Properties

Label 2034.2.f.j
Level $2034$
Weight $2$
Character orbit 2034.f
Analytic conductor $16.242$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(919,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.919"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,20,0,20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2415717711\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{17} + 301 x^{16} - 92 x^{15} + 32 x^{14} - 1420 x^{13} + 24136 x^{12} - 16952 x^{11} + \cdots + 5184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta_1 q^{5} + \beta_{11} q^{7} + q^{8} - \beta_1 q^{10} + \beta_{3} q^{11} + ( - \beta_{12} - \beta_{4}) q^{13} + \beta_{11} q^{14} + q^{16} + ( - \beta_{18} - \beta_{15} - \beta_{12} + \cdots - 1) q^{17}+ \cdots + ( - \beta_{19} + \beta_{17} - \beta_{15} + \cdots + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{2} + 20 q^{4} + 20 q^{8} + 20 q^{16} - 8 q^{17} + 4 q^{19} + 4 q^{23} - 8 q^{29} + 20 q^{32} - 8 q^{34} - 20 q^{35} - 12 q^{37} + 4 q^{38} + 16 q^{43} + 4 q^{46} - 8 q^{47} + 52 q^{49} + 36 q^{53}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 8 x^{17} + 301 x^{16} - 92 x^{15} + 32 x^{14} - 1420 x^{13} + 24136 x^{12} - 16952 x^{11} + \cdots + 5184 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 31\!\cdots\!36 \nu^{19} + \cdots + 50\!\cdots\!24 ) / 13\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 16\!\cdots\!34 \nu^{19} + \cdots + 32\!\cdots\!52 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 61\!\cdots\!76 \nu^{19} + \cdots + 10\!\cdots\!60 ) / 92\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 24\!\cdots\!26 \nu^{19} + \cdots - 88\!\cdots\!00 ) / 13\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 25\!\cdots\!48 \nu^{19} + \cdots - 78\!\cdots\!08 ) / 13\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 12\!\cdots\!71 \nu^{19} + \cdots - 15\!\cdots\!52 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 18\!\cdots\!23 \nu^{19} + \cdots - 31\!\cdots\!84 ) / 92\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 30\!\cdots\!97 \nu^{19} + \cdots + 49\!\cdots\!08 ) / 13\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 22\!\cdots\!41 \nu^{19} + \cdots + 19\!\cdots\!00 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 25\!\cdots\!63 \nu^{19} + \cdots + 20\!\cdots\!48 ) / 46\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 60\!\cdots\!06 \nu^{19} + \cdots + 10\!\cdots\!56 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 13\!\cdots\!45 \nu^{19} + \cdots - 22\!\cdots\!76 ) / 13\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 75\!\cdots\!76 \nu^{19} + \cdots + 18\!\cdots\!80 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 75\!\cdots\!30 \nu^{19} + \cdots - 22\!\cdots\!48 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 88\!\cdots\!98 \nu^{19} + \cdots + 15\!\cdots\!76 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 10\!\cdots\!31 \nu^{19} + \cdots + 22\!\cdots\!32 ) / 69\!\cdots\!92 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 78\!\cdots\!00 \nu^{19} + \cdots + 40\!\cdots\!08 ) / 46\!\cdots\!28 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 70\!\cdots\!68 \nu^{19} + \cdots - 21\!\cdots\!04 ) / 13\!\cdots\!84 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{16} - \beta_{12} - 6\beta_{4} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2 \beta_{19} + 2 \beta_{18} - \beta_{17} + \beta_{16} + \beta_{15} + \beta_{14} - \beta_{13} + \beta_{12} + \cdots + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{18} - 13\beta_{15} + 14\beta_{14} - 4\beta_{11} + 2\beta_{8} - \beta_{6} + 2\beta _1 - 63 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 17 \beta_{16} + 22 \beta_{15} + 17 \beta_{14} + 17 \beta_{13} - 22 \beta_{12} + 17 \beta_{11} + \cdots + 41 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2 \beta_{19} - 17 \beta_{18} - 4 \beta_{17} - 172 \beta_{16} - 86 \beta_{13} + 153 \beta_{12} + \cdots + 40 \beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 463 \beta_{19} - 455 \beta_{18} + 293 \beta_{17} - 233 \beta_{16} - 354 \beta_{15} - 233 \beta_{14} + \cdots - 641 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 50 \beta_{19} - 243 \beta_{18} - 110 \beta_{17} + 1793 \beta_{15} - 2090 \beta_{14} + 1446 \beta_{11} + \cdots + 8961 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 3097 \beta_{16} - 5146 \beta_{15} - 3097 \beta_{14} - 3561 \beta_{13} + 5146 \beta_{12} - 3561 \beta_{11} + \cdots - 9221 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 932 \beta_{19} + 3333 \beta_{18} + 2192 \beta_{17} + 25598 \beta_{16} + 22270 \beta_{13} + \cdots - 9496 \beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 83561 \beta_{19} + 79177 \beta_{18} - 60617 \beta_{17} + 41213 \beta_{16} + 71556 \beta_{15} + \cdots + 127895 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 15782 \beta_{19} + 44835 \beta_{18} + 38442 \beta_{17} - 263017 \beta_{15} + 316502 \beta_{14} + \cdots - 1423209 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 551021 \beta_{16} + 973226 \beta_{15} + 551021 \beta_{14} + 722129 \beta_{13} - 973226 \beta_{12} + \cdots + 1741673 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 255528 \beta_{19} - 594773 \beta_{18} - 629548 \beta_{17} - 3944178 \beta_{16} - 4737310 \beta_{13} + \cdots + 1957276 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 14823173 \beta_{19} - 13564077 \beta_{18} + 11825977 \beta_{17} - 7389021 \beta_{16} + \cdots - 23499119 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 4024562 \beta_{19} - 7801415 \beta_{18} - 9877206 \beta_{17} + 42220889 \beta_{15} - 49451086 \beta_{14} + \cdots + 237329769 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 99181077 \beta_{16} - 174817854 \beta_{15} - 99181077 \beta_{14} - 144756137 \beta_{13} + \cdots - 315726173 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( - 62123188 \beta_{19} + 101348977 \beta_{18} + 150486080 \beta_{17} + 622905442 \beta_{16} + \cdots - 390728528 \beta_1 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 2629105869 \beta_{19} + 2328133709 \beta_{18} - 2249308185 \beta_{17} + 1330782453 \beta_{16} + \cdots + 4236635003 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(1\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
919.1
2.55481 + 2.55481i
2.06934 + 2.06934i
1.23917 + 1.23917i
1.20519 + 1.20519i
0.218549 + 0.218549i
−0.272826 0.272826i
−0.513478 0.513478i
−1.47767 1.47767i
−2.41746 2.41746i
−2.60563 2.60563i
2.55481 2.55481i
2.06934 2.06934i
1.23917 1.23917i
1.20519 1.20519i
0.218549 0.218549i
−0.272826 + 0.272826i
−0.513478 + 0.513478i
−1.47767 + 1.47767i
−2.41746 + 2.41746i
−2.60563 + 2.60563i
1.00000 0 1.00000 −2.55481 2.55481i 0 3.17380 1.00000 0 −2.55481 2.55481i
919.2 1.00000 0 1.00000 −2.06934 2.06934i 0 −2.19510 1.00000 0 −2.06934 2.06934i
919.3 1.00000 0 1.00000 −1.23917 1.23917i 0 −1.76031 1.00000 0 −1.23917 1.23917i
919.4 1.00000 0 1.00000 −1.20519 1.20519i 0 −0.927487 1.00000 0 −1.20519 1.20519i
919.5 1.00000 0 1.00000 −0.218549 0.218549i 0 3.38306 1.00000 0 −0.218549 0.218549i
919.6 1.00000 0 1.00000 0.272826 + 0.272826i 0 4.90707 1.00000 0 0.272826 + 0.272826i
919.7 1.00000 0 1.00000 0.513478 + 0.513478i 0 −0.280847 1.00000 0 0.513478 + 0.513478i
919.8 1.00000 0 1.00000 1.47767 + 1.47767i 0 −4.93079 1.00000 0 1.47767 + 1.47767i
919.9 1.00000 0 1.00000 2.41746 + 2.41746i 0 −3.53917 1.00000 0 2.41746 + 2.41746i
919.10 1.00000 0 1.00000 2.60563 + 2.60563i 0 2.16977 1.00000 0 2.60563 + 2.60563i
1567.1 1.00000 0 1.00000 −2.55481 + 2.55481i 0 3.17380 1.00000 0 −2.55481 + 2.55481i
1567.2 1.00000 0 1.00000 −2.06934 + 2.06934i 0 −2.19510 1.00000 0 −2.06934 + 2.06934i
1567.3 1.00000 0 1.00000 −1.23917 + 1.23917i 0 −1.76031 1.00000 0 −1.23917 + 1.23917i
1567.4 1.00000 0 1.00000 −1.20519 + 1.20519i 0 −0.927487 1.00000 0 −1.20519 + 1.20519i
1567.5 1.00000 0 1.00000 −0.218549 + 0.218549i 0 3.38306 1.00000 0 −0.218549 + 0.218549i
1567.6 1.00000 0 1.00000 0.272826 0.272826i 0 4.90707 1.00000 0 0.272826 0.272826i
1567.7 1.00000 0 1.00000 0.513478 0.513478i 0 −0.280847 1.00000 0 0.513478 0.513478i
1567.8 1.00000 0 1.00000 1.47767 1.47767i 0 −4.93079 1.00000 0 1.47767 1.47767i
1567.9 1.00000 0 1.00000 2.41746 2.41746i 0 −3.53917 1.00000 0 2.41746 2.41746i
1567.10 1.00000 0 1.00000 2.60563 2.60563i 0 2.16977 1.00000 0 2.60563 2.60563i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 919.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
113.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2034.2.f.j yes 20
3.b odd 2 1 2034.2.f.i 20
113.c even 4 1 inner 2034.2.f.j yes 20
339.e odd 4 1 2034.2.f.i 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2034.2.f.i 20 3.b odd 2 1
2034.2.f.i 20 339.e odd 4 1
2034.2.f.j yes 20 1.a even 1 1 trivial
2034.2.f.j yes 20 113.c even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{20} + 8 T_{5}^{17} + 301 T_{5}^{16} + 92 T_{5}^{15} + 32 T_{5}^{14} + 1420 T_{5}^{13} + \cdots + 5184 \) acting on \(S_{2}^{\mathrm{new}}(2034, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{20} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} + 8 T^{17} + \cdots + 5184 \) Copy content Toggle raw display
$7$ \( (T^{10} - 48 T^{8} + \cdots + 2008)^{2} \) Copy content Toggle raw display
$11$ \( T^{20} + 130 T^{18} + \cdots + 1218816 \) Copy content Toggle raw display
$13$ \( T^{20} + 110 T^{18} + \cdots + 26873856 \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 360417721104 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 2684068864 \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 195500159716 \) Copy content Toggle raw display
$29$ \( T^{20} + \cdots + 944099835904 \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 210482758656 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 865748367936 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 72\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{20} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 20927672896 \) Copy content Toggle raw display
$53$ \( (T^{10} - 18 T^{9} + \cdots + 52379136)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 196191790895104 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 361731185869824 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 97\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 20\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 119519118950400 \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 36827145216 \) Copy content Toggle raw display
$83$ \( (T^{10} + 6 T^{9} + \cdots - 605931264)^{2} \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 32\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( (T^{10} + 2 T^{9} + \cdots - 12021732544)^{2} \) Copy content Toggle raw display
show more
show less