Properties

Label 2034.3.d.a
Level $2034$
Weight $3$
Character orbit 2034.d
Analytic conductor $55.422$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,3,Mod(2033,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.2033"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2034.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(55.4224857709\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q - 72 q^{4} - 8 q^{7} + 144 q^{16} + 36 q^{25} + 16 q^{28} + 64 q^{31} + 108 q^{49} - 80 q^{61} - 288 q^{64} + 248 q^{82} - 164 q^{85} + 516 q^{91} - 420 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2033.1 1.41421i 0 −2.00000 4.88752 0 −5.78081 2.82843i 0 6.91200i
2033.2 1.41421i 0 −2.00000 4.88752 0 −5.78081 2.82843i 0 6.91200i
2033.3 1.41421i 0 −2.00000 8.53661 0 −3.58070 2.82843i 0 12.0726i
2033.4 1.41421i 0 −2.00000 8.53661 0 −3.58070 2.82843i 0 12.0726i
2033.5 1.41421i 0 −2.00000 2.30035 0 −13.1969 2.82843i 0 3.25319i
2033.6 1.41421i 0 −2.00000 2.30035 0 −13.1969 2.82843i 0 3.25319i
2033.7 1.41421i 0 −2.00000 −2.80308 0 4.63324 2.82843i 0 3.96415i
2033.8 1.41421i 0 −2.00000 −2.80308 0 4.63324 2.82843i 0 3.96415i
2033.9 1.41421i 0 −2.00000 2.80308 0 4.63324 2.82843i 0 3.96415i
2033.10 1.41421i 0 −2.00000 2.80308 0 4.63324 2.82843i 0 3.96415i
2033.11 1.41421i 0 −2.00000 −8.53661 0 −3.58070 2.82843i 0 12.0726i
2033.12 1.41421i 0 −2.00000 −8.53661 0 −3.58070 2.82843i 0 12.0726i
2033.13 1.41421i 0 −2.00000 3.08580 0 9.93072 2.82843i 0 4.36398i
2033.14 1.41421i 0 −2.00000 3.08580 0 9.93072 2.82843i 0 4.36398i
2033.15 1.41421i 0 −2.00000 −4.78233 0 −4.28693 2.82843i 0 6.76323i
2033.16 1.41421i 0 −2.00000 −4.78233 0 −4.28693 2.82843i 0 6.76323i
2033.17 1.41421i 0 −2.00000 1.48971 0 9.64045 2.82843i 0 2.10677i
2033.18 1.41421i 0 −2.00000 1.48971 0 9.64045 2.82843i 0 2.10677i
2033.19 1.41421i 0 −2.00000 4.78233 0 −4.28693 2.82843i 0 6.76323i
2033.20 1.41421i 0 −2.00000 4.78233 0 −4.28693 2.82843i 0 6.76323i
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2033.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
113.b even 2 1 inner
339.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2034.3.d.a 36
3.b odd 2 1 inner 2034.3.d.a 36
113.b even 2 1 inner 2034.3.d.a 36
339.c odd 2 1 inner 2034.3.d.a 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2034.3.d.a 36 1.a even 1 1 trivial
2034.3.d.a 36 3.b odd 2 1 inner
2034.3.d.a 36 113.b even 2 1 inner
2034.3.d.a 36 339.c odd 2 1 inner