Properties

Label 2034.2.c.i.451.9
Level $2034$
Weight $2$
Character 2034.451
Analytic conductor $16.242$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(451,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,0,10,0,0,4,10,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2415717711\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 29x^{8} + 264x^{6} + 804x^{4} + 688x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 678)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 451.9
Root \(3.19149i\) of defining polynomial
Character \(\chi\) \(=\) 2034.451
Dual form 2034.2.c.i.451.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +3.19149i q^{5} +4.56483 q^{7} +1.00000 q^{8} +3.19149i q^{10} +3.01570 q^{11} +3.43896 q^{13} +4.56483 q^{14} +1.00000 q^{16} +1.81816i q^{17} -5.01570i q^{19} +3.19149i q^{20} +3.01570 q^{22} +2.17579i q^{23} -5.18563 q^{25} +3.43896 q^{26} +4.56483 q^{28} -7.37713i q^{29} -9.20133 q^{31} +1.00000 q^{32} +1.81816i q^{34} +14.5686i q^{35} -3.26317i q^{37} -5.01570i q^{38} +3.19149i q^{40} -6.38299 q^{41} -8.75046i q^{43} +3.01570 q^{44} +2.17579i q^{46} +2.62667i q^{47} +13.8377 q^{49} -5.18563 q^{50} +3.43896 q^{52} -11.1020 q^{53} +9.62459i q^{55} +4.56483 q^{56} -7.37713i q^{58} +1.43896i q^{59} +8.19736 q^{61} -9.20133 q^{62} +1.00000 q^{64} +10.9754i q^{65} +8.75046i q^{67} +1.81816i q^{68} +14.5686i q^{70} +6.09703i q^{71} -3.26317i q^{74} -5.01570i q^{76} +13.7662 q^{77} -2.24747i q^{79} +3.19149i q^{80} -6.38299 q^{82} -10.7505 q^{83} -5.80264 q^{85} -8.75046i q^{86} +3.01570 q^{88} -12.8920i q^{89} +15.6983 q^{91} +2.17579i q^{92} +2.62667i q^{94} +16.0076 q^{95} -5.50885 q^{97} +13.8377 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 10 q^{4} + 4 q^{7} + 10 q^{8} - 2 q^{11} + 6 q^{13} + 4 q^{14} + 10 q^{16} - 2 q^{22} - 8 q^{25} + 6 q^{26} + 4 q^{28} - 16 q^{31} + 10 q^{32} + 4 q^{41} - 2 q^{44} + 10 q^{49} - 8 q^{50}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.19149i 1.42728i 0.700513 + 0.713640i \(0.252955\pi\)
−0.700513 + 0.713640i \(0.747045\pi\)
\(6\) 0 0
\(7\) 4.56483 1.72534 0.862671 0.505765i \(-0.168790\pi\)
0.862671 + 0.505765i \(0.168790\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 3.19149i 1.00924i
\(11\) 3.01570 0.909268 0.454634 0.890678i \(-0.349770\pi\)
0.454634 + 0.890678i \(0.349770\pi\)
\(12\) 0 0
\(13\) 3.43896 0.953797 0.476898 0.878958i \(-0.341761\pi\)
0.476898 + 0.878958i \(0.341761\pi\)
\(14\) 4.56483 1.22000
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.81816i 0.440968i 0.975391 + 0.220484i \(0.0707638\pi\)
−0.975391 + 0.220484i \(0.929236\pi\)
\(18\) 0 0
\(19\) 5.01570i 1.15068i −0.817914 0.575341i \(-0.804870\pi\)
0.817914 0.575341i \(-0.195130\pi\)
\(20\) 3.19149i 0.713640i
\(21\) 0 0
\(22\) 3.01570 0.642950
\(23\) 2.17579i 0.453684i 0.973932 + 0.226842i \(0.0728401\pi\)
−0.973932 + 0.226842i \(0.927160\pi\)
\(24\) 0 0
\(25\) −5.18563 −1.03713
\(26\) 3.43896 0.674436
\(27\) 0 0
\(28\) 4.56483 0.862671
\(29\) 7.37713i 1.36990i −0.728591 0.684949i \(-0.759825\pi\)
0.728591 0.684949i \(-0.240175\pi\)
\(30\) 0 0
\(31\) −9.20133 −1.65261 −0.826304 0.563224i \(-0.809561\pi\)
−0.826304 + 0.563224i \(0.809561\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 1.81816i 0.311812i
\(35\) 14.5686i 2.46255i
\(36\) 0 0
\(37\) 3.26317i 0.536462i −0.963355 0.268231i \(-0.913561\pi\)
0.963355 0.268231i \(-0.0864391\pi\)
\(38\) 5.01570i 0.813654i
\(39\) 0 0
\(40\) 3.19149i 0.504619i
\(41\) −6.38299 −0.996855 −0.498428 0.866931i \(-0.666089\pi\)
−0.498428 + 0.866931i \(0.666089\pi\)
\(42\) 0 0
\(43\) 8.75046i 1.33443i −0.744864 0.667216i \(-0.767486\pi\)
0.744864 0.667216i \(-0.232514\pi\)
\(44\) 3.01570 0.454634
\(45\) 0 0
\(46\) 2.17579i 0.320803i
\(47\) 2.62667i 0.383139i 0.981479 + 0.191569i \(0.0613577\pi\)
−0.981479 + 0.191569i \(0.938642\pi\)
\(48\) 0 0
\(49\) 13.8377 1.97681
\(50\) −5.18563 −0.733359
\(51\) 0 0
\(52\) 3.43896 0.476898
\(53\) −11.1020 −1.52498 −0.762491 0.646998i \(-0.776024\pi\)
−0.762491 + 0.646998i \(0.776024\pi\)
\(54\) 0 0
\(55\) 9.62459i 1.29778i
\(56\) 4.56483 0.610001
\(57\) 0 0
\(58\) 7.37713i 0.968664i
\(59\) 1.43896i 0.187337i 0.995603 + 0.0936685i \(0.0298594\pi\)
−0.995603 + 0.0936685i \(0.970141\pi\)
\(60\) 0 0
\(61\) 8.19736 1.04956 0.524782 0.851237i \(-0.324147\pi\)
0.524782 + 0.851237i \(0.324147\pi\)
\(62\) −9.20133 −1.16857
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 10.9754i 1.36133i
\(66\) 0 0
\(67\) 8.75046i 1.06904i 0.845156 + 0.534519i \(0.179507\pi\)
−0.845156 + 0.534519i \(0.820493\pi\)
\(68\) 1.81816i 0.220484i
\(69\) 0 0
\(70\) 14.5686i 1.74128i
\(71\) 6.09703i 0.723585i 0.932259 + 0.361792i \(0.117835\pi\)
−0.932259 + 0.361792i \(0.882165\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 3.26317i 0.379336i
\(75\) 0 0
\(76\) 5.01570i 0.575341i
\(77\) 13.7662 1.56880
\(78\) 0 0
\(79\) 2.24747i 0.252860i −0.991976 0.126430i \(-0.959648\pi\)
0.991976 0.126430i \(-0.0403519\pi\)
\(80\) 3.19149i 0.356820i
\(81\) 0 0
\(82\) −6.38299 −0.704883
\(83\) −10.7505 −1.18002 −0.590008 0.807397i \(-0.700875\pi\)
−0.590008 + 0.807397i \(0.700875\pi\)
\(84\) 0 0
\(85\) −5.80264 −0.629385
\(86\) 8.75046i 0.943586i
\(87\) 0 0
\(88\) 3.01570 0.321475
\(89\) 12.8920i 1.36655i −0.730160 0.683276i \(-0.760555\pi\)
0.730160 0.683276i \(-0.239445\pi\)
\(90\) 0 0
\(91\) 15.6983 1.64563
\(92\) 2.17579i 0.226842i
\(93\) 0 0
\(94\) 2.62667i 0.270920i
\(95\) 16.0076 1.64234
\(96\) 0 0
\(97\) −5.50885 −0.559339 −0.279670 0.960096i \(-0.590225\pi\)
−0.279670 + 0.960096i \(0.590225\pi\)
\(98\) 13.8377 1.39781
\(99\) 0 0
\(100\) −5.18563 −0.518563
\(101\) 5.44322i 0.541621i 0.962633 + 0.270810i \(0.0872917\pi\)
−0.962633 + 0.270810i \(0.912708\pi\)
\(102\) 0 0
\(103\) 17.9035i 1.76408i 0.471173 + 0.882041i \(0.343831\pi\)
−0.471173 + 0.882041i \(0.656169\pi\)
\(104\) 3.43896 0.337218
\(105\) 0 0
\(106\) −11.1020 −1.07833
\(107\) 8.53721i 0.825324i 0.910884 + 0.412662i \(0.135401\pi\)
−0.910884 + 0.412662i \(0.864599\pi\)
\(108\) 0 0
\(109\) −2.59244 −0.248311 −0.124155 0.992263i \(-0.539622\pi\)
−0.124155 + 0.992263i \(0.539622\pi\)
\(110\) 9.62459i 0.917669i
\(111\) 0 0
\(112\) 4.56483 0.431336
\(113\) 7.83386 7.18544i 0.736948 0.675950i
\(114\) 0 0
\(115\) −6.94402 −0.647534
\(116\) 7.37713i 0.684949i
\(117\) 0 0
\(118\) 1.43896i 0.132467i
\(119\) 8.29958i 0.760822i
\(120\) 0 0
\(121\) −1.90554 −0.173231
\(122\) 8.19736 0.742154
\(123\) 0 0
\(124\) −9.20133 −0.826304
\(125\) 0.592441i 0.0529896i
\(126\) 0 0
\(127\) −13.0036 −1.15388 −0.576942 0.816785i \(-0.695754\pi\)
−0.576942 + 0.816785i \(0.695754\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 10.9754i 0.962609i
\(131\) −6.90554 −0.603340 −0.301670 0.953412i \(-0.597544\pi\)
−0.301670 + 0.953412i \(0.597544\pi\)
\(132\) 0 0
\(133\) 22.8958i 1.98532i
\(134\) 8.75046i 0.755925i
\(135\) 0 0
\(136\) 1.81816i 0.155906i
\(137\) 5.30771i 0.453468i −0.973957 0.226734i \(-0.927195\pi\)
0.973957 0.226734i \(-0.0728048\pi\)
\(138\) 0 0
\(139\) −0.548938 −0.0465604 −0.0232802 0.999729i \(-0.507411\pi\)
−0.0232802 + 0.999729i \(0.507411\pi\)
\(140\) 14.5686i 1.23127i
\(141\) 0 0
\(142\) 6.09703i 0.511652i
\(143\) 10.3709 0.867257
\(144\) 0 0
\(145\) 23.5440 1.95523
\(146\) 0 0
\(147\) 0 0
\(148\) 3.26317i 0.268231i
\(149\) 16.8606 1.38128 0.690638 0.723201i \(-0.257330\pi\)
0.690638 + 0.723201i \(0.257330\pi\)
\(150\) 0 0
\(151\) 5.12540i 0.417099i −0.978012 0.208549i \(-0.933126\pi\)
0.978012 0.208549i \(-0.0668742\pi\)
\(152\) 5.01570i 0.406827i
\(153\) 0 0
\(154\) 13.7662 1.10931
\(155\) 29.3660i 2.35873i
\(156\) 0 0
\(157\) −0.506663 −0.0404361 −0.0202181 0.999796i \(-0.506436\pi\)
−0.0202181 + 0.999796i \(0.506436\pi\)
\(158\) 2.24747i 0.178799i
\(159\) 0 0
\(160\) 3.19149i 0.252310i
\(161\) 9.93211i 0.782760i
\(162\) 0 0
\(163\) −14.2049 −1.11262 −0.556308 0.830976i \(-0.687783\pi\)
−0.556308 + 0.830976i \(0.687783\pi\)
\(164\) −6.38299 −0.498428
\(165\) 0 0
\(166\) −10.7505 −0.834397
\(167\) 11.3348i 0.877117i −0.898703 0.438559i \(-0.855489\pi\)
0.898703 0.438559i \(-0.144511\pi\)
\(168\) 0 0
\(169\) −1.17353 −0.0902718
\(170\) −5.80264 −0.445042
\(171\) 0 0
\(172\) 8.75046i 0.667216i
\(173\) −15.4301 −1.17313 −0.586564 0.809903i \(-0.699520\pi\)
−0.586564 + 0.809903i \(0.699520\pi\)
\(174\) 0 0
\(175\) −23.6715 −1.78940
\(176\) 3.01570 0.227317
\(177\) 0 0
\(178\) 12.8920i 0.966298i
\(179\) 24.4763i 1.82945i 0.404079 + 0.914724i \(0.367592\pi\)
−0.404079 + 0.914724i \(0.632408\pi\)
\(180\) 0 0
\(181\) 15.2183i 1.13116i 0.824692 + 0.565582i \(0.191348\pi\)
−0.824692 + 0.565582i \(0.808652\pi\)
\(182\) 15.6983 1.16363
\(183\) 0 0
\(184\) 2.17579i 0.160401i
\(185\) 10.4144 0.765681
\(186\) 0 0
\(187\) 5.48303i 0.400959i
\(188\) 2.62667i 0.191569i
\(189\) 0 0
\(190\) 16.0076 1.16131
\(191\) 25.6960i 1.85930i −0.368446 0.929649i \(-0.620110\pi\)
0.368446 0.929649i \(-0.379890\pi\)
\(192\) 0 0
\(193\) 17.3161i 1.24644i 0.782045 + 0.623222i \(0.214177\pi\)
−0.782045 + 0.623222i \(0.785823\pi\)
\(194\) −5.50885 −0.395513
\(195\) 0 0
\(196\) 13.8377 0.988404
\(197\) 10.6619i 0.759626i −0.925063 0.379813i \(-0.875988\pi\)
0.925063 0.379813i \(-0.124012\pi\)
\(198\) 0 0
\(199\) 11.3087i 0.801651i 0.916154 + 0.400825i \(0.131277\pi\)
−0.916154 + 0.400825i \(0.868723\pi\)
\(200\) −5.18563 −0.366680
\(201\) 0 0
\(202\) 5.44322i 0.382984i
\(203\) 33.6753i 2.36354i
\(204\) 0 0
\(205\) 20.3713i 1.42279i
\(206\) 17.9035i 1.24739i
\(207\) 0 0
\(208\) 3.43896 0.238449
\(209\) 15.1259i 1.04628i
\(210\) 0 0
\(211\) 17.8102 1.22611 0.613053 0.790042i \(-0.289941\pi\)
0.613053 + 0.790042i \(0.289941\pi\)
\(212\) −11.1020 −0.762491
\(213\) 0 0
\(214\) 8.53721i 0.583592i
\(215\) 27.9270 1.90461
\(216\) 0 0
\(217\) −42.0025 −2.85132
\(218\) −2.59244 −0.175582
\(219\) 0 0
\(220\) 9.62459i 0.648890i
\(221\) 6.25258i 0.420594i
\(222\) 0 0
\(223\) 20.9136i 1.40048i 0.713909 + 0.700239i \(0.246923\pi\)
−0.713909 + 0.700239i \(0.753077\pi\)
\(224\) 4.56483 0.305000
\(225\) 0 0
\(226\) 7.83386 7.18544i 0.521101 0.477969i
\(227\) 7.60871 0.505008 0.252504 0.967596i \(-0.418746\pi\)
0.252504 + 0.967596i \(0.418746\pi\)
\(228\) 0 0
\(229\) 21.4085i 1.41472i −0.706856 0.707358i \(-0.749887\pi\)
0.706856 0.707358i \(-0.250113\pi\)
\(230\) −6.94402 −0.457875
\(231\) 0 0
\(232\) 7.37713i 0.484332i
\(233\) −12.4144 −0.813294 −0.406647 0.913585i \(-0.633302\pi\)
−0.406647 + 0.913585i \(0.633302\pi\)
\(234\) 0 0
\(235\) −8.38299 −0.546846
\(236\) 1.43896i 0.0936685i
\(237\) 0 0
\(238\) 8.29958i 0.537982i
\(239\) 9.97618 0.645305 0.322653 0.946517i \(-0.395425\pi\)
0.322653 + 0.946517i \(0.395425\pi\)
\(240\) 0 0
\(241\) 12.2766 0.790806 0.395403 0.918508i \(-0.370605\pi\)
0.395403 + 0.918508i \(0.370605\pi\)
\(242\) −1.90554 −0.122493
\(243\) 0 0
\(244\) 8.19736 0.524782
\(245\) 44.1628i 2.82146i
\(246\) 0 0
\(247\) 17.2488i 1.09752i
\(248\) −9.20133 −0.584285
\(249\) 0 0
\(250\) 0.592441i 0.0374693i
\(251\) 1.42251 0.0897882 0.0448941 0.998992i \(-0.485705\pi\)
0.0448941 + 0.998992i \(0.485705\pi\)
\(252\) 0 0
\(253\) 6.56154i 0.412520i
\(254\) −13.0036 −0.815919
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −23.5202 −1.46715 −0.733576 0.679608i \(-0.762150\pi\)
−0.733576 + 0.679608i \(0.762150\pi\)
\(258\) 0 0
\(259\) 14.8958i 0.925581i
\(260\) 10.9754i 0.680667i
\(261\) 0 0
\(262\) −6.90554 −0.426626
\(263\) 29.8024i 1.83769i −0.394614 0.918847i \(-0.629122\pi\)
0.394614 0.918847i \(-0.370878\pi\)
\(264\) 0 0
\(265\) 35.4321i 2.17658i
\(266\) 22.8958i 1.40383i
\(267\) 0 0
\(268\) 8.75046i 0.534519i
\(269\) 7.21117i 0.439673i −0.975537 0.219837i \(-0.929448\pi\)
0.975537 0.219837i \(-0.0705524\pi\)
\(270\) 0 0
\(271\) 26.3396i 1.60002i −0.599989 0.800008i \(-0.704828\pi\)
0.599989 0.800008i \(-0.295172\pi\)
\(272\) 1.81816i 0.110242i
\(273\) 0 0
\(274\) 5.30771i 0.320650i
\(275\) −15.6383 −0.943026
\(276\) 0 0
\(277\) 29.5549 1.77578 0.887891 0.460053i \(-0.152170\pi\)
0.887891 + 0.460053i \(0.152170\pi\)
\(278\) −0.548938 −0.0329231
\(279\) 0 0
\(280\) 14.5686i 0.870641i
\(281\) 21.5408i 1.28502i −0.766278 0.642509i \(-0.777894\pi\)
0.766278 0.642509i \(-0.222106\pi\)
\(282\) 0 0
\(283\) −21.8295 −1.29763 −0.648815 0.760946i \(-0.724735\pi\)
−0.648815 + 0.760946i \(0.724735\pi\)
\(284\) 6.09703i 0.361792i
\(285\) 0 0
\(286\) 10.3709 0.613244
\(287\) −29.1372 −1.71992
\(288\) 0 0
\(289\) 13.6943 0.805547
\(290\) 23.5440 1.38255
\(291\) 0 0
\(292\) 0 0
\(293\) 22.9788i 1.34243i 0.741261 + 0.671216i \(0.234228\pi\)
−0.741261 + 0.671216i \(0.765772\pi\)
\(294\) 0 0
\(295\) −4.59244 −0.267382
\(296\) 3.26317i 0.189668i
\(297\) 0 0
\(298\) 16.8606 0.976710
\(299\) 7.48247i 0.432722i
\(300\) 0 0
\(301\) 39.9443i 2.30235i
\(302\) 5.12540i 0.294933i
\(303\) 0 0
\(304\) 5.01570i 0.287670i
\(305\) 26.1618i 1.49802i
\(306\) 0 0
\(307\) −6.08578 −0.347334 −0.173667 0.984804i \(-0.555562\pi\)
−0.173667 + 0.984804i \(0.555562\pi\)
\(308\) 13.7662 0.784400
\(309\) 0 0
\(310\) 29.3660i 1.66788i
\(311\) −15.6439 −0.887084 −0.443542 0.896254i \(-0.646278\pi\)
−0.443542 + 0.896254i \(0.646278\pi\)
\(312\) 0 0
\(313\) −7.81637 −0.441807 −0.220904 0.975296i \(-0.570901\pi\)
−0.220904 + 0.975296i \(0.570901\pi\)
\(314\) −0.506663 −0.0285927
\(315\) 0 0
\(316\) 2.24747i 0.126430i
\(317\) 24.5287 1.37767 0.688835 0.724918i \(-0.258122\pi\)
0.688835 + 0.724918i \(0.258122\pi\)
\(318\) 0 0
\(319\) 22.2472i 1.24560i
\(320\) 3.19149i 0.178410i
\(321\) 0 0
\(322\) 9.93211i 0.553495i
\(323\) 9.11935 0.507414
\(324\) 0 0
\(325\) −17.8332 −0.989208
\(326\) −14.2049 −0.786739
\(327\) 0 0
\(328\) −6.38299 −0.352442
\(329\) 11.9903i 0.661045i
\(330\) 0 0
\(331\) −19.4586 −1.06954 −0.534772 0.844996i \(-0.679602\pi\)
−0.534772 + 0.844996i \(0.679602\pi\)
\(332\) −10.7505 −0.590008
\(333\) 0 0
\(334\) 11.3348i 0.620215i
\(335\) −27.9270 −1.52582
\(336\) 0 0
\(337\) −29.7452 −1.62032 −0.810162 0.586206i \(-0.800621\pi\)
−0.810162 + 0.586206i \(0.800621\pi\)
\(338\) −1.17353 −0.0638318
\(339\) 0 0
\(340\) −5.80264 −0.314693
\(341\) −27.7485 −1.50266
\(342\) 0 0
\(343\) 31.2127 1.68533
\(344\) 8.75046i 0.471793i
\(345\) 0 0
\(346\) −15.4301 −0.829527
\(347\) −22.1748 −1.19040 −0.595202 0.803576i \(-0.702928\pi\)
−0.595202 + 0.803576i \(0.702928\pi\)
\(348\) 0 0
\(349\) 32.9799i 1.76537i 0.469962 + 0.882687i \(0.344268\pi\)
−0.469962 + 0.882687i \(0.655732\pi\)
\(350\) −23.6715 −1.26530
\(351\) 0 0
\(352\) 3.01570 0.160737
\(353\) 26.7853 1.42564 0.712818 0.701349i \(-0.247418\pi\)
0.712818 + 0.701349i \(0.247418\pi\)
\(354\) 0 0
\(355\) −19.4586 −1.03276
\(356\) 12.8920i 0.683276i
\(357\) 0 0
\(358\) 24.4763i 1.29362i
\(359\) 7.12919i 0.376264i −0.982144 0.188132i \(-0.939757\pi\)
0.982144 0.188132i \(-0.0602433\pi\)
\(360\) 0 0
\(361\) −6.15727 −0.324067
\(362\) 15.2183i 0.799854i
\(363\) 0 0
\(364\) 15.6983 0.822813
\(365\) 0 0
\(366\) 0 0
\(367\) 14.3862 0.750954 0.375477 0.926832i \(-0.377479\pi\)
0.375477 + 0.926832i \(0.377479\pi\)
\(368\) 2.17579i 0.113421i
\(369\) 0 0
\(370\) 10.4144 0.541418
\(371\) −50.6789 −2.63112
\(372\) 0 0
\(373\) 9.22204i 0.477499i 0.971081 + 0.238750i \(0.0767375\pi\)
−0.971081 + 0.238750i \(0.923262\pi\)
\(374\) 5.48303i 0.283521i
\(375\) 0 0
\(376\) 2.62667i 0.135460i
\(377\) 25.3697i 1.30660i
\(378\) 0 0
\(379\) 37.8014i 1.94173i 0.239637 + 0.970863i \(0.422972\pi\)
−0.239637 + 0.970863i \(0.577028\pi\)
\(380\) 16.0076 0.821172
\(381\) 0 0
\(382\) 25.6960i 1.31472i
\(383\) 22.1160 1.13007 0.565036 0.825066i \(-0.308862\pi\)
0.565036 + 0.825066i \(0.308862\pi\)
\(384\) 0 0
\(385\) 43.9346i 2.23912i
\(386\) 17.3161i 0.881368i
\(387\) 0 0
\(388\) −5.50885 −0.279670
\(389\) 0.259311 0.0131476 0.00657380 0.999978i \(-0.497907\pi\)
0.00657380 + 0.999978i \(0.497907\pi\)
\(390\) 0 0
\(391\) −3.95594 −0.200060
\(392\) 13.8377 0.698907
\(393\) 0 0
\(394\) 10.6619i 0.537137i
\(395\) 7.17278 0.360902
\(396\) 0 0
\(397\) 19.2183i 0.964536i 0.876024 + 0.482268i \(0.160187\pi\)
−0.876024 + 0.482268i \(0.839813\pi\)
\(398\) 11.3087i 0.566853i
\(399\) 0 0
\(400\) −5.18563 −0.259282
\(401\) −7.66772 −0.382908 −0.191454 0.981502i \(-0.561320\pi\)
−0.191454 + 0.981502i \(0.561320\pi\)
\(402\) 0 0
\(403\) −31.6430 −1.57625
\(404\) 5.44322i 0.270810i
\(405\) 0 0
\(406\) 33.6753i 1.67128i
\(407\) 9.84075i 0.487788i
\(408\) 0 0
\(409\) 28.7781i 1.42298i 0.702694 + 0.711492i \(0.251980\pi\)
−0.702694 + 0.711492i \(0.748020\pi\)
\(410\) 20.3713i 1.00606i
\(411\) 0 0
\(412\) 17.9035i 0.882041i
\(413\) 6.56862i 0.323221i
\(414\) 0 0
\(415\) 34.3100i 1.68421i
\(416\) 3.43896 0.168609
\(417\) 0 0
\(418\) 15.1259i 0.739830i
\(419\) 27.7414i 1.35526i −0.735405 0.677628i \(-0.763008\pi\)
0.735405 0.677628i \(-0.236992\pi\)
\(420\) 0 0
\(421\) 33.8174 1.64816 0.824080 0.566473i \(-0.191692\pi\)
0.824080 + 0.566473i \(0.191692\pi\)
\(422\) 17.8102 0.866988
\(423\) 0 0
\(424\) −11.1020 −0.539163
\(425\) 9.42830i 0.457340i
\(426\) 0 0
\(427\) 37.4195 1.81086
\(428\) 8.53721i 0.412662i
\(429\) 0 0
\(430\) 27.9270 1.34676
\(431\) 0.780893i 0.0376143i −0.999823 0.0188071i \(-0.994013\pi\)
0.999823 0.0188071i \(-0.00598685\pi\)
\(432\) 0 0
\(433\) 32.7127i 1.57207i −0.618181 0.786036i \(-0.712130\pi\)
0.618181 0.786036i \(-0.287870\pi\)
\(434\) −42.0025 −2.01618
\(435\) 0 0
\(436\) −2.59244 −0.124155
\(437\) 10.9131 0.522045
\(438\) 0 0
\(439\) 10.5954 0.505690 0.252845 0.967507i \(-0.418634\pi\)
0.252845 + 0.967507i \(0.418634\pi\)
\(440\) 9.62459i 0.458835i
\(441\) 0 0
\(442\) 6.25258i 0.297405i
\(443\) −38.0625 −1.80840 −0.904201 0.427107i \(-0.859533\pi\)
−0.904201 + 0.427107i \(0.859533\pi\)
\(444\) 0 0
\(445\) 41.1448 1.95045
\(446\) 20.9136i 0.990287i
\(447\) 0 0
\(448\) 4.56483 0.215668
\(449\) 11.8046i 0.557096i 0.960422 + 0.278548i \(0.0898531\pi\)
−0.960422 + 0.278548i \(0.910147\pi\)
\(450\) 0 0
\(451\) −19.2492 −0.906409
\(452\) 7.83386 7.18544i 0.368474 0.337975i
\(453\) 0 0
\(454\) 7.60871 0.357094
\(455\) 50.1009i 2.34877i
\(456\) 0 0
\(457\) 1.59282i 0.0745088i 0.999306 + 0.0372544i \(0.0118612\pi\)
−0.999306 + 0.0372544i \(0.988139\pi\)
\(458\) 21.4085i 1.00035i
\(459\) 0 0
\(460\) −6.94402 −0.323767
\(461\) 9.26922 0.431711 0.215855 0.976425i \(-0.430746\pi\)
0.215855 + 0.976425i \(0.430746\pi\)
\(462\) 0 0
\(463\) −38.4680 −1.78776 −0.893881 0.448305i \(-0.852028\pi\)
−0.893881 + 0.448305i \(0.852028\pi\)
\(464\) 7.37713i 0.342474i
\(465\) 0 0
\(466\) −12.4144 −0.575086
\(467\) 26.7932 1.23984 0.619922 0.784664i \(-0.287164\pi\)
0.619922 + 0.784664i \(0.287164\pi\)
\(468\) 0 0
\(469\) 39.9443i 1.84446i
\(470\) −8.38299 −0.386678
\(471\) 0 0
\(472\) 1.43896i 0.0662336i
\(473\) 26.3888i 1.21336i
\(474\) 0 0
\(475\) 26.0096i 1.19340i
\(476\) 8.29958i 0.380411i
\(477\) 0 0
\(478\) 9.97618 0.456300
\(479\) 1.46419i 0.0669006i 0.999440 + 0.0334503i \(0.0106495\pi\)
−0.999440 + 0.0334503i \(0.989350\pi\)
\(480\) 0 0
\(481\) 11.2219i 0.511676i
\(482\) 12.2766 0.559185
\(483\) 0 0
\(484\) −1.90554 −0.0866154
\(485\) 17.5815i 0.798333i
\(486\) 0 0
\(487\) 22.0357i 0.998531i −0.866449 0.499266i \(-0.833603\pi\)
0.866449 0.499266i \(-0.166397\pi\)
\(488\) 8.19736 0.371077
\(489\) 0 0
\(490\) 44.1628i 1.99507i
\(491\) 34.3334i 1.54944i 0.632303 + 0.774722i \(0.282110\pi\)
−0.632303 + 0.774722i \(0.717890\pi\)
\(492\) 0 0
\(493\) 13.4128 0.604082
\(494\) 17.2488i 0.776061i
\(495\) 0 0
\(496\) −9.20133 −0.413152
\(497\) 27.8319i 1.24843i
\(498\) 0 0
\(499\) 11.7445i 0.525755i −0.964829 0.262878i \(-0.915328\pi\)
0.964829 0.262878i \(-0.0846715\pi\)
\(500\) 0.592441i 0.0264948i
\(501\) 0 0
\(502\) 1.42251 0.0634898
\(503\) 13.7212 0.611800 0.305900 0.952064i \(-0.401043\pi\)
0.305900 + 0.952064i \(0.401043\pi\)
\(504\) 0 0
\(505\) −17.3720 −0.773044
\(506\) 6.56154i 0.291696i
\(507\) 0 0
\(508\) −13.0036 −0.576942
\(509\) −2.59100 −0.114844 −0.0574221 0.998350i \(-0.518288\pi\)
−0.0574221 + 0.998350i \(0.518288\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −23.5202 −1.03743
\(515\) −57.1388 −2.51784
\(516\) 0 0
\(517\) 7.92124i 0.348376i
\(518\) 14.8958i 0.654485i
\(519\) 0 0
\(520\) 10.9754i 0.481304i
\(521\) −22.8095 −0.999301 −0.499651 0.866227i \(-0.666538\pi\)
−0.499651 + 0.866227i \(0.666538\pi\)
\(522\) 0 0
\(523\) 34.0527i 1.48902i 0.667611 + 0.744511i \(0.267317\pi\)
−0.667611 + 0.744511i \(0.732683\pi\)
\(524\) −6.90554 −0.301670
\(525\) 0 0
\(526\) 29.8024i 1.29945i
\(527\) 16.7295i 0.728748i
\(528\) 0 0
\(529\) 18.2659 0.794171
\(530\) 35.4321i 1.53907i
\(531\) 0 0
\(532\) 22.8958i 0.992660i
\(533\) −21.9509 −0.950797
\(534\) 0 0
\(535\) −27.2465 −1.17797
\(536\) 8.75046i 0.377962i
\(537\) 0 0
\(538\) 7.21117i 0.310896i
\(539\) 41.7302 1.79745
\(540\) 0 0
\(541\) 36.7209i 1.57875i −0.613909 0.789377i \(-0.710404\pi\)
0.613909 0.789377i \(-0.289596\pi\)
\(542\) 26.3396i 1.13138i
\(543\) 0 0
\(544\) 1.81816i 0.0779529i
\(545\) 8.27376i 0.354409i
\(546\) 0 0
\(547\) 24.1702 1.03345 0.516723 0.856153i \(-0.327152\pi\)
0.516723 + 0.856153i \(0.327152\pi\)
\(548\) 5.30771i 0.226734i
\(549\) 0 0
\(550\) −15.6383 −0.666820
\(551\) −37.0015 −1.57632
\(552\) 0 0
\(553\) 10.2593i 0.436270i
\(554\) 29.5549 1.25567
\(555\) 0 0
\(556\) −0.548938 −0.0232802
\(557\) 22.1495 0.938504 0.469252 0.883064i \(-0.344524\pi\)
0.469252 + 0.883064i \(0.344524\pi\)
\(558\) 0 0
\(559\) 30.0925i 1.27278i
\(560\) 14.5686i 0.615637i
\(561\) 0 0
\(562\) 21.5408i 0.908645i
\(563\) 30.8223 1.29900 0.649502 0.760360i \(-0.274977\pi\)
0.649502 + 0.760360i \(0.274977\pi\)
\(564\) 0 0
\(565\) 22.9323 + 25.0017i 0.964769 + 1.05183i
\(566\) −21.8295 −0.917564
\(567\) 0 0
\(568\) 6.09703i 0.255826i
\(569\) 25.9153 1.08643 0.543213 0.839595i \(-0.317208\pi\)
0.543213 + 0.839595i \(0.317208\pi\)
\(570\) 0 0
\(571\) 20.4731i 0.856773i −0.903596 0.428387i \(-0.859082\pi\)
0.903596 0.428387i \(-0.140918\pi\)
\(572\) 10.3709 0.433629
\(573\) 0 0
\(574\) −29.1372 −1.21616
\(575\) 11.2829i 0.470527i
\(576\) 0 0
\(577\) 1.21778i 0.0506970i −0.999679 0.0253485i \(-0.991930\pi\)
0.999679 0.0253485i \(-0.00806955\pi\)
\(578\) 13.6943 0.569608
\(579\) 0 0
\(580\) 23.5440 0.977613
\(581\) −49.0740 −2.03593
\(582\) 0 0
\(583\) −33.4805 −1.38662
\(584\) 0 0
\(585\) 0 0
\(586\) 22.9788i 0.949243i
\(587\) 41.4809 1.71210 0.856050 0.516894i \(-0.172912\pi\)
0.856050 + 0.516894i \(0.172912\pi\)
\(588\) 0 0
\(589\) 46.1512i 1.90163i
\(590\) −4.59244 −0.189068
\(591\) 0 0
\(592\) 3.26317i 0.134116i
\(593\) 10.2103 0.419287 0.209644 0.977778i \(-0.432770\pi\)
0.209644 + 0.977778i \(0.432770\pi\)
\(594\) 0 0
\(595\) −26.4881 −1.08591
\(596\) 16.8606 0.690638
\(597\) 0 0
\(598\) 7.48247i 0.305981i
\(599\) 27.3087i 1.11580i −0.829907 0.557901i \(-0.811607\pi\)
0.829907 0.557901i \(-0.188393\pi\)
\(600\) 0 0
\(601\) 42.4904 1.73322 0.866611 0.498985i \(-0.166294\pi\)
0.866611 + 0.498985i \(0.166294\pi\)
\(602\) 39.9443i 1.62801i
\(603\) 0 0
\(604\) 5.12540i 0.208549i
\(605\) 6.08152i 0.247249i
\(606\) 0 0
\(607\) 8.43833i 0.342501i 0.985227 + 0.171251i \(0.0547808\pi\)
−0.985227 + 0.171251i \(0.945219\pi\)
\(608\) 5.01570i 0.203414i
\(609\) 0 0
\(610\) 26.1618i 1.05926i
\(611\) 9.03301i 0.365436i
\(612\) 0 0
\(613\) 17.8723i 0.721854i 0.932594 + 0.360927i \(0.117540\pi\)
−0.932594 + 0.360927i \(0.882460\pi\)
\(614\) −6.08578 −0.245602
\(615\) 0 0
\(616\) 13.7662 0.554654
\(617\) −0.747042 −0.0300748 −0.0150374 0.999887i \(-0.504787\pi\)
−0.0150374 + 0.999887i \(0.504787\pi\)
\(618\) 0 0
\(619\) 5.33730i 0.214524i 0.994231 + 0.107262i \(0.0342084\pi\)
−0.994231 + 0.107262i \(0.965792\pi\)
\(620\) 29.3660i 1.17937i
\(621\) 0 0
\(622\) −15.6439 −0.627263
\(623\) 58.8499i 2.35777i
\(624\) 0 0
\(625\) −24.0374 −0.961495
\(626\) −7.81637 −0.312405
\(627\) 0 0
\(628\) −0.506663 −0.0202181
\(629\) 5.93297 0.236563
\(630\) 0 0
\(631\) 42.0940i 1.67573i −0.545874 0.837867i \(-0.683802\pi\)
0.545874 0.837867i \(-0.316198\pi\)
\(632\) 2.24747i 0.0893995i
\(633\) 0 0
\(634\) 24.5287 0.974160
\(635\) 41.5009i 1.64691i
\(636\) 0 0
\(637\) 47.5872 1.88547
\(638\) 22.2472i 0.880776i
\(639\) 0 0
\(640\) 3.19149i 0.126155i
\(641\) 3.24869i 0.128315i 0.997940 + 0.0641577i \(0.0204361\pi\)
−0.997940 + 0.0641577i \(0.979564\pi\)
\(642\) 0 0
\(643\) 36.5162i 1.44006i −0.693943 0.720030i \(-0.744128\pi\)
0.693943 0.720030i \(-0.255872\pi\)
\(644\) 9.93211i 0.391380i
\(645\) 0 0
\(646\) 9.11935 0.358796
\(647\) −12.1549 −0.477860 −0.238930 0.971037i \(-0.576797\pi\)
−0.238930 + 0.971037i \(0.576797\pi\)
\(648\) 0 0
\(649\) 4.33948i 0.170340i
\(650\) −17.8332 −0.699475
\(651\) 0 0
\(652\) −14.2049 −0.556308
\(653\) −2.22732 −0.0871618 −0.0435809 0.999050i \(-0.513877\pi\)
−0.0435809 + 0.999050i \(0.513877\pi\)
\(654\) 0 0
\(655\) 22.0390i 0.861134i
\(656\) −6.38299 −0.249214
\(657\) 0 0
\(658\) 11.9903i 0.467430i
\(659\) 18.2396i 0.710515i −0.934768 0.355258i \(-0.884393\pi\)
0.934768 0.355258i \(-0.115607\pi\)
\(660\) 0 0
\(661\) 8.60864i 0.334837i −0.985886 0.167419i \(-0.946457\pi\)
0.985886 0.167419i \(-0.0535431\pi\)
\(662\) −19.4586 −0.756282
\(663\) 0 0
\(664\) −10.7505 −0.417199
\(665\) 73.0719 2.83360
\(666\) 0 0
\(667\) 16.0511 0.621500
\(668\) 11.3348i 0.438559i
\(669\) 0 0
\(670\) −27.9270 −1.07892
\(671\) 24.7208 0.954335
\(672\) 0 0
\(673\) 18.8002i 0.724694i −0.932043 0.362347i \(-0.881976\pi\)
0.932043 0.362347i \(-0.118024\pi\)
\(674\) −29.7452 −1.14574
\(675\) 0 0
\(676\) −1.17353 −0.0451359
\(677\) −4.11195 −0.158035 −0.0790176 0.996873i \(-0.525178\pi\)
−0.0790176 + 0.996873i \(0.525178\pi\)
\(678\) 0 0
\(679\) −25.1470 −0.965052
\(680\) −5.80264 −0.222521
\(681\) 0 0
\(682\) −27.7485 −1.06254
\(683\) 3.84540i 0.147140i 0.997290 + 0.0735701i \(0.0234393\pi\)
−0.997290 + 0.0735701i \(0.976561\pi\)
\(684\) 0 0
\(685\) 16.9395 0.647225
\(686\) 31.2127 1.19171
\(687\) 0 0
\(688\) 8.75046i 0.333608i
\(689\) −38.1795 −1.45452
\(690\) 0 0
\(691\) 11.2718 0.428799 0.214399 0.976746i \(-0.431221\pi\)
0.214399 + 0.976746i \(0.431221\pi\)
\(692\) −15.4301 −0.586564
\(693\) 0 0
\(694\) −22.1748 −0.841742
\(695\) 1.75193i 0.0664546i
\(696\) 0 0
\(697\) 11.6053i 0.439582i
\(698\) 32.9799i 1.24831i
\(699\) 0 0
\(700\) −23.6715 −0.894699
\(701\) 25.1761i 0.950888i 0.879746 + 0.475444i \(0.157713\pi\)
−0.879746 + 0.475444i \(0.842287\pi\)
\(702\) 0 0
\(703\) −16.3671 −0.617297
\(704\) 3.01570 0.113659
\(705\) 0 0
\(706\) 26.7853 1.00808
\(707\) 24.8474i 0.934482i
\(708\) 0 0
\(709\) 34.9471 1.31247 0.656233 0.754559i \(-0.272149\pi\)
0.656233 + 0.754559i \(0.272149\pi\)
\(710\) −19.4586 −0.730270
\(711\) 0 0
\(712\) 12.8920i 0.483149i
\(713\) 20.0202i 0.749762i
\(714\) 0 0
\(715\) 33.0986i 1.23782i
\(716\) 24.4763i 0.914724i
\(717\) 0 0
\(718\) 7.12919i 0.266059i
\(719\) 25.1221 0.936895 0.468448 0.883491i \(-0.344813\pi\)
0.468448 + 0.883491i \(0.344813\pi\)
\(720\) 0 0
\(721\) 81.7263i 3.04364i
\(722\) −6.15727 −0.229150
\(723\) 0 0
\(724\) 15.2183i 0.565582i
\(725\) 38.2551i 1.42076i
\(726\) 0 0
\(727\) 24.8550 0.921819 0.460910 0.887447i \(-0.347523\pi\)
0.460910 + 0.887447i \(0.347523\pi\)
\(728\) 15.6983 0.581817
\(729\) 0 0
\(730\) 0 0
\(731\) 15.9097 0.588443
\(732\) 0 0
\(733\) 21.3609i 0.788982i −0.918900 0.394491i \(-0.870921\pi\)
0.918900 0.394491i \(-0.129079\pi\)
\(734\) 14.3862 0.531005
\(735\) 0 0
\(736\) 2.17579i 0.0802007i
\(737\) 26.3888i 0.972043i
\(738\) 0 0
\(739\) 0.905892 0.0333238 0.0166619 0.999861i \(-0.494696\pi\)
0.0166619 + 0.999861i \(0.494696\pi\)
\(740\) 10.4144 0.382841
\(741\) 0 0
\(742\) −50.6789 −1.86048
\(743\) 28.5438i 1.04717i 0.851974 + 0.523585i \(0.175406\pi\)
−0.851974 + 0.523585i \(0.824594\pi\)
\(744\) 0 0
\(745\) 53.8106i 1.97147i
\(746\) 9.22204i 0.337643i
\(747\) 0 0
\(748\) 5.48303i 0.200479i
\(749\) 38.9709i 1.42397i
\(750\) 0 0
\(751\) 52.7319i 1.92421i −0.272673 0.962107i \(-0.587908\pi\)
0.272673 0.962107i \(-0.412092\pi\)
\(752\) 2.62667i 0.0957846i
\(753\) 0 0
\(754\) 25.3697i 0.923909i
\(755\) 16.3577 0.595316
\(756\) 0 0
\(757\) 27.4105i 0.996253i −0.867104 0.498126i \(-0.834022\pi\)
0.867104 0.498126i \(-0.165978\pi\)
\(758\) 37.8014i 1.37301i
\(759\) 0 0
\(760\) 16.0076 0.580656
\(761\) −28.8602 −1.04618 −0.523090 0.852277i \(-0.675221\pi\)
−0.523090 + 0.852277i \(0.675221\pi\)
\(762\) 0 0
\(763\) −11.8340 −0.428421
\(764\) 25.6960i 0.929649i
\(765\) 0 0
\(766\) 22.1160 0.799082
\(767\) 4.94854i 0.178681i
\(768\) 0 0
\(769\) 6.64882 0.239762 0.119881 0.992788i \(-0.461749\pi\)
0.119881 + 0.992788i \(0.461749\pi\)
\(770\) 43.9346i 1.58329i
\(771\) 0 0
\(772\) 17.3161i 0.623222i
\(773\) −28.2420 −1.01579 −0.507897 0.861418i \(-0.669577\pi\)
−0.507897 + 0.861418i \(0.669577\pi\)
\(774\) 0 0
\(775\) 47.7147 1.71396
\(776\) −5.50885 −0.197756
\(777\) 0 0
\(778\) 0.259311 0.00929675
\(779\) 32.0152i 1.14706i
\(780\) 0 0
\(781\) 18.3868i 0.657933i
\(782\) −3.95594 −0.141464
\(783\) 0 0
\(784\) 13.8377 0.494202
\(785\) 1.61701i 0.0577137i
\(786\) 0 0
\(787\) 2.44900 0.0872975 0.0436487 0.999047i \(-0.486102\pi\)
0.0436487 + 0.999047i \(0.486102\pi\)
\(788\) 10.6619i 0.379813i
\(789\) 0 0
\(790\) 7.17278 0.255196
\(791\) 35.7602 32.8003i 1.27149 1.16624i
\(792\) 0 0
\(793\) 28.1904 1.00107
\(794\) 19.2183i 0.682030i
\(795\) 0 0
\(796\) 11.3087i 0.400825i
\(797\) 53.9703i 1.91173i 0.293814 + 0.955863i \(0.405075\pi\)
−0.293814 + 0.955863i \(0.594925\pi\)
\(798\) 0 0
\(799\) −4.77570 −0.168952
\(800\) −5.18563 −0.183340
\(801\) 0 0
\(802\) −7.66772 −0.270757
\(803\) 0 0
\(804\) 0 0
\(805\) −31.6983 −1.11722
\(806\) −31.6430 −1.11458
\(807\) 0 0
\(808\) 5.44322i 0.191492i
\(809\) 33.8759 1.19101 0.595507 0.803350i \(-0.296951\pi\)
0.595507 + 0.803350i \(0.296951\pi\)
\(810\) 0 0
\(811\) 22.2590i 0.781618i 0.920472 + 0.390809i \(0.127805\pi\)
−0.920472 + 0.390809i \(0.872195\pi\)
\(812\) 33.6753i 1.18177i
\(813\) 0 0
\(814\) 9.84075i 0.344918i
\(815\) 45.3350i 1.58801i
\(816\) 0 0
\(817\) −43.8897 −1.53551
\(818\) 28.7781i 1.00620i
\(819\) 0 0
\(820\) 20.3713i 0.711395i
\(821\) −5.18221 −0.180861 −0.0904303 0.995903i \(-0.528824\pi\)
−0.0904303 + 0.995903i \(0.528824\pi\)
\(822\) 0 0
\(823\) 25.7350 0.897065 0.448532 0.893767i \(-0.351947\pi\)
0.448532 + 0.893767i \(0.351947\pi\)
\(824\) 17.9035i 0.623697i
\(825\) 0 0
\(826\) 6.56862i 0.228551i
\(827\) −0.127467 −0.00443246 −0.00221623 0.999998i \(-0.500705\pi\)
−0.00221623 + 0.999998i \(0.500705\pi\)
\(828\) 0 0
\(829\) 47.2109i 1.63970i 0.572576 + 0.819852i \(0.305944\pi\)
−0.572576 + 0.819852i \(0.694056\pi\)
\(830\) 34.3100i 1.19092i
\(831\) 0 0
\(832\) 3.43896 0.119225
\(833\) 25.1591i 0.871710i
\(834\) 0 0
\(835\) 36.1751 1.25189
\(836\) 15.1259i 0.523139i
\(837\) 0 0
\(838\) 27.7414i 0.958311i
\(839\) 18.1125i 0.625315i 0.949866 + 0.312657i \(0.101219\pi\)
−0.949866 + 0.312657i \(0.898781\pi\)
\(840\) 0 0
\(841\) −25.4220 −0.876620
\(842\) 33.8174 1.16543
\(843\) 0 0
\(844\) 17.8102 0.613053
\(845\) 3.74532i 0.128843i
\(846\) 0 0
\(847\) −8.69846 −0.298883
\(848\) −11.1020 −0.381246
\(849\) 0 0
\(850\) 9.42830i 0.323388i
\(851\) 7.09998 0.243384
\(852\) 0 0
\(853\) 29.2726 1.00228 0.501138 0.865367i \(-0.332915\pi\)
0.501138 + 0.865367i \(0.332915\pi\)
\(854\) 37.4195 1.28047
\(855\) 0 0
\(856\) 8.53721i 0.291796i
\(857\) 12.7513i 0.435577i −0.975996 0.217788i \(-0.930116\pi\)
0.975996 0.217788i \(-0.0698842\pi\)
\(858\) 0 0
\(859\) 30.0590i 1.02560i 0.858508 + 0.512800i \(0.171392\pi\)
−0.858508 + 0.512800i \(0.828608\pi\)
\(860\) 27.9270 0.952304
\(861\) 0 0
\(862\) 0.780893i 0.0265973i
\(863\) −42.1546 −1.43496 −0.717479 0.696580i \(-0.754704\pi\)
−0.717479 + 0.696580i \(0.754704\pi\)
\(864\) 0 0
\(865\) 49.2450i 1.67438i
\(866\) 32.7127i 1.11162i
\(867\) 0 0
\(868\) −42.0025 −1.42566
\(869\) 6.77770i 0.229918i
\(870\) 0 0
\(871\) 30.0925i 1.01965i
\(872\) −2.59244 −0.0877911
\(873\) 0 0
\(874\) 10.9131 0.369142
\(875\) 2.70439i 0.0914252i
\(876\) 0 0
\(877\) 1.46904i 0.0496061i 0.999692 + 0.0248031i \(0.00789587\pi\)
−0.999692 + 0.0248031i \(0.992104\pi\)
\(878\) 10.5954 0.357577
\(879\) 0 0
\(880\) 9.62459i 0.324445i
\(881\) 6.35716i 0.214178i 0.994249 + 0.107089i \(0.0341530\pi\)
−0.994249 + 0.107089i \(0.965847\pi\)
\(882\) 0 0
\(883\) 4.05873i 0.136587i 0.997665 + 0.0682935i \(0.0217554\pi\)
−0.997665 + 0.0682935i \(0.978245\pi\)
\(884\) 6.25258i 0.210297i
\(885\) 0 0
\(886\) −38.0625 −1.27873
\(887\) 5.53349i 0.185797i −0.995676 0.0928983i \(-0.970387\pi\)
0.995676 0.0928983i \(-0.0296131\pi\)
\(888\) 0 0
\(889\) −59.3592 −1.99084
\(890\) 41.1448 1.37918
\(891\) 0 0
\(892\) 20.9136i 0.700239i
\(893\) 13.1746 0.440870
\(894\) 0 0
\(895\) −78.1161 −2.61113
\(896\) 4.56483 0.152500
\(897\) 0 0
\(898\) 11.8046i 0.393926i
\(899\) 67.8794i 2.26390i
\(900\) 0 0
\(901\) 20.1853i 0.672469i
\(902\) −19.2492 −0.640928
\(903\) 0 0
\(904\) 7.83386 7.18544i 0.260550 0.238984i
\(905\) −48.5690 −1.61449
\(906\) 0 0
\(907\) 4.35610i 0.144642i −0.997381 0.0723210i \(-0.976959\pi\)
0.997381 0.0723210i \(-0.0230406\pi\)
\(908\) 7.60871 0.252504
\(909\) 0 0
\(910\) 50.1009i 1.66083i
\(911\) 21.7212 0.719657 0.359828 0.933018i \(-0.382835\pi\)
0.359828 + 0.933018i \(0.382835\pi\)
\(912\) 0 0
\(913\) −32.4202 −1.07295
\(914\) 1.59282i 0.0526857i
\(915\) 0 0
\(916\) 21.4085i 0.707358i
\(917\) −31.5226 −1.04097
\(918\) 0 0
\(919\) 12.3436 0.407179 0.203590 0.979056i \(-0.434739\pi\)
0.203590 + 0.979056i \(0.434739\pi\)
\(920\) −6.94402 −0.228938
\(921\) 0 0
\(922\) 9.26922 0.305266
\(923\) 20.9675i 0.690153i
\(924\) 0 0
\(925\) 16.9216i 0.556379i
\(926\) −38.4680 −1.26414
\(927\) 0 0
\(928\) 7.37713i 0.242166i
\(929\) 50.3369 1.65150 0.825750 0.564036i \(-0.190752\pi\)
0.825750 + 0.564036i \(0.190752\pi\)
\(930\) 0 0
\(931\) 69.4055i 2.27467i
\(932\) −12.4144 −0.406647
\(933\) 0 0
\(934\) 26.7932 0.876701
\(935\) −17.4990 −0.572280
\(936\) 0 0
\(937\) 48.3471i 1.57943i 0.613474 + 0.789715i \(0.289772\pi\)
−0.613474 + 0.789715i \(0.710228\pi\)
\(938\) 39.9443i 1.30423i
\(939\) 0 0
\(940\) −8.38299 −0.273423
\(941\) 3.20736i 0.104557i −0.998633 0.0522785i \(-0.983352\pi\)
0.998633 0.0522785i \(-0.0166483\pi\)
\(942\) 0 0
\(943\) 13.8880i 0.452257i
\(944\) 1.43896i 0.0468343i
\(945\) 0 0
\(946\) 26.3888i 0.857973i
\(947\) 30.5339i 0.992219i 0.868260 + 0.496110i \(0.165239\pi\)
−0.868260 + 0.496110i \(0.834761\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 26.0096i 0.843862i
\(951\) 0 0
\(952\) 8.29958i 0.268991i
\(953\) 15.0491 0.487488 0.243744 0.969840i \(-0.421624\pi\)
0.243744 + 0.969840i \(0.421624\pi\)
\(954\) 0 0
\(955\) 82.0087 2.65374
\(956\) 9.97618 0.322653
\(957\) 0 0
\(958\) 1.46419i 0.0473058i
\(959\) 24.2288i 0.782387i
\(960\) 0 0
\(961\) 53.6645 1.73111
\(962\) 11.2219i 0.361809i
\(963\) 0 0
\(964\) 12.2766 0.395403
\(965\) −55.2644 −1.77902
\(966\) 0 0
\(967\) 21.0241 0.676088 0.338044 0.941130i \(-0.390235\pi\)
0.338044 + 0.941130i \(0.390235\pi\)
\(968\) −1.90554 −0.0612464
\(969\) 0 0
\(970\) 17.5815i 0.564507i
\(971\) 33.4783i 1.07437i −0.843464 0.537185i \(-0.819488\pi\)
0.843464 0.537185i \(-0.180512\pi\)
\(972\) 0 0
\(973\) −2.50581 −0.0803326
\(974\) 22.0357i 0.706068i
\(975\) 0 0
\(976\) 8.19736 0.262391
\(977\) 26.9914i 0.863533i −0.901985 0.431766i \(-0.857890\pi\)
0.901985 0.431766i \(-0.142110\pi\)
\(978\) 0 0
\(979\) 38.8785i 1.24256i
\(980\) 44.1628i 1.41073i
\(981\) 0 0
\(982\) 34.3334i 1.09562i
\(983\) 33.2301i 1.05988i −0.848036 0.529938i \(-0.822215\pi\)
0.848036 0.529938i \(-0.177785\pi\)
\(984\) 0 0
\(985\) 34.0273 1.08420
\(986\) 13.4128 0.427150
\(987\) 0 0
\(988\) 17.2488i 0.548758i
\(989\) 19.0392 0.605410
\(990\) 0 0
\(991\) −14.0675 −0.446867 −0.223434 0.974719i \(-0.571727\pi\)
−0.223434 + 0.974719i \(0.571727\pi\)
\(992\) −9.20133 −0.292143
\(993\) 0 0
\(994\) 27.8319i 0.882775i
\(995\) −36.0916 −1.14418
\(996\) 0 0
\(997\) 3.69070i 0.116886i 0.998291 + 0.0584429i \(0.0186135\pi\)
−0.998291 + 0.0584429i \(0.981386\pi\)
\(998\) 11.7445i 0.371765i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.2.c.i.451.9 10
3.2 odd 2 678.2.c.c.451.6 yes 10
113.112 even 2 inner 2034.2.c.i.451.2 10
339.338 odd 2 678.2.c.c.451.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
678.2.c.c.451.5 10 339.338 odd 2
678.2.c.c.451.6 yes 10 3.2 odd 2
2034.2.c.i.451.2 10 113.112 even 2 inner
2034.2.c.i.451.9 10 1.1 even 1 trivial