Newspace parameters
| Level: | \( N \) | \(=\) | \( 2034 = 2 \cdot 3^{2} \cdot 113 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2034.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(55.4224857709\) |
| Analytic rank: | \(0\) |
| Dimension: | \(36\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2033.1 | − | 1.41421i | 0 | −2.00000 | 4.88752 | 0 | −5.78081 | 2.82843i | 0 | − | 6.91200i | ||||||||||||||||
| 2033.2 | 1.41421i | 0 | −2.00000 | 4.88752 | 0 | −5.78081 | − | 2.82843i | 0 | 6.91200i | |||||||||||||||||
| 2033.3 | − | 1.41421i | 0 | −2.00000 | 8.53661 | 0 | −3.58070 | 2.82843i | 0 | − | 12.0726i | ||||||||||||||||
| 2033.4 | 1.41421i | 0 | −2.00000 | 8.53661 | 0 | −3.58070 | − | 2.82843i | 0 | 12.0726i | |||||||||||||||||
| 2033.5 | − | 1.41421i | 0 | −2.00000 | 2.30035 | 0 | −13.1969 | 2.82843i | 0 | − | 3.25319i | ||||||||||||||||
| 2033.6 | 1.41421i | 0 | −2.00000 | 2.30035 | 0 | −13.1969 | − | 2.82843i | 0 | 3.25319i | |||||||||||||||||
| 2033.7 | − | 1.41421i | 0 | −2.00000 | −2.80308 | 0 | 4.63324 | 2.82843i | 0 | 3.96415i | |||||||||||||||||
| 2033.8 | 1.41421i | 0 | −2.00000 | −2.80308 | 0 | 4.63324 | − | 2.82843i | 0 | − | 3.96415i | ||||||||||||||||
| 2033.9 | − | 1.41421i | 0 | −2.00000 | 2.80308 | 0 | 4.63324 | 2.82843i | 0 | − | 3.96415i | ||||||||||||||||
| 2033.10 | 1.41421i | 0 | −2.00000 | 2.80308 | 0 | 4.63324 | − | 2.82843i | 0 | 3.96415i | |||||||||||||||||
| 2033.11 | − | 1.41421i | 0 | −2.00000 | −8.53661 | 0 | −3.58070 | 2.82843i | 0 | 12.0726i | |||||||||||||||||
| 2033.12 | 1.41421i | 0 | −2.00000 | −8.53661 | 0 | −3.58070 | − | 2.82843i | 0 | − | 12.0726i | ||||||||||||||||
| 2033.13 | − | 1.41421i | 0 | −2.00000 | 3.08580 | 0 | 9.93072 | 2.82843i | 0 | − | 4.36398i | ||||||||||||||||
| 2033.14 | 1.41421i | 0 | −2.00000 | 3.08580 | 0 | 9.93072 | − | 2.82843i | 0 | 4.36398i | |||||||||||||||||
| 2033.15 | − | 1.41421i | 0 | −2.00000 | −4.78233 | 0 | −4.28693 | 2.82843i | 0 | 6.76323i | |||||||||||||||||
| 2033.16 | 1.41421i | 0 | −2.00000 | −4.78233 | 0 | −4.28693 | − | 2.82843i | 0 | − | 6.76323i | ||||||||||||||||
| 2033.17 | − | 1.41421i | 0 | −2.00000 | 1.48971 | 0 | 9.64045 | 2.82843i | 0 | − | 2.10677i | ||||||||||||||||
| 2033.18 | 1.41421i | 0 | −2.00000 | 1.48971 | 0 | 9.64045 | − | 2.82843i | 0 | 2.10677i | |||||||||||||||||
| 2033.19 | − | 1.41421i | 0 | −2.00000 | 4.78233 | 0 | −4.28693 | 2.82843i | 0 | − | 6.76323i | ||||||||||||||||
| 2033.20 | 1.41421i | 0 | −2.00000 | 4.78233 | 0 | −4.28693 | − | 2.82843i | 0 | 6.76323i | |||||||||||||||||
| See all 36 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 3.b | odd | 2 | 1 | inner |
| 113.b | even | 2 | 1 | inner |
| 339.c | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 2034.3.d.a | ✓ | 36 |
| 3.b | odd | 2 | 1 | inner | 2034.3.d.a | ✓ | 36 |
| 113.b | even | 2 | 1 | inner | 2034.3.d.a | ✓ | 36 |
| 339.c | odd | 2 | 1 | inner | 2034.3.d.a | ✓ | 36 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 2034.3.d.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
| 2034.3.d.a | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
| 2034.3.d.a | ✓ | 36 | 113.b | even | 2 | 1 | inner |
| 2034.3.d.a | ✓ | 36 | 339.c | odd | 2 | 1 | inner |