.238767 0.971077i \(-0.423257\pi\)
0.238767 + 0.971077i \(0.423257\pi\)
\(992\) 197.207i 0.198797i
\(993\) 0 0
\(994\) 371.704i 0.373947i
\(995\) 95.7057i 0.0961867i
\(996\) 0 0
\(997\) 203.087i 0.203698i −0.994800 0.101849i \(-0.967524\pi\)
0.994800 0.101849i \(-0.0324759\pi\)
\(998\) 529.951 0.531013
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.3.d.a.2033.20 yes 36
3.2 odd 2 inner 2034.3.d.a.2033.15 36
113.112 even 2 inner 2034.3.d.a.2033.16 yes 36
339.338 odd 2 inner 2034.3.d.a.2033.19 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2034.3.d.a.2033.15 36 3.2 odd 2 inner
2034.3.d.a.2033.16 yes 36 113.112 even 2 inner
2034.3.d.a.2033.19 yes 36 339.338 odd 2 inner
2034.3.d.a.2033.20 yes 36 1.1 even 1 trivial