Properties

Label 2034.3.d.a.2033.2
Level $2034$
Weight $3$
Character 2034.2033
Analytic conductor $55.422$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,3,Mod(2033,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.2033"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2034.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.4224857709\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2033.2
Character \(\chi\) \(=\) 2034.2033
Dual form 2034.3.d.a.2033.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +4.88752 q^{5} -5.78081 q^{7} -2.82843i q^{8} +6.91200i q^{10} +19.4325i q^{11} +6.00266 q^{13} -8.17529i q^{14} +4.00000 q^{16} -14.4422 q^{17} -21.2302i q^{19} -9.77504 q^{20} -27.4817 q^{22} -12.7142 q^{23} -1.11214 q^{25} +8.48905i q^{26} +11.5616 q^{28} -35.8938 q^{29} +27.2643 q^{31} +5.65685i q^{32} -20.4243i q^{34} -28.2538 q^{35} -27.0839i q^{37} +30.0240 q^{38} -13.8240i q^{40} -8.57245i q^{41} +6.75215i q^{43} -38.8650i q^{44} -17.9805i q^{46} +21.0518 q^{47} -15.5823 q^{49} -1.57281i q^{50} -12.0053 q^{52} +48.9382i q^{53} +94.9767i q^{55} +16.3506i q^{56} -50.7614i q^{58} +5.43196 q^{59} -16.8936 q^{61} +38.5576i q^{62} -8.00000 q^{64} +29.3381 q^{65} -8.46018i q^{67} +28.8843 q^{68} -39.9569i q^{70} -103.677 q^{71} -11.1320i q^{73} +38.3024 q^{74} +42.4604i q^{76} -112.335i q^{77} -65.6916i q^{79} +19.5501 q^{80} +12.1233 q^{82} +2.76043i q^{83} -70.5864 q^{85} -9.54898 q^{86} +54.9634 q^{88} +158.238 q^{89} -34.7002 q^{91} +25.4283 q^{92} +29.7717i q^{94} -103.763i q^{95} -160.589 q^{97} -22.0367i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 72 q^{4} - 8 q^{7} + 144 q^{16} + 36 q^{25} + 16 q^{28} + 64 q^{31} + 108 q^{49} - 80 q^{61} - 288 q^{64} + 248 q^{82} - 164 q^{85} + 516 q^{91} - 420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 4.88752 0.977504 0.488752 0.872423i \(-0.337452\pi\)
0.488752 + 0.872423i \(0.337452\pi\)
\(6\) 0 0
\(7\) −5.78081 −0.825829 −0.412915 0.910770i \(-0.635489\pi\)
−0.412915 + 0.910770i \(0.635489\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) 6.91200i 0.691200i
\(11\) 19.4325i 1.76659i 0.468817 + 0.883295i \(0.344680\pi\)
−0.468817 + 0.883295i \(0.655320\pi\)
\(12\) 0 0
\(13\) 6.00266 0.461743 0.230872 0.972984i \(-0.425842\pi\)
0.230872 + 0.972984i \(0.425842\pi\)
\(14\) 8.17529i 0.583950i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −14.4422 −0.849540 −0.424770 0.905301i \(-0.639645\pi\)
−0.424770 + 0.905301i \(0.639645\pi\)
\(18\) 0 0
\(19\) 21.2302i 1.11738i −0.829377 0.558689i \(-0.811304\pi\)
0.829377 0.558689i \(-0.188696\pi\)
\(20\) −9.77504 −0.488752
\(21\) 0 0
\(22\) −27.4817 −1.24917
\(23\) −12.7142 −0.552790 −0.276395 0.961044i \(-0.589140\pi\)
−0.276395 + 0.961044i \(0.589140\pi\)
\(24\) 0 0
\(25\) −1.11214 −0.0444857
\(26\) 8.48905i 0.326502i
\(27\) 0 0
\(28\) 11.5616 0.412915
\(29\) −35.8938 −1.23772 −0.618858 0.785503i \(-0.712404\pi\)
−0.618858 + 0.785503i \(0.712404\pi\)
\(30\) 0 0
\(31\) 27.2643 0.879495 0.439747 0.898121i \(-0.355068\pi\)
0.439747 + 0.898121i \(0.355068\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 20.4243i 0.600715i
\(35\) −28.2538 −0.807252
\(36\) 0 0
\(37\) 27.0839i 0.731997i −0.930615 0.365998i \(-0.880728\pi\)
0.930615 0.365998i \(-0.119272\pi\)
\(38\) 30.0240 0.790106
\(39\) 0 0
\(40\) 13.8240i 0.345600i
\(41\) 8.57245i 0.209084i −0.994520 0.104542i \(-0.966662\pi\)
0.994520 0.104542i \(-0.0333377\pi\)
\(42\) 0 0
\(43\) 6.75215i 0.157027i 0.996913 + 0.0785133i \(0.0250173\pi\)
−0.996913 + 0.0785133i \(0.974983\pi\)
\(44\) 38.8650i 0.883295i
\(45\) 0 0
\(46\) 17.9805i 0.390881i
\(47\) 21.0518 0.447910 0.223955 0.974599i \(-0.428103\pi\)
0.223955 + 0.974599i \(0.428103\pi\)
\(48\) 0 0
\(49\) −15.5823 −0.318006
\(50\) 1.57281i 0.0314562i
\(51\) 0 0
\(52\) −12.0053 −0.230872
\(53\) 48.9382i 0.923363i 0.887046 + 0.461681i \(0.152754\pi\)
−0.887046 + 0.461681i \(0.847246\pi\)
\(54\) 0 0
\(55\) 94.9767i 1.72685i
\(56\) 16.3506i 0.291975i
\(57\) 0 0
\(58\) 50.7614i 0.875197i
\(59\) 5.43196 0.0920672 0.0460336 0.998940i \(-0.485342\pi\)
0.0460336 + 0.998940i \(0.485342\pi\)
\(60\) 0 0
\(61\) −16.8936 −0.276944 −0.138472 0.990366i \(-0.544219\pi\)
−0.138472 + 0.990366i \(0.544219\pi\)
\(62\) 38.5576i 0.621897i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 29.3381 0.451356
\(66\) 0 0
\(67\) 8.46018i 0.126271i −0.998005 0.0631357i \(-0.979890\pi\)
0.998005 0.0631357i \(-0.0201101\pi\)
\(68\) 28.8843 0.424770
\(69\) 0 0
\(70\) 39.9569i 0.570813i
\(71\) −103.677 −1.46024 −0.730119 0.683320i \(-0.760536\pi\)
−0.730119 + 0.683320i \(0.760536\pi\)
\(72\) 0 0
\(73\) 11.1320i 0.152493i −0.997089 0.0762465i \(-0.975706\pi\)
0.997089 0.0762465i \(-0.0242936\pi\)
\(74\) 38.3024 0.517600
\(75\) 0 0
\(76\) 42.4604i 0.558689i
\(77\) 112.335i 1.45890i
\(78\) 0 0
\(79\) 65.6916i 0.831540i −0.909470 0.415770i \(-0.863512\pi\)
0.909470 0.415770i \(-0.136488\pi\)
\(80\) 19.5501 0.244376
\(81\) 0 0
\(82\) 12.1233 0.147845
\(83\) 2.76043i 0.0332582i 0.999862 + 0.0166291i \(0.00529346\pi\)
−0.999862 + 0.0166291i \(0.994707\pi\)
\(84\) 0 0
\(85\) −70.5864 −0.830428
\(86\) −9.54898 −0.111035
\(87\) 0 0
\(88\) 54.9634 0.624584
\(89\) 158.238 1.77796 0.888979 0.457949i \(-0.151416\pi\)
0.888979 + 0.457949i \(0.151416\pi\)
\(90\) 0 0
\(91\) −34.7002 −0.381321
\(92\) 25.4283 0.276395
\(93\) 0 0
\(94\) 29.7717i 0.316720i
\(95\) 103.763i 1.09224i
\(96\) 0 0
\(97\) −160.589 −1.65556 −0.827779 0.561055i \(-0.810396\pi\)
−0.827779 + 0.561055i \(0.810396\pi\)
\(98\) 22.0367i 0.224864i
\(99\) 0 0
\(100\) 2.22429 0.0222429
\(101\) 121.014 1.19815 0.599077 0.800691i \(-0.295534\pi\)
0.599077 + 0.800691i \(0.295534\pi\)
\(102\) 0 0
\(103\) 129.103i 1.25342i −0.779251 0.626712i \(-0.784400\pi\)
0.779251 0.626712i \(-0.215600\pi\)
\(104\) 16.9781i 0.163251i
\(105\) 0 0
\(106\) −69.2091 −0.652916
\(107\) 2.36235 0.0220781 0.0110390 0.999939i \(-0.496486\pi\)
0.0110390 + 0.999939i \(0.496486\pi\)
\(108\) 0 0
\(109\) −138.384 −1.26958 −0.634789 0.772685i \(-0.718913\pi\)
−0.634789 + 0.772685i \(0.718913\pi\)
\(110\) −134.317 −1.22107
\(111\) 0 0
\(112\) −23.1232 −0.206457
\(113\) −39.5725 105.844i −0.350199 0.936675i
\(114\) 0 0
\(115\) −62.1407 −0.540354
\(116\) 71.7875 0.618858
\(117\) 0 0
\(118\) 7.68196i 0.0651013i
\(119\) 83.4874 0.701575
\(120\) 0 0
\(121\) −256.622 −2.12084
\(122\) 23.8912i 0.195829i
\(123\) 0 0
\(124\) −54.5287 −0.439747
\(125\) −127.624 −1.02099
\(126\) 0 0
\(127\) −137.052 −1.07915 −0.539574 0.841938i \(-0.681415\pi\)
−0.539574 + 0.841938i \(0.681415\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 0 0
\(130\) 41.4904i 0.319157i
\(131\) 85.6233i 0.653613i −0.945091 0.326806i \(-0.894028\pi\)
0.945091 0.326806i \(-0.105972\pi\)
\(132\) 0 0
\(133\) 122.728i 0.922764i
\(134\) 11.9645 0.0892873
\(135\) 0 0
\(136\) 40.8486i 0.300358i
\(137\) −219.055 −1.59894 −0.799471 0.600704i \(-0.794887\pi\)
−0.799471 + 0.600704i \(0.794887\pi\)
\(138\) 0 0
\(139\) 3.13532 0.0225563 0.0112781 0.999936i \(-0.496410\pi\)
0.0112781 + 0.999936i \(0.496410\pi\)
\(140\) 56.5076 0.403626
\(141\) 0 0
\(142\) 146.621i 1.03254i
\(143\) 116.647i 0.815711i
\(144\) 0 0
\(145\) −175.431 −1.20987
\(146\) 15.7430 0.107829
\(147\) 0 0
\(148\) 54.1678i 0.365998i
\(149\) 181.287i 1.21669i −0.793673 0.608345i \(-0.791834\pi\)
0.793673 0.608345i \(-0.208166\pi\)
\(150\) 0 0
\(151\) 22.9345i 0.151884i 0.997112 + 0.0759419i \(0.0241964\pi\)
−0.997112 + 0.0759419i \(0.975804\pi\)
\(152\) −60.0481 −0.395053
\(153\) 0 0
\(154\) 158.866 1.03160
\(155\) 133.255 0.859710
\(156\) 0 0
\(157\) −75.1348 −0.478566 −0.239283 0.970950i \(-0.576912\pi\)
−0.239283 + 0.970950i \(0.576912\pi\)
\(158\) 92.9020 0.587987
\(159\) 0 0
\(160\) 27.6480i 0.172800i
\(161\) 73.4981 0.456510
\(162\) 0 0
\(163\) 238.010 1.46019 0.730093 0.683348i \(-0.239477\pi\)
0.730093 + 0.683348i \(0.239477\pi\)
\(164\) 17.1449i 0.104542i
\(165\) 0 0
\(166\) −3.90384 −0.0235171
\(167\) 76.7007 0.459285 0.229643 0.973275i \(-0.426244\pi\)
0.229643 + 0.973275i \(0.426244\pi\)
\(168\) 0 0
\(169\) −132.968 −0.786793
\(170\) 99.8243i 0.587202i
\(171\) 0 0
\(172\) 13.5043i 0.0785133i
\(173\) 241.393i 1.39534i 0.716422 + 0.697668i \(0.245779\pi\)
−0.716422 + 0.697668i \(0.754221\pi\)
\(174\) 0 0
\(175\) 6.42909 0.0367376
\(176\) 77.7300i 0.441648i
\(177\) 0 0
\(178\) 223.783i 1.25721i
\(179\) −150.684 −0.841808 −0.420904 0.907105i \(-0.638287\pi\)
−0.420904 + 0.907105i \(0.638287\pi\)
\(180\) 0 0
\(181\) 327.634i 1.81013i −0.425270 0.905067i \(-0.639821\pi\)
0.425270 0.905067i \(-0.360179\pi\)
\(182\) 49.0735i 0.269635i
\(183\) 0 0
\(184\) 35.9611i 0.195441i
\(185\) 132.373i 0.715530i
\(186\) 0 0
\(187\) 280.647i 1.50079i
\(188\) −42.1036 −0.223955
\(189\) 0 0
\(190\) 146.743 0.772332
\(191\) 147.664 0.773108 0.386554 0.922267i \(-0.373665\pi\)
0.386554 + 0.922267i \(0.373665\pi\)
\(192\) 0 0
\(193\) 13.3001i 0.0689125i 0.999406 + 0.0344563i \(0.0109699\pi\)
−0.999406 + 0.0344563i \(0.989030\pi\)
\(194\) 227.107i 1.17066i
\(195\) 0 0
\(196\) 31.1646 0.159003
\(197\) −165.935 −0.842309 −0.421154 0.906989i \(-0.638375\pi\)
−0.421154 + 0.906989i \(0.638375\pi\)
\(198\) 0 0
\(199\) 181.810i 0.913618i 0.889565 + 0.456809i \(0.151008\pi\)
−0.889565 + 0.456809i \(0.848992\pi\)
\(200\) 3.14562i 0.0157281i
\(201\) 0 0
\(202\) 171.139i 0.847223i
\(203\) 207.495 1.02214
\(204\) 0 0
\(205\) 41.8980i 0.204380i
\(206\) 182.579 0.886305
\(207\) 0 0
\(208\) 24.0106 0.115436
\(209\) 412.556 1.97395
\(210\) 0 0
\(211\) −113.186 −0.536426 −0.268213 0.963360i \(-0.586433\pi\)
−0.268213 + 0.963360i \(0.586433\pi\)
\(212\) 97.8765i 0.461681i
\(213\) 0 0
\(214\) 3.34087i 0.0156116i
\(215\) 33.0013i 0.153494i
\(216\) 0 0
\(217\) −157.610 −0.726313
\(218\) 195.705i 0.897728i
\(219\) 0 0
\(220\) 189.953i 0.863425i
\(221\) −86.6915 −0.392269
\(222\) 0 0
\(223\) 343.939i 1.54233i 0.636636 + 0.771164i \(0.280325\pi\)
−0.636636 + 0.771164i \(0.719675\pi\)
\(224\) 32.7012i 0.145987i
\(225\) 0 0
\(226\) 149.686 55.9640i 0.662329 0.247628i
\(227\) 41.9165i 0.184654i −0.995729 0.0923272i \(-0.970569\pi\)
0.995729 0.0923272i \(-0.0294306\pi\)
\(228\) 0 0
\(229\) 219.082i 0.956692i −0.878171 0.478346i \(-0.841236\pi\)
0.878171 0.478346i \(-0.158764\pi\)
\(230\) 87.8803i 0.382088i
\(231\) 0 0
\(232\) 101.523i 0.437599i
\(233\) 36.9921i 0.158765i −0.996844 0.0793823i \(-0.974705\pi\)
0.996844 0.0793823i \(-0.0252948\pi\)
\(234\) 0 0
\(235\) 102.891 0.437834
\(236\) −10.8639 −0.0460336
\(237\) 0 0
\(238\) 118.069i 0.496088i
\(239\) 363.056i 1.51906i −0.650470 0.759532i \(-0.725428\pi\)
0.650470 0.759532i \(-0.274572\pi\)
\(240\) 0 0
\(241\) 110.938 0.460322 0.230161 0.973153i \(-0.426075\pi\)
0.230161 + 0.973153i \(0.426075\pi\)
\(242\) 362.918i 1.49966i
\(243\) 0 0
\(244\) 33.7872 0.138472
\(245\) −76.1587 −0.310852
\(246\) 0 0
\(247\) 127.438i 0.515942i
\(248\) 77.1152i 0.310948i
\(249\) 0 0
\(250\) 180.487i 0.721948i
\(251\) 139.303i 0.554991i 0.960727 + 0.277495i \(0.0895043\pi\)
−0.960727 + 0.277495i \(0.910496\pi\)
\(252\) 0 0
\(253\) 247.068i 0.976553i
\(254\) 193.820i 0.763073i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 60.1184i 0.233924i 0.993136 + 0.116962i \(0.0373155\pi\)
−0.993136 + 0.116962i \(0.962684\pi\)
\(258\) 0 0
\(259\) 156.567i 0.604504i
\(260\) −58.6763 −0.225678
\(261\) 0 0
\(262\) 121.090 0.462174
\(263\) 395.273 1.50294 0.751470 0.659768i \(-0.229345\pi\)
0.751470 + 0.659768i \(0.229345\pi\)
\(264\) 0 0
\(265\) 239.187i 0.902591i
\(266\) −173.563 −0.652493
\(267\) 0 0
\(268\) 16.9204i 0.0631357i
\(269\) −205.989 −0.765757 −0.382878 0.923799i \(-0.625067\pi\)
−0.382878 + 0.923799i \(0.625067\pi\)
\(270\) 0 0
\(271\) 341.609i 1.26055i −0.776372 0.630275i \(-0.782942\pi\)
0.776372 0.630275i \(-0.217058\pi\)
\(272\) −57.7687 −0.212385
\(273\) 0 0
\(274\) 309.791i 1.13062i
\(275\) 21.6117i 0.0785881i
\(276\) 0 0
\(277\) −54.7984 −0.197828 −0.0989141 0.995096i \(-0.531537\pi\)
−0.0989141 + 0.995096i \(0.531537\pi\)
\(278\) 4.43401i 0.0159497i
\(279\) 0 0
\(280\) 79.9138i 0.285407i
\(281\) −406.517 −1.44668 −0.723341 0.690491i \(-0.757394\pi\)
−0.723341 + 0.690491i \(0.757394\pi\)
\(282\) 0 0
\(283\) 26.8163 0.0947572 0.0473786 0.998877i \(-0.484913\pi\)
0.0473786 + 0.998877i \(0.484913\pi\)
\(284\) 207.354 0.730119
\(285\) 0 0
\(286\) −164.963 −0.576795
\(287\) 49.5556i 0.172668i
\(288\) 0 0
\(289\) −80.4237 −0.278283
\(290\) 248.098i 0.855509i
\(291\) 0 0
\(292\) 22.2640i 0.0762465i
\(293\) −9.70552 −0.0331246 −0.0165623 0.999863i \(-0.505272\pi\)
−0.0165623 + 0.999863i \(0.505272\pi\)
\(294\) 0 0
\(295\) 26.5488 0.0899960
\(296\) −76.6048 −0.258800
\(297\) 0 0
\(298\) 256.378 0.860329
\(299\) −76.3188 −0.255247
\(300\) 0 0
\(301\) 39.0328i 0.129677i
\(302\) −32.4342 −0.107398
\(303\) 0 0
\(304\) 84.9208i 0.279345i
\(305\) −82.5678 −0.270714
\(306\) 0 0
\(307\) −80.4517 −0.262058 −0.131029 0.991379i \(-0.541828\pi\)
−0.131029 + 0.991379i \(0.541828\pi\)
\(308\) 224.671i 0.729451i
\(309\) 0 0
\(310\) 188.451i 0.607907i
\(311\) 74.2119i 0.238623i 0.992857 + 0.119312i \(0.0380688\pi\)
−0.992857 + 0.119312i \(0.961931\pi\)
\(312\) 0 0
\(313\) 86.9272 0.277723 0.138861 0.990312i \(-0.455656\pi\)
0.138861 + 0.990312i \(0.455656\pi\)
\(314\) 106.257i 0.338397i
\(315\) 0 0
\(316\) 131.383i 0.415770i
\(317\) 141.260i 0.445615i −0.974862 0.222807i \(-0.928478\pi\)
0.974862 0.222807i \(-0.0715221\pi\)
\(318\) 0 0
\(319\) 697.505i 2.18654i
\(320\) −39.1002 −0.122188
\(321\) 0 0
\(322\) 103.942i 0.322801i
\(323\) 306.610i 0.949257i
\(324\) 0 0
\(325\) −6.67582 −0.0205410
\(326\) 336.597i 1.03251i
\(327\) 0 0
\(328\) −24.2465 −0.0739224
\(329\) −121.696 −0.369897
\(330\) 0 0
\(331\) −226.795 −0.685181 −0.342590 0.939485i \(-0.611304\pi\)
−0.342590 + 0.939485i \(0.611304\pi\)
\(332\) 5.52087i 0.0166291i
\(333\) 0 0
\(334\) 108.471i 0.324764i
\(335\) 41.3493i 0.123431i
\(336\) 0 0
\(337\) −117.711 −0.349289 −0.174645 0.984632i \(-0.555878\pi\)
−0.174645 + 0.984632i \(0.555878\pi\)
\(338\) 188.045i 0.556347i
\(339\) 0 0
\(340\) 141.173 0.415214
\(341\) 529.814i 1.55371i
\(342\) 0 0
\(343\) 373.338 1.08845
\(344\) 19.0980 0.0555173
\(345\) 0 0
\(346\) −341.381 −0.986651
\(347\) 94.4644i 0.272232i −0.990693 0.136116i \(-0.956538\pi\)
0.990693 0.136116i \(-0.0434619\pi\)
\(348\) 0 0
\(349\) 68.4243i 0.196058i 0.995184 + 0.0980291i \(0.0312538\pi\)
−0.995184 + 0.0980291i \(0.968746\pi\)
\(350\) 9.09210i 0.0259774i
\(351\) 0 0
\(352\) −109.927 −0.312292
\(353\) 465.553i 1.31885i −0.751772 0.659423i \(-0.770800\pi\)
0.751772 0.659423i \(-0.229200\pi\)
\(354\) 0 0
\(355\) −506.723 −1.42739
\(356\) −316.476 −0.888979
\(357\) 0 0
\(358\) 213.099i 0.595248i
\(359\) 401.765 1.11912 0.559561 0.828789i \(-0.310970\pi\)
0.559561 + 0.828789i \(0.310970\pi\)
\(360\) 0 0
\(361\) −89.7212 −0.248535
\(362\) 463.345 1.27996
\(363\) 0 0
\(364\) 69.4004 0.190661
\(365\) 54.4078i 0.149062i
\(366\) 0 0
\(367\) 156.846 0.427372 0.213686 0.976902i \(-0.431453\pi\)
0.213686 + 0.976902i \(0.431453\pi\)
\(368\) −50.8567 −0.138197
\(369\) 0 0
\(370\) 187.204 0.505956
\(371\) 282.902i 0.762540i
\(372\) 0 0
\(373\) 466.395i 1.25039i 0.780470 + 0.625194i \(0.214980\pi\)
−0.780470 + 0.625194i \(0.785020\pi\)
\(374\) 396.895 1.06122
\(375\) 0 0
\(376\) 59.5434i 0.158360i
\(377\) −215.458 −0.571507
\(378\) 0 0
\(379\) 267.668i 0.706247i 0.935577 + 0.353124i \(0.114881\pi\)
−0.935577 + 0.353124i \(0.885119\pi\)
\(380\) 207.526i 0.546121i
\(381\) 0 0
\(382\) 208.828i 0.546670i
\(383\) 176.740i 0.461463i 0.973017 + 0.230732i \(0.0741119\pi\)
−0.973017 + 0.230732i \(0.925888\pi\)
\(384\) 0 0
\(385\) 549.042i 1.42608i
\(386\) −18.8092 −0.0487285
\(387\) 0 0
\(388\) 321.178 0.827779
\(389\) 92.5383i 0.237888i 0.992901 + 0.118944i \(0.0379508\pi\)
−0.992901 + 0.118944i \(0.962049\pi\)
\(390\) 0 0
\(391\) 183.620 0.469617
\(392\) 44.0734i 0.112432i
\(393\) 0 0
\(394\) 234.667i 0.595602i
\(395\) 321.069i 0.812833i
\(396\) 0 0
\(397\) 487.128i 1.22702i 0.789686 + 0.613511i \(0.210244\pi\)
−0.789686 + 0.613511i \(0.789756\pi\)
\(398\) −257.118 −0.646025
\(399\) 0 0
\(400\) −4.44857 −0.0111214
\(401\) 166.816i 0.416000i −0.978129 0.208000i \(-0.933305\pi\)
0.978129 0.208000i \(-0.0666954\pi\)
\(402\) 0 0
\(403\) 163.659 0.406101
\(404\) −242.027 −0.599077
\(405\) 0 0
\(406\) 293.442i 0.722764i
\(407\) 526.307 1.29314
\(408\) 0 0
\(409\) 82.3303i 0.201297i −0.994922 0.100648i \(-0.967908\pi\)
0.994922 0.100648i \(-0.0320917\pi\)
\(410\) 59.2527 0.144519
\(411\) 0 0
\(412\) 258.205i 0.626712i
\(413\) −31.4011 −0.0760318
\(414\) 0 0
\(415\) 13.4917i 0.0325101i
\(416\) 33.9562i 0.0816254i
\(417\) 0 0
\(418\) 583.442i 1.39579i
\(419\) −537.355 −1.28247 −0.641236 0.767344i \(-0.721578\pi\)
−0.641236 + 0.767344i \(0.721578\pi\)
\(420\) 0 0
\(421\) −737.410 −1.75157 −0.875784 0.482703i \(-0.839655\pi\)
−0.875784 + 0.482703i \(0.839655\pi\)
\(422\) 160.069i 0.379310i
\(423\) 0 0
\(424\) 138.418 0.326458
\(425\) 16.0618 0.0377924
\(426\) 0 0
\(427\) 97.6586 0.228709
\(428\) −4.72471 −0.0110390
\(429\) 0 0
\(430\) −46.6708 −0.108537
\(431\) 164.942 0.382697 0.191348 0.981522i \(-0.438714\pi\)
0.191348 + 0.981522i \(0.438714\pi\)
\(432\) 0 0
\(433\) 8.95538i 0.0206822i −0.999947 0.0103411i \(-0.996708\pi\)
0.999947 0.0103411i \(-0.00329173\pi\)
\(434\) 222.894i 0.513581i
\(435\) 0 0
\(436\) 276.768 0.634789
\(437\) 269.924i 0.617675i
\(438\) 0 0
\(439\) −58.6346 −0.133564 −0.0667821 0.997768i \(-0.521273\pi\)
−0.0667821 + 0.997768i \(0.521273\pi\)
\(440\) 268.635 0.610533
\(441\) 0 0
\(442\) 122.600i 0.277376i
\(443\) 65.9767i 0.148932i −0.997224 0.0744659i \(-0.976275\pi\)
0.997224 0.0744659i \(-0.0237252\pi\)
\(444\) 0 0
\(445\) 773.392 1.73796
\(446\) −486.404 −1.09059
\(447\) 0 0
\(448\) 46.2464 0.103229
\(449\) 625.557 1.39322 0.696612 0.717448i \(-0.254690\pi\)
0.696612 + 0.717448i \(0.254690\pi\)
\(450\) 0 0
\(451\) 166.584 0.369366
\(452\) 79.1450 + 211.689i 0.175100 + 0.468338i
\(453\) 0 0
\(454\) 59.2789 0.130570
\(455\) −169.598 −0.372743
\(456\) 0 0
\(457\) 356.885i 0.780929i 0.920618 + 0.390465i \(0.127686\pi\)
−0.920618 + 0.390465i \(0.872314\pi\)
\(458\) 309.829 0.676483
\(459\) 0 0
\(460\) 124.281 0.270177
\(461\) 749.137i 1.62503i 0.582943 + 0.812513i \(0.301901\pi\)
−0.582943 + 0.812513i \(0.698099\pi\)
\(462\) 0 0
\(463\) 49.6707 0.107280 0.0536400 0.998560i \(-0.482918\pi\)
0.0536400 + 0.998560i \(0.482918\pi\)
\(464\) −143.575 −0.309429
\(465\) 0 0
\(466\) 52.3148 0.112263
\(467\) 36.5126i 0.0781854i −0.999236 0.0390927i \(-0.987553\pi\)
0.999236 0.0390927i \(-0.0124468\pi\)
\(468\) 0 0
\(469\) 48.9067i 0.104279i
\(470\) 145.510i 0.309595i
\(471\) 0 0
\(472\) 15.3639i 0.0325507i
\(473\) −131.211 −0.277402
\(474\) 0 0
\(475\) 23.6110i 0.0497074i
\(476\) −166.975 −0.350787
\(477\) 0 0
\(478\) 513.439 1.07414
\(479\) −304.132 −0.634930 −0.317465 0.948270i \(-0.602832\pi\)
−0.317465 + 0.948270i \(0.602832\pi\)
\(480\) 0 0
\(481\) 162.575i 0.337995i
\(482\) 156.890i 0.325497i
\(483\) 0 0
\(484\) 513.244 1.06042
\(485\) −784.882 −1.61831
\(486\) 0 0
\(487\) 199.930i 0.410535i 0.978706 + 0.205267i \(0.0658064\pi\)
−0.978706 + 0.205267i \(0.934194\pi\)
\(488\) 47.7823i 0.0979146i
\(489\) 0 0
\(490\) 107.705i 0.219806i
\(491\) 661.709 1.34768 0.673838 0.738879i \(-0.264645\pi\)
0.673838 + 0.738879i \(0.264645\pi\)
\(492\) 0 0
\(493\) 518.384 1.05149
\(494\) 180.224 0.364826
\(495\) 0 0
\(496\) 109.057 0.219874
\(497\) 599.336 1.20591
\(498\) 0 0
\(499\) 492.508i 0.986990i 0.869749 + 0.493495i \(0.164281\pi\)
−0.869749 + 0.493495i \(0.835719\pi\)
\(500\) 255.247 0.510495
\(501\) 0 0
\(502\) −197.004 −0.392438
\(503\) 247.139i 0.491330i −0.969355 0.245665i \(-0.920994\pi\)
0.969355 0.245665i \(-0.0790063\pi\)
\(504\) 0 0
\(505\) 591.456 1.17120
\(506\) 349.407 0.690527
\(507\) 0 0
\(508\) 274.104 0.539574
\(509\) 762.096i 1.49724i 0.662998 + 0.748621i \(0.269284\pi\)
−0.662998 + 0.748621i \(0.730716\pi\)
\(510\) 0 0
\(511\) 64.3518i 0.125933i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −85.0203 −0.165409
\(515\) 630.992i 1.22523i
\(516\) 0 0
\(517\) 409.088i 0.791274i
\(518\) −221.419 −0.427449
\(519\) 0 0
\(520\) 82.9808i 0.159578i
\(521\) 149.501i 0.286949i −0.989654 0.143475i \(-0.954172\pi\)
0.989654 0.143475i \(-0.0458275\pi\)
\(522\) 0 0
\(523\) 157.013i 0.300217i −0.988670 0.150108i \(-0.952038\pi\)
0.988670 0.150108i \(-0.0479623\pi\)
\(524\) 171.247i 0.326806i
\(525\) 0 0
\(526\) 559.001i 1.06274i
\(527\) −393.756 −0.747166
\(528\) 0 0
\(529\) −367.350 −0.694424
\(530\) −338.261 −0.638228
\(531\) 0 0
\(532\) 245.455i 0.461382i
\(533\) 51.4575i 0.0965431i
\(534\) 0 0
\(535\) 11.5460 0.0215814
\(536\) −23.9290 −0.0446437
\(537\) 0 0
\(538\) 291.312i 0.541472i
\(539\) 302.803i 0.561786i
\(540\) 0 0
\(541\) 847.808i 1.56711i 0.621321 + 0.783556i \(0.286596\pi\)
−0.621321 + 0.783556i \(0.713404\pi\)
\(542\) 483.108 0.891343
\(543\) 0 0
\(544\) 81.6973i 0.150179i
\(545\) −676.355 −1.24102
\(546\) 0 0
\(547\) −772.163 −1.41163 −0.705817 0.708395i \(-0.749420\pi\)
−0.705817 + 0.708395i \(0.749420\pi\)
\(548\) 438.110 0.799471
\(549\) 0 0
\(550\) 30.5636 0.0555702
\(551\) 762.032i 1.38300i
\(552\) 0 0
\(553\) 379.751i 0.686710i
\(554\) 77.4966i 0.139886i
\(555\) 0 0
\(556\) −6.27064 −0.0112781
\(557\) 950.504i 1.70647i 0.521526 + 0.853236i \(0.325363\pi\)
−0.521526 + 0.853236i \(0.674637\pi\)
\(558\) 0 0
\(559\) 40.5308i 0.0725060i
\(560\) −113.015 −0.201813
\(561\) 0 0
\(562\) 574.902i 1.02296i
\(563\) 916.850i 1.62851i 0.580509 + 0.814254i \(0.302854\pi\)
−0.580509 + 0.814254i \(0.697146\pi\)
\(564\) 0 0
\(565\) −193.411 517.316i −0.342321 0.915604i
\(566\) 37.9239i 0.0670034i
\(567\) 0 0
\(568\) 293.243i 0.516272i
\(569\) 456.318i 0.801964i 0.916086 + 0.400982i \(0.131331\pi\)
−0.916086 + 0.400982i \(0.868669\pi\)
\(570\) 0 0
\(571\) 712.697i 1.24816i −0.781362 0.624078i \(-0.785475\pi\)
0.781362 0.624078i \(-0.214525\pi\)
\(572\) 233.293i 0.407855i
\(573\) 0 0
\(574\) −70.0823 −0.122095
\(575\) 14.1400 0.0245913
\(576\) 0 0
\(577\) 204.476i 0.354378i 0.984177 + 0.177189i \(0.0567004\pi\)
−0.984177 + 0.177189i \(0.943300\pi\)
\(578\) 113.736i 0.196775i
\(579\) 0 0
\(580\) 350.863 0.604936
\(581\) 15.9575i 0.0274656i
\(582\) 0 0
\(583\) −950.992 −1.63120
\(584\) −31.4860 −0.0539144
\(585\) 0 0
\(586\) 13.7257i 0.0234226i
\(587\) 20.7779i 0.0353968i 0.999843 + 0.0176984i \(0.00563386\pi\)
−0.999843 + 0.0176984i \(0.994366\pi\)
\(588\) 0 0
\(589\) 578.827i 0.982729i
\(590\) 37.5457i 0.0636368i
\(591\) 0 0
\(592\) 108.336i 0.182999i
\(593\) 165.137i 0.278477i 0.990259 + 0.139239i \(0.0444655\pi\)
−0.990259 + 0.139239i \(0.955534\pi\)
\(594\) 0 0
\(595\) 408.046 0.685792
\(596\) 362.573i 0.608345i
\(597\) 0 0
\(598\) 107.931i 0.180487i
\(599\) 708.441 1.18271 0.591353 0.806413i \(-0.298594\pi\)
0.591353 + 0.806413i \(0.298594\pi\)
\(600\) 0 0
\(601\) −424.001 −0.705493 −0.352746 0.935719i \(-0.614752\pi\)
−0.352746 + 0.935719i \(0.614752\pi\)
\(602\) 55.2008 0.0916956
\(603\) 0 0
\(604\) 45.8689i 0.0759419i
\(605\) −1254.24 −2.07313
\(606\) 0 0
\(607\) 937.106i 1.54383i −0.635725 0.771916i \(-0.719299\pi\)
0.635725 0.771916i \(-0.280701\pi\)
\(608\) 120.096 0.197527
\(609\) 0 0
\(610\) 116.768i 0.191424i
\(611\) 126.367 0.206819
\(612\) 0 0
\(613\) 336.976i 0.549715i −0.961485 0.274858i \(-0.911369\pi\)
0.961485 0.274858i \(-0.0886307\pi\)
\(614\) 113.776i 0.185303i
\(615\) 0 0
\(616\) −317.733 −0.515800
\(617\) 445.267i 0.721665i 0.932631 + 0.360832i \(0.117507\pi\)
−0.932631 + 0.360832i \(0.882493\pi\)
\(618\) 0 0
\(619\) 1002.91i 1.62022i 0.586281 + 0.810108i \(0.300591\pi\)
−0.586281 + 0.810108i \(0.699409\pi\)
\(620\) −266.510 −0.429855
\(621\) 0 0
\(622\) −104.951 −0.168732
\(623\) −914.744 −1.46829
\(624\) 0 0
\(625\) −595.960 −0.953535
\(626\) 122.934i 0.196380i
\(627\) 0 0
\(628\) 150.270 0.239283
\(629\) 391.150i 0.621860i
\(630\) 0 0
\(631\) 431.979i 0.684594i 0.939592 + 0.342297i \(0.111205\pi\)
−0.939592 + 0.342297i \(0.888795\pi\)
\(632\) −185.804 −0.293994
\(633\) 0 0
\(634\) 199.772 0.315097
\(635\) −669.843 −1.05487
\(636\) 0 0
\(637\) −93.5352 −0.146837
\(638\) 986.421 1.54611
\(639\) 0 0
\(640\) 55.2960i 0.0864000i
\(641\) 1200.09 1.87222 0.936108 0.351711i \(-0.114400\pi\)
0.936108 + 0.351711i \(0.114400\pi\)
\(642\) 0 0
\(643\) 95.3336i 0.148264i −0.997248 0.0741319i \(-0.976381\pi\)
0.997248 0.0741319i \(-0.0236186\pi\)
\(644\) −146.996 −0.228255
\(645\) 0 0
\(646\) −433.612 −0.671226
\(647\) 894.999i 1.38331i 0.722230 + 0.691653i \(0.243117\pi\)
−0.722230 + 0.691653i \(0.756883\pi\)
\(648\) 0 0
\(649\) 105.557i 0.162645i
\(650\) 9.44104i 0.0145247i
\(651\) 0 0
\(652\) −476.020 −0.730093
\(653\) 447.580i 0.685421i 0.939441 + 0.342710i \(0.111345\pi\)
−0.939441 + 0.342710i \(0.888655\pi\)
\(654\) 0 0
\(655\) 418.485i 0.638909i
\(656\) 34.2898i 0.0522710i
\(657\) 0 0
\(658\) 172.104i 0.261557i
\(659\) −954.313 −1.44812 −0.724061 0.689736i \(-0.757727\pi\)
−0.724061 + 0.689736i \(0.757727\pi\)
\(660\) 0 0
\(661\) 84.5909i 0.127974i −0.997951 0.0639871i \(-0.979618\pi\)
0.997951 0.0639871i \(-0.0203816\pi\)
\(662\) 320.736i 0.484496i
\(663\) 0 0
\(664\) 7.80769 0.0117586
\(665\) 599.834i 0.902006i
\(666\) 0 0
\(667\) 456.359 0.684197
\(668\) −153.401 −0.229643
\(669\) 0 0
\(670\) 58.4768 0.0872787
\(671\) 328.285i 0.489247i
\(672\) 0 0
\(673\) 1036.46i 1.54007i −0.638004 0.770033i \(-0.720240\pi\)
0.638004 0.770033i \(-0.279760\pi\)
\(674\) 166.468i 0.246985i
\(675\) 0 0
\(676\) 265.936 0.393397
\(677\) 447.204i 0.660567i 0.943882 + 0.330283i \(0.107144\pi\)
−0.943882 + 0.330283i \(0.892856\pi\)
\(678\) 0 0
\(679\) 928.334 1.36721
\(680\) 199.649i 0.293601i
\(681\) 0 0
\(682\) −749.270 −1.09864
\(683\) −449.319 −0.657862 −0.328931 0.944354i \(-0.606688\pi\)
−0.328931 + 0.944354i \(0.606688\pi\)
\(684\) 0 0
\(685\) −1070.64 −1.56297
\(686\) 527.979i 0.769649i
\(687\) 0 0
\(688\) 27.0086i 0.0392567i
\(689\) 293.760i 0.426356i
\(690\) 0 0
\(691\) −690.035 −0.998603 −0.499302 0.866428i \(-0.666410\pi\)
−0.499302 + 0.866428i \(0.666410\pi\)
\(692\) 482.786i 0.697668i
\(693\) 0 0
\(694\) 133.593 0.192497
\(695\) 15.3239 0.0220488
\(696\) 0 0
\(697\) 123.805i 0.177625i
\(698\) −96.7666 −0.138634
\(699\) 0 0
\(700\) −12.8582 −0.0183688
\(701\) −1258.44 −1.79521 −0.897604 0.440802i \(-0.854694\pi\)
−0.897604 + 0.440802i \(0.854694\pi\)
\(702\) 0 0
\(703\) −574.996 −0.817918
\(704\) 155.460i 0.220824i
\(705\) 0 0
\(706\) 658.391 0.932566
\(707\) −699.556 −0.989471
\(708\) 0 0
\(709\) −553.558 −0.780759 −0.390379 0.920654i \(-0.627656\pi\)
−0.390379 + 0.920654i \(0.627656\pi\)
\(710\) 716.615i 1.00932i
\(711\) 0 0
\(712\) 447.565i 0.628603i
\(713\) −346.643 −0.486176
\(714\) 0 0
\(715\) 570.113i 0.797361i
\(716\) 301.367 0.420904
\(717\) 0 0
\(718\) 568.181i 0.791339i
\(719\) 73.5865i 0.102346i 0.998690 + 0.0511728i \(0.0162959\pi\)
−0.998690 + 0.0511728i \(0.983704\pi\)
\(720\) 0 0
\(721\) 746.317i 1.03511i
\(722\) 126.885i 0.175741i
\(723\) 0 0
\(724\) 655.268i 0.905067i
\(725\) 39.9190 0.0550607
\(726\) 0 0
\(727\) 969.141 1.33307 0.666534 0.745474i \(-0.267777\pi\)
0.666534 + 0.745474i \(0.267777\pi\)
\(728\) 98.1470i 0.134817i
\(729\) 0 0
\(730\) 76.9442 0.105403
\(731\) 97.5157i 0.133400i
\(732\) 0 0
\(733\) 639.495i 0.872435i 0.899841 + 0.436218i \(0.143682\pi\)
−0.899841 + 0.436218i \(0.856318\pi\)
\(734\) 221.813i 0.302198i
\(735\) 0 0
\(736\) 71.9222i 0.0977203i
\(737\) 164.402 0.223070
\(738\) 0 0
\(739\) 739.707 1.00096 0.500479 0.865749i \(-0.333157\pi\)
0.500479 + 0.865749i \(0.333157\pi\)
\(740\) 264.746i 0.357765i
\(741\) 0 0
\(742\) 400.084 0.539197
\(743\) −660.701 −0.889234 −0.444617 0.895721i \(-0.646660\pi\)
−0.444617 + 0.895721i \(0.646660\pi\)
\(744\) 0 0
\(745\) 886.042i 1.18932i
\(746\) −659.581 −0.884157
\(747\) 0 0
\(748\) 561.295i 0.750394i
\(749\) −13.6563 −0.0182327
\(750\) 0 0
\(751\) 565.842i 0.753451i −0.926325 0.376725i \(-0.877050\pi\)
0.926325 0.376725i \(-0.122950\pi\)
\(752\) 84.2071 0.111978
\(753\) 0 0
\(754\) 304.704i 0.404116i
\(755\) 112.093i 0.148467i
\(756\) 0 0
\(757\) 280.458i 0.370486i 0.982693 + 0.185243i \(0.0593072\pi\)
−0.982693 + 0.185243i \(0.940693\pi\)
\(758\) −378.539 −0.499392
\(759\) 0 0
\(760\) −293.486 −0.386166
\(761\) 1115.78i 1.46621i −0.680116 0.733104i \(-0.738071\pi\)
0.680116 0.733104i \(-0.261929\pi\)
\(762\) 0 0
\(763\) 799.972 1.04846
\(764\) −295.327 −0.386554
\(765\) 0 0
\(766\) −249.949 −0.326304
\(767\) 32.6062 0.0425114
\(768\) 0 0
\(769\) 1202.81 1.56412 0.782058 0.623205i \(-0.214170\pi\)
0.782058 + 0.623205i \(0.214170\pi\)
\(770\) 776.462 1.00839
\(771\) 0 0
\(772\) 26.6002i 0.0344563i
\(773\) 506.567i 0.655326i 0.944795 + 0.327663i \(0.106261\pi\)
−0.944795 + 0.327663i \(0.893739\pi\)
\(774\) 0 0
\(775\) −30.3219 −0.0391250
\(776\) 454.214i 0.585328i
\(777\) 0 0
\(778\) −130.869 −0.168212
\(779\) −181.995 −0.233626
\(780\) 0 0
\(781\) 2014.70i 2.57964i
\(782\) 259.678i 0.332069i
\(783\) 0 0
\(784\) −62.3291 −0.0795015
\(785\) −367.223 −0.467800
\(786\) 0 0
\(787\) −331.878 −0.421700 −0.210850 0.977518i \(-0.567623\pi\)
−0.210850 + 0.977518i \(0.567623\pi\)
\(788\) 331.870 0.421154
\(789\) 0 0
\(790\) 454.060 0.574760
\(791\) 228.761 + 611.865i 0.289205 + 0.773534i
\(792\) 0 0
\(793\) −101.407 −0.127877
\(794\) −688.903 −0.867636
\(795\) 0 0
\(796\) 363.620i 0.456809i
\(797\) 1221.80 1.53300 0.766499 0.642246i \(-0.221997\pi\)
0.766499 + 0.642246i \(0.221997\pi\)
\(798\) 0 0
\(799\) −304.033 −0.380517
\(800\) 6.29123i 0.00786404i
\(801\) 0 0
\(802\) 235.914 0.294157
\(803\) 216.322 0.269392
\(804\) 0 0
\(805\) 359.223 0.446240
\(806\) 231.448i 0.287157i
\(807\) 0 0
\(808\) 342.278i 0.423612i
\(809\) 1052.81i 1.30138i −0.759345 0.650688i \(-0.774481\pi\)
0.759345 0.650688i \(-0.225519\pi\)
\(810\) 0 0
\(811\) 748.572i 0.923023i 0.887134 + 0.461512i \(0.152693\pi\)
−0.887134 + 0.461512i \(0.847307\pi\)
\(812\) −414.990 −0.511071
\(813\) 0 0
\(814\) 744.311i 0.914387i
\(815\) 1163.28 1.42734
\(816\) 0 0
\(817\) 143.349 0.175458
\(818\) 116.433 0.142338
\(819\) 0 0
\(820\) 83.7960i 0.102190i
\(821\) 448.205i 0.545925i 0.962025 + 0.272963i \(0.0880035\pi\)
−0.962025 + 0.272963i \(0.911996\pi\)
\(822\) 0 0
\(823\) 798.338 0.970034 0.485017 0.874505i \(-0.338813\pi\)
0.485017 + 0.874505i \(0.338813\pi\)
\(824\) −365.158 −0.443152
\(825\) 0 0
\(826\) 44.4079i 0.0537626i
\(827\) 717.357i 0.867421i −0.901052 0.433711i \(-0.857204\pi\)
0.901052 0.433711i \(-0.142796\pi\)
\(828\) 0 0
\(829\) 385.912i 0.465515i 0.972535 + 0.232758i \(0.0747749\pi\)
−0.972535 + 0.232758i \(0.925225\pi\)
\(830\) −19.0801 −0.0229881
\(831\) 0 0
\(832\) −48.0213 −0.0577179
\(833\) 225.042 0.270159
\(834\) 0 0
\(835\) 374.876 0.448953
\(836\) −825.111 −0.986975
\(837\) 0 0
\(838\) 759.935i 0.906844i
\(839\) 794.047 0.946421 0.473210 0.880950i \(-0.343095\pi\)
0.473210 + 0.880950i \(0.343095\pi\)
\(840\) 0 0
\(841\) 447.362 0.531941
\(842\) 1042.86i 1.23855i
\(843\) 0 0
\(844\) 226.372 0.268213
\(845\) −649.884 −0.769094
\(846\) 0 0
\(847\) 1483.48 1.75145
\(848\) 195.753i 0.230841i
\(849\) 0 0
\(850\) 22.7148i 0.0267233i
\(851\) 344.349i 0.404640i
\(852\) 0 0
\(853\) −770.056 −0.902762 −0.451381 0.892331i \(-0.649068\pi\)
−0.451381 + 0.892331i \(0.649068\pi\)
\(854\) 138.110i 0.161721i
\(855\) 0 0
\(856\) 6.68174i 0.00780578i
\(857\) 1185.85 1.38373 0.691864 0.722028i \(-0.256790\pi\)
0.691864 + 0.722028i \(0.256790\pi\)
\(858\) 0 0
\(859\) 630.498i 0.733990i −0.930223 0.366995i \(-0.880387\pi\)
0.930223 0.366995i \(-0.119613\pi\)
\(860\) 66.0025i 0.0767471i
\(861\) 0 0
\(862\) 233.264i 0.270608i
\(863\) 1415.46i 1.64016i 0.572251 + 0.820079i \(0.306070\pi\)
−0.572251 + 0.820079i \(0.693930\pi\)
\(864\) 0 0
\(865\) 1179.81i 1.36395i
\(866\) 12.6648 0.0146245
\(867\) 0 0
\(868\) 315.220 0.363156
\(869\) 1276.55 1.46899
\(870\) 0 0
\(871\) 50.7836i 0.0583049i
\(872\) 391.409i 0.448864i
\(873\) 0 0
\(874\) −381.730 −0.436762
\(875\) 737.767 0.843163
\(876\) 0 0
\(877\) 948.293i 1.08129i −0.841250 0.540646i \(-0.818180\pi\)
0.841250 0.540646i \(-0.181820\pi\)
\(878\) 82.9219i 0.0944441i
\(879\) 0 0
\(880\) 379.907i 0.431712i
\(881\) −976.880 −1.10883 −0.554416 0.832240i \(-0.687058\pi\)
−0.554416 + 0.832240i \(0.687058\pi\)
\(882\) 0 0
\(883\) 1095.89i 1.24109i 0.784169 + 0.620547i \(0.213089\pi\)
−0.784169 + 0.620547i \(0.786911\pi\)
\(884\) 173.383 0.196135
\(885\) 0 0
\(886\) 93.3052 0.105311
\(887\) −43.3224 −0.0488414 −0.0244207 0.999702i \(-0.507774\pi\)
−0.0244207 + 0.999702i \(0.507774\pi\)
\(888\) 0 0
\(889\) 792.270 0.891192
\(890\) 1093.74i 1.22892i
\(891\) 0 0
\(892\) 687.878i 0.771164i
\(893\) 446.933i 0.500485i
\(894\) 0 0
\(895\) −736.469 −0.822871
\(896\) 65.4023i 0.0729937i
\(897\) 0 0
\(898\) 884.672i 0.985158i
\(899\) −978.620 −1.08856
\(900\) 0 0
\(901\) 706.774i 0.784433i
\(902\) 235.585i 0.261181i
\(903\) 0 0
\(904\) −299.373 + 111.928i −0.331165 + 0.123814i
\(905\) 1601.32i 1.76941i
\(906\) 0 0
\(907\) 263.495i 0.290512i −0.989394 0.145256i \(-0.953599\pi\)
0.989394 0.145256i \(-0.0464006\pi\)
\(908\) 83.8331i 0.0923272i
\(909\) 0 0
\(910\) 239.848i 0.263569i
\(911\) 501.664i 0.550674i −0.961348 0.275337i \(-0.911211\pi\)
0.961348 0.275337i \(-0.0887894\pi\)
\(912\) 0 0
\(913\) −53.6421 −0.0587537
\(914\) −504.711 −0.552200
\(915\) 0 0
\(916\) 438.165i 0.478346i
\(917\) 494.971i 0.539773i
\(918\) 0 0
\(919\) 494.486 0.538069 0.269035 0.963130i \(-0.413295\pi\)
0.269035 + 0.963130i \(0.413295\pi\)
\(920\) 175.761i 0.191044i
\(921\) 0 0
\(922\) −1059.44 −1.14907
\(923\) −622.338 −0.674255
\(924\) 0 0
\(925\) 30.1212i 0.0325634i
\(926\) 70.2449i 0.0758584i
\(927\) 0 0
\(928\) 203.046i 0.218799i
\(929\) 1794.56i 1.93171i 0.259083 + 0.965855i \(0.416580\pi\)
−0.259083 + 0.965855i \(0.583420\pi\)
\(930\) 0 0
\(931\) 330.815i 0.355333i
\(932\) 73.9843i 0.0793823i
\(933\) 0 0
\(934\) 51.6366 0.0552854
\(935\) 1371.67i 1.46703i
\(936\) 0 0
\(937\) 929.616i 0.992119i −0.868288 0.496060i \(-0.834780\pi\)
0.868288 0.496060i \(-0.165220\pi\)
\(938\) −69.1645 −0.0737361
\(939\) 0 0
\(940\) −205.782 −0.218917
\(941\) 931.115 0.989495 0.494747 0.869037i \(-0.335261\pi\)
0.494747 + 0.869037i \(0.335261\pi\)
\(942\) 0 0
\(943\) 108.991i 0.115579i
\(944\) 21.7279 0.0230168
\(945\) 0 0
\(946\) 185.560i 0.196153i
\(947\) −1258.74 −1.32919 −0.664593 0.747205i \(-0.731395\pi\)
−0.664593 + 0.747205i \(0.731395\pi\)
\(948\) 0 0
\(949\) 66.8215i 0.0704126i
\(950\) −33.3910 −0.0351485
\(951\) 0 0
\(952\) 236.138i 0.248044i
\(953\) 623.935i 0.654707i 0.944902 + 0.327353i \(0.106157\pi\)
−0.944902 + 0.327353i \(0.893843\pi\)
\(954\) 0 0
\(955\) 721.709 0.755716
\(956\) 726.112i 0.759532i
\(957\) 0 0
\(958\) 430.107i 0.448964i
\(959\) 1266.32 1.32045
\(960\) 0 0
\(961\) −217.656 −0.226489
\(962\) 229.916 0.238998
\(963\) 0 0
\(964\) −221.875 −0.230161
\(965\) 65.0046i 0.0673623i
\(966\) 0 0
\(967\) −511.263 −0.528711 −0.264355 0.964425i \(-0.585159\pi\)
−0.264355 + 0.964425i \(0.585159\pi\)
\(968\) 725.836i 0.749830i
\(969\) 0 0
\(970\) 1109.99i 1.14432i
\(971\) 1546.73 1.59292 0.796460 0.604691i \(-0.206703\pi\)
0.796460 + 0.604691i \(0.206703\pi\)
\(972\) 0 0
\(973\) −18.1247 −0.0186276
\(974\) −282.744 −0.290292
\(975\) 0 0
\(976\) −67.5744 −0.0692360
\(977\) 5.23144 0.00535459 0.00267730 0.999996i \(-0.499148\pi\)
0.00267730 + 0.999996i \(0.499148\pi\)
\(978\) 0 0
\(979\) 3074.96i 3.14092i
\(980\) 152.317 0.155426
\(981\) 0 0
\(982\) 935.797i 0.952950i
\(983\) −872.031 −0.887112 −0.443556 0.896247i \(-0.646283\pi\)
−0.443556 + 0.896247i \(0.646283\pi\)
\(984\) 0 0
\(985\) −811.010 −0.823360
\(986\) 733.106i 0.743515i
\(987\) 0 0
\(988\) 254.875i 0.257971i
\(989\) 85.8479i 0.0868027i
\(990\) 0 0
\(991\) 162.061 0.163533 0.0817664 0.996652i \(-0.473944\pi\)
0.0817664 + 0.996652i \(0.473944\pi\)
\(992\) 154.230i 0.155474i
\(993\) 0 0
\(994\) 847.590i 0.852706i
\(995\) 888.600i 0.893065i
\(996\) 0 0
\(997\) 288.619i 0.289487i 0.989469 + 0.144744i \(0.0462357\pi\)
−0.989469 + 0.144744i \(0.953764\pi\)
\(998\) −696.511 −0.697907
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.3.d.a.2033.2 yes 36
3.2 odd 2 inner 2034.3.d.a.2033.35 yes 36
113.112 even 2 inner 2034.3.d.a.2033.36 yes 36
339.338 odd 2 inner 2034.3.d.a.2033.1 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2034.3.d.a.2033.1 36 339.338 odd 2 inner
2034.3.d.a.2033.2 yes 36 1.1 even 1 trivial
2034.3.d.a.2033.35 yes 36 3.2 odd 2 inner
2034.3.d.a.2033.36 yes 36 113.112 even 2 inner