Properties

Label 2034.3.d
Level $2034$
Weight $3$
Character orbit 2034.d
Rep. character $\chi_{2034}(2033,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $2$
Sturm bound $1026$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2034.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 339 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(1026\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(2034, [\chi])\).

Total New Old
Modular forms 692 76 616
Cusp forms 676 76 600
Eisenstein series 16 0 16

Trace form

\( 76 q - 152 q^{4} - 32 q^{13} + 304 q^{16} + 236 q^{25} - 32 q^{31} + 564 q^{49} + 64 q^{52} + 40 q^{61} - 608 q^{64} + 168 q^{82} - 224 q^{85} + 536 q^{91} - 456 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(2034, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2034.3.d.a 2034.d 339.c $36$ $55.422$ None 2034.3.d.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$
2034.3.d.b 2034.d 339.c $40$ $55.422$ None 2034.3.d.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(2034, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(2034, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(339, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(678, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(1017, [\chi])\)\(^{\oplus 2}\)