Properties

Label 2034.2.c.h.451.8
Level $2034$
Weight $2$
Character 2034.451
Analytic conductor $16.242$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(451,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,0,10,0,0,0,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2415717711\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 25x^{8} + 190x^{6} + 482x^{4} + 368x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 451.8
Root \(1.63968i\) of defining polynomial
Character \(\chi\) \(=\) 2034.451
Dual form 2034.2.c.h.451.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.63968i q^{5} +3.55588 q^{7} +1.00000 q^{8} +1.63968i q^{10} +3.33279 q^{11} -1.82544 q^{13} +3.55588 q^{14} +1.00000 q^{16} -0.106462i q^{17} +4.06519i q^{19} +1.63968i q^{20} +3.33279 q^{22} -8.58345i q^{23} +2.31146 q^{25} -1.82544 q^{26} +3.55588 q^{28} -3.75172i q^{29} +4.64426 q^{31} +1.00000 q^{32} -0.106462i q^{34} +5.83049i q^{35} +4.24482i q^{37} +4.06519i q^{38} +1.63968i q^{40} -7.62573 q^{41} +11.8407i q^{43} +3.33279 q^{44} -8.58345i q^{46} +3.97272i q^{47} +5.64426 q^{49} +2.31146 q^{50} -1.82544 q^{52} -7.55807 q^{53} +5.46470i q^{55} +3.55588 q^{56} -3.75172i q^{58} +3.60391i q^{59} -1.82544 q^{61} +4.64426 q^{62} +1.00000 q^{64} -2.99312i q^{65} -10.3901i q^{67} -0.106462i q^{68} +5.83049i q^{70} -2.25853i q^{71} -14.1005i q^{73} +4.24482i q^{74} +4.06519i q^{76} +11.8510 q^{77} +4.19372i q^{79} +1.63968i q^{80} -7.62573 q^{82} +8.51821 q^{83} +0.174564 q^{85} +11.8407i q^{86} +3.33279 q^{88} -10.6622i q^{89} -6.49102 q^{91} -8.58345i q^{92} +3.97272i q^{94} -6.66559 q^{95} +17.1838 q^{97} +5.64426 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 10 q^{4} + 10 q^{8} + 2 q^{11} + 2 q^{13} + 10 q^{16} + 2 q^{22} + 2 q^{26} - 8 q^{31} + 10 q^{32} - 8 q^{41} + 2 q^{44} + 2 q^{49} + 2 q^{52} + 18 q^{53} + 2 q^{61} - 8 q^{62} + 10 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.63968i 0.733286i 0.930362 + 0.366643i \(0.119493\pi\)
−0.930362 + 0.366643i \(0.880507\pi\)
\(6\) 0 0
\(7\) 3.55588 1.34399 0.671997 0.740553i \(-0.265437\pi\)
0.671997 + 0.740553i \(0.265437\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.63968i 0.518511i
\(11\) 3.33279 1.00488 0.502438 0.864613i \(-0.332437\pi\)
0.502438 + 0.864613i \(0.332437\pi\)
\(12\) 0 0
\(13\) −1.82544 −0.506285 −0.253142 0.967429i \(-0.581464\pi\)
−0.253142 + 0.967429i \(0.581464\pi\)
\(14\) 3.55588 0.950348
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.106462i 0.0258209i −0.999917 0.0129105i \(-0.995890\pi\)
0.999917 0.0129105i \(-0.00410964\pi\)
\(18\) 0 0
\(19\) 4.06519i 0.932617i 0.884622 + 0.466309i \(0.154416\pi\)
−0.884622 + 0.466309i \(0.845584\pi\)
\(20\) 1.63968i 0.366643i
\(21\) 0 0
\(22\) 3.33279 0.710554
\(23\) 8.58345i 1.78977i −0.446293 0.894887i \(-0.647256\pi\)
0.446293 0.894887i \(-0.352744\pi\)
\(24\) 0 0
\(25\) 2.31146 0.462292
\(26\) −1.82544 −0.357997
\(27\) 0 0
\(28\) 3.55588 0.671997
\(29\) 3.75172i 0.696678i −0.937369 0.348339i \(-0.886746\pi\)
0.937369 0.348339i \(-0.113254\pi\)
\(30\) 0 0
\(31\) 4.64426 0.834133 0.417066 0.908876i \(-0.363058\pi\)
0.417066 + 0.908876i \(0.363058\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 0.106462i 0.0182582i
\(35\) 5.83049i 0.985532i
\(36\) 0 0
\(37\) 4.24482i 0.697845i 0.937152 + 0.348922i \(0.113452\pi\)
−0.937152 + 0.348922i \(0.886548\pi\)
\(38\) 4.06519i 0.659460i
\(39\) 0 0
\(40\) 1.63968i 0.259256i
\(41\) −7.62573 −1.19094 −0.595469 0.803378i \(-0.703034\pi\)
−0.595469 + 0.803378i \(0.703034\pi\)
\(42\) 0 0
\(43\) 11.8407i 1.80570i 0.429960 + 0.902848i \(0.358528\pi\)
−0.429960 + 0.902848i \(0.641472\pi\)
\(44\) 3.33279 0.502438
\(45\) 0 0
\(46\) 8.58345i 1.26556i
\(47\) 3.97272i 0.579481i 0.957105 + 0.289740i \(0.0935690\pi\)
−0.957105 + 0.289740i \(0.906431\pi\)
\(48\) 0 0
\(49\) 5.64426 0.806322
\(50\) 2.31146 0.326890
\(51\) 0 0
\(52\) −1.82544 −0.253142
\(53\) −7.55807 −1.03818 −0.519090 0.854719i \(-0.673729\pi\)
−0.519090 + 0.854719i \(0.673729\pi\)
\(54\) 0 0
\(55\) 5.46470i 0.736861i
\(56\) 3.55588 0.475174
\(57\) 0 0
\(58\) 3.75172i 0.492626i
\(59\) 3.60391i 0.469189i 0.972093 + 0.234594i \(0.0753762\pi\)
−0.972093 + 0.234594i \(0.924624\pi\)
\(60\) 0 0
\(61\) −1.82544 −0.233723 −0.116862 0.993148i \(-0.537283\pi\)
−0.116862 + 0.993148i \(0.537283\pi\)
\(62\) 4.64426 0.589821
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.99312i 0.371251i
\(66\) 0 0
\(67\) 10.3901i 1.26935i −0.772778 0.634677i \(-0.781133\pi\)
0.772778 0.634677i \(-0.218867\pi\)
\(68\) 0.106462i 0.0129105i
\(69\) 0 0
\(70\) 5.83049i 0.696876i
\(71\) 2.25853i 0.268038i −0.990979 0.134019i \(-0.957212\pi\)
0.990979 0.134019i \(-0.0427883\pi\)
\(72\) 0 0
\(73\) 14.1005i 1.65034i −0.564887 0.825168i \(-0.691080\pi\)
0.564887 0.825168i \(-0.308920\pi\)
\(74\) 4.24482i 0.493451i
\(75\) 0 0
\(76\) 4.06519i 0.466309i
\(77\) 11.8510 1.35055
\(78\) 0 0
\(79\) 4.19372i 0.471830i 0.971774 + 0.235915i \(0.0758087\pi\)
−0.971774 + 0.235915i \(0.924191\pi\)
\(80\) 1.63968i 0.183321i
\(81\) 0 0
\(82\) −7.62573 −0.842121
\(83\) 8.51821 0.934995 0.467497 0.883994i \(-0.345156\pi\)
0.467497 + 0.883994i \(0.345156\pi\)
\(84\) 0 0
\(85\) 0.174564 0.0189341
\(86\) 11.8407i 1.27682i
\(87\) 0 0
\(88\) 3.33279 0.355277
\(89\) 10.6622i 1.13019i −0.825025 0.565096i \(-0.808839\pi\)
0.825025 0.565096i \(-0.191161\pi\)
\(90\) 0 0
\(91\) −6.49102 −0.680444
\(92\) 8.58345i 0.894887i
\(93\) 0 0
\(94\) 3.97272i 0.409755i
\(95\) −6.66559 −0.683875
\(96\) 0 0
\(97\) 17.1838 1.74475 0.872375 0.488837i \(-0.162579\pi\)
0.872375 + 0.488837i \(0.162579\pi\)
\(98\) 5.64426 0.570156
\(99\) 0 0
\(100\) 2.31146 0.231146
\(101\) 17.7126i 1.76247i 0.472681 + 0.881234i \(0.343286\pi\)
−0.472681 + 0.881234i \(0.656714\pi\)
\(102\) 0 0
\(103\) 10.9757i 1.08147i 0.841194 + 0.540733i \(0.181853\pi\)
−0.841194 + 0.540733i \(0.818147\pi\)
\(104\) −1.82544 −0.178999
\(105\) 0 0
\(106\) −7.55807 −0.734105
\(107\) 2.15328i 0.208165i 0.994569 + 0.104083i \(0.0331906\pi\)
−0.994569 + 0.104083i \(0.966809\pi\)
\(108\) 0 0
\(109\) 2.66339 0.255107 0.127553 0.991832i \(-0.459288\pi\)
0.127553 + 0.991832i \(0.459288\pi\)
\(110\) 5.46470i 0.521039i
\(111\) 0 0
\(112\) 3.55588 0.335999
\(113\) −9.37470 + 5.01149i −0.881897 + 0.471442i
\(114\) 0 0
\(115\) 14.0741 1.31242
\(116\) 3.75172i 0.348339i
\(117\) 0 0
\(118\) 3.60391i 0.331766i
\(119\) 0.378567i 0.0347032i
\(120\) 0 0
\(121\) 0.107518 0.00977433
\(122\) −1.82544 −0.165267
\(123\) 0 0
\(124\) 4.64426 0.417066
\(125\) 11.9884i 1.07228i
\(126\) 0 0
\(127\) −2.29293 −0.203465 −0.101732 0.994812i \(-0.532439\pi\)
−0.101732 + 0.994812i \(0.532439\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 2.99312i 0.262514i
\(131\) −6.89248 −0.602199 −0.301099 0.953593i \(-0.597354\pi\)
−0.301099 + 0.953593i \(0.597354\pi\)
\(132\) 0 0
\(133\) 14.4553i 1.25343i
\(134\) 10.3901i 0.897569i
\(135\) 0 0
\(136\) 0.106462i 0.00912908i
\(137\) 9.80333i 0.837555i −0.908089 0.418778i \(-0.862459\pi\)
0.908089 0.418778i \(-0.137541\pi\)
\(138\) 0 0
\(139\) 18.7397 1.58948 0.794739 0.606951i \(-0.207608\pi\)
0.794739 + 0.606951i \(0.207608\pi\)
\(140\) 5.83049i 0.492766i
\(141\) 0 0
\(142\) 2.25853i 0.189531i
\(143\) −6.08380 −0.508753
\(144\) 0 0
\(145\) 6.15161 0.510864
\(146\) 14.1005i 1.16696i
\(147\) 0 0
\(148\) 4.24482i 0.348922i
\(149\) −10.9585 −0.897757 −0.448879 0.893593i \(-0.648176\pi\)
−0.448879 + 0.893593i \(0.648176\pi\)
\(150\) 0 0
\(151\) 10.9757i 0.893188i −0.894737 0.446594i \(-0.852637\pi\)
0.894737 0.446594i \(-0.147363\pi\)
\(152\) 4.06519i 0.329730i
\(153\) 0 0
\(154\) 11.8510 0.954981
\(155\) 7.61508i 0.611658i
\(156\) 0 0
\(157\) −6.58587 −0.525609 −0.262805 0.964849i \(-0.584647\pi\)
−0.262805 + 0.964849i \(0.584647\pi\)
\(158\) 4.19372i 0.333634i
\(159\) 0 0
\(160\) 1.63968i 0.129628i
\(161\) 30.5217i 2.40545i
\(162\) 0 0
\(163\) 0.351323 0.0275177 0.0137589 0.999905i \(-0.495620\pi\)
0.0137589 + 0.999905i \(0.495620\pi\)
\(164\) −7.62573 −0.595469
\(165\) 0 0
\(166\) 8.51821 0.661141
\(167\) 3.23643i 0.250442i 0.992129 + 0.125221i \(0.0399641\pi\)
−0.992129 + 0.125221i \(0.960036\pi\)
\(168\) 0 0
\(169\) −9.66778 −0.743676
\(170\) 0.174564 0.0133884
\(171\) 0 0
\(172\) 11.8407i 0.902848i
\(173\) 10.9585 0.833161 0.416580 0.909099i \(-0.363228\pi\)
0.416580 + 0.909099i \(0.363228\pi\)
\(174\) 0 0
\(175\) 8.21927 0.621318
\(176\) 3.33279 0.251219
\(177\) 0 0
\(178\) 10.6622i 0.799167i
\(179\) 23.5698i 1.76169i −0.473402 0.880847i \(-0.656974\pi\)
0.473402 0.880847i \(-0.343026\pi\)
\(180\) 0 0
\(181\) 0.865062i 0.0642996i −0.999483 0.0321498i \(-0.989765\pi\)
0.999483 0.0321498i \(-0.0102354\pi\)
\(182\) −6.49102 −0.481147
\(183\) 0 0
\(184\) 8.58345i 0.632781i
\(185\) −6.96014 −0.511720
\(186\) 0 0
\(187\) 0.354817i 0.0259468i
\(188\) 3.97272i 0.289740i
\(189\) 0 0
\(190\) −6.66559 −0.483573
\(191\) 1.73227i 0.125343i −0.998034 0.0626713i \(-0.980038\pi\)
0.998034 0.0626713i \(-0.0199620\pi\)
\(192\) 0 0
\(193\) 9.83806i 0.708159i 0.935215 + 0.354079i \(0.115206\pi\)
−0.935215 + 0.354079i \(0.884794\pi\)
\(194\) 17.1838 1.23372
\(195\) 0 0
\(196\) 5.64426 0.403161
\(197\) 15.9984i 1.13984i −0.821701 0.569919i \(-0.806975\pi\)
0.821701 0.569919i \(-0.193025\pi\)
\(198\) 0 0
\(199\) 22.4105i 1.58864i 0.607501 + 0.794319i \(0.292172\pi\)
−0.607501 + 0.794319i \(0.707828\pi\)
\(200\) 2.31146 0.163445
\(201\) 0 0
\(202\) 17.7126i 1.24625i
\(203\) 13.3407i 0.936331i
\(204\) 0 0
\(205\) 12.5037i 0.873298i
\(206\) 10.9757i 0.764712i
\(207\) 0 0
\(208\) −1.82544 −0.126571
\(209\) 13.5484i 0.937164i
\(210\) 0 0
\(211\) −15.1566 −1.04342 −0.521712 0.853122i \(-0.674706\pi\)
−0.521712 + 0.853122i \(0.674706\pi\)
\(212\) −7.55807 −0.519090
\(213\) 0 0
\(214\) 2.15328i 0.147195i
\(215\) −19.4150 −1.32409
\(216\) 0 0
\(217\) 16.5144 1.12107
\(218\) 2.66339 0.180388
\(219\) 0 0
\(220\) 5.46470i 0.368430i
\(221\) 0.194340i 0.0130727i
\(222\) 0 0
\(223\) 15.6285i 1.04656i −0.852160 0.523282i \(-0.824708\pi\)
0.852160 0.523282i \(-0.175292\pi\)
\(224\) 3.55588 0.237587
\(225\) 0 0
\(226\) −9.37470 + 5.01149i −0.623595 + 0.333360i
\(227\) −7.55807 −0.501647 −0.250823 0.968033i \(-0.580701\pi\)
−0.250823 + 0.968033i \(0.580701\pi\)
\(228\) 0 0
\(229\) 6.60232i 0.436294i 0.975916 + 0.218147i \(0.0700012\pi\)
−0.975916 + 0.218147i \(0.929999\pi\)
\(230\) 14.0741 0.928018
\(231\) 0 0
\(232\) 3.75172i 0.246313i
\(233\) −7.04394 −0.461464 −0.230732 0.973017i \(-0.574112\pi\)
−0.230732 + 0.973017i \(0.574112\pi\)
\(234\) 0 0
\(235\) −6.51397 −0.424925
\(236\) 3.60391i 0.234594i
\(237\) 0 0
\(238\) 0.378567i 0.0245389i
\(239\) −12.7494 −0.824690 −0.412345 0.911028i \(-0.635290\pi\)
−0.412345 + 0.911028i \(0.635290\pi\)
\(240\) 0 0
\(241\) −21.7079 −1.39833 −0.699165 0.714961i \(-0.746445\pi\)
−0.699165 + 0.714961i \(0.746445\pi\)
\(242\) 0.107518 0.00691150
\(243\) 0 0
\(244\) −1.82544 −0.116862
\(245\) 9.25475i 0.591264i
\(246\) 0 0
\(247\) 7.42074i 0.472170i
\(248\) 4.64426 0.294911
\(249\) 0 0
\(250\) 11.9884i 0.758215i
\(251\) −17.0423 −1.07570 −0.537851 0.843040i \(-0.680764\pi\)
−0.537851 + 0.843040i \(0.680764\pi\)
\(252\) 0 0
\(253\) 28.6069i 1.79850i
\(254\) −2.29293 −0.143871
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 14.2913 0.891468 0.445734 0.895166i \(-0.352943\pi\)
0.445734 + 0.895166i \(0.352943\pi\)
\(258\) 0 0
\(259\) 15.0941i 0.937900i
\(260\) 2.99312i 0.185626i
\(261\) 0 0
\(262\) −6.89248 −0.425819
\(263\) 29.0808i 1.79320i −0.442841 0.896600i \(-0.646029\pi\)
0.442841 0.896600i \(-0.353971\pi\)
\(264\) 0 0
\(265\) 12.3928i 0.761283i
\(266\) 14.4553i 0.886311i
\(267\) 0 0
\(268\) 10.3901i 0.634677i
\(269\) 0.504192i 0.0307411i −0.999882 0.0153706i \(-0.995107\pi\)
0.999882 0.0153706i \(-0.00489279\pi\)
\(270\) 0 0
\(271\) 31.8893i 1.93714i −0.248751 0.968568i \(-0.580020\pi\)
0.248751 0.968568i \(-0.419980\pi\)
\(272\) 0.106462i 0.00645523i
\(273\) 0 0
\(274\) 9.80333i 0.592241i
\(275\) 7.70362 0.464546
\(276\) 0 0
\(277\) −5.73248 −0.344431 −0.172216 0.985059i \(-0.555093\pi\)
−0.172216 + 0.985059i \(0.555093\pi\)
\(278\) 18.7397 1.12393
\(279\) 0 0
\(280\) 5.83049i 0.348438i
\(281\) 5.73815i 0.342309i −0.985244 0.171155i \(-0.945250\pi\)
0.985244 0.171155i \(-0.0547498\pi\)
\(282\) 0 0
\(283\) −20.6056 −1.22487 −0.612437 0.790519i \(-0.709811\pi\)
−0.612437 + 0.790519i \(0.709811\pi\)
\(284\) 2.25853i 0.134019i
\(285\) 0 0
\(286\) −6.08380 −0.359743
\(287\) −27.1161 −1.60062
\(288\) 0 0
\(289\) 16.9887 0.999333
\(290\) 6.15161 0.361235
\(291\) 0 0
\(292\) 14.1005i 0.825168i
\(293\) 2.37440i 0.138714i −0.997592 0.0693570i \(-0.977905\pi\)
0.997592 0.0693570i \(-0.0220947\pi\)
\(294\) 0 0
\(295\) −5.90924 −0.344049
\(296\) 4.24482i 0.246725i
\(297\) 0 0
\(298\) −10.9585 −0.634810
\(299\) 15.6685i 0.906135i
\(300\) 0 0
\(301\) 42.1042i 2.42685i
\(302\) 10.9757i 0.631579i
\(303\) 0 0
\(304\) 4.06519i 0.233154i
\(305\) 2.99312i 0.171386i
\(306\) 0 0
\(307\) 9.60278 0.548059 0.274030 0.961721i \(-0.411643\pi\)
0.274030 + 0.961721i \(0.411643\pi\)
\(308\) 11.8510 0.675274
\(309\) 0 0
\(310\) 7.61508i 0.432507i
\(311\) −15.1161 −0.857158 −0.428579 0.903504i \(-0.640986\pi\)
−0.428579 + 0.903504i \(0.640986\pi\)
\(312\) 0 0
\(313\) 3.79867 0.214714 0.107357 0.994221i \(-0.465761\pi\)
0.107357 + 0.994221i \(0.465761\pi\)
\(314\) −6.58587 −0.371662
\(315\) 0 0
\(316\) 4.19372i 0.235915i
\(317\) −12.8788 −0.723345 −0.361673 0.932305i \(-0.617794\pi\)
−0.361673 + 0.932305i \(0.617794\pi\)
\(318\) 0 0
\(319\) 12.5037i 0.700074i
\(320\) 1.63968i 0.0916607i
\(321\) 0 0
\(322\) 30.5217i 1.70091i
\(323\) 0.432790 0.0240811
\(324\) 0 0
\(325\) −4.21942 −0.234052
\(326\) 0.351323 0.0194580
\(327\) 0 0
\(328\) −7.62573 −0.421060
\(329\) 14.1265i 0.778819i
\(330\) 0 0
\(331\) −27.5350 −1.51346 −0.756729 0.653728i \(-0.773204\pi\)
−0.756729 + 0.653728i \(0.773204\pi\)
\(332\) 8.51821 0.467497
\(333\) 0 0
\(334\) 3.23643i 0.177090i
\(335\) 17.0364 0.930799
\(336\) 0 0
\(337\) 10.7898 0.587758 0.293879 0.955843i \(-0.405054\pi\)
0.293879 + 0.955843i \(0.405054\pi\)
\(338\) −9.66778 −0.525858
\(339\) 0 0
\(340\) 0.174564 0.00946706
\(341\) 15.4783 0.838200
\(342\) 0 0
\(343\) −4.82086 −0.260302
\(344\) 11.8407i 0.638410i
\(345\) 0 0
\(346\) 10.9585 0.589134
\(347\) −8.66967 −0.465412 −0.232706 0.972547i \(-0.574758\pi\)
−0.232706 + 0.972547i \(0.574758\pi\)
\(348\) 0 0
\(349\) 17.8399i 0.954948i −0.878646 0.477474i \(-0.841552\pi\)
0.878646 0.477474i \(-0.158448\pi\)
\(350\) 8.21927 0.439338
\(351\) 0 0
\(352\) 3.33279 0.177639
\(353\) −8.20751 −0.436842 −0.218421 0.975855i \(-0.570091\pi\)
−0.218421 + 0.975855i \(0.570091\pi\)
\(354\) 0 0
\(355\) 3.70326 0.196548
\(356\) 10.6622i 0.565096i
\(357\) 0 0
\(358\) 23.5698i 1.24571i
\(359\) 8.17173i 0.431287i −0.976472 0.215644i \(-0.930815\pi\)
0.976472 0.215644i \(-0.0691849\pi\)
\(360\) 0 0
\(361\) 2.47427 0.130225
\(362\) 0.865062i 0.0454667i
\(363\) 0 0
\(364\) −6.49102 −0.340222
\(365\) 23.1202 1.21017
\(366\) 0 0
\(367\) −18.3749 −0.959159 −0.479580 0.877498i \(-0.659211\pi\)
−0.479580 + 0.877498i \(0.659211\pi\)
\(368\) 8.58345i 0.447443i
\(369\) 0 0
\(370\) −6.96014 −0.361840
\(371\) −26.8756 −1.39531
\(372\) 0 0
\(373\) 12.3241i 0.638117i −0.947735 0.319058i \(-0.896633\pi\)
0.947735 0.319058i \(-0.103367\pi\)
\(374\) 0.354817i 0.0183472i
\(375\) 0 0
\(376\) 3.97272i 0.204877i
\(377\) 6.84853i 0.352717i
\(378\) 0 0
\(379\) 31.9069i 1.63895i 0.573118 + 0.819473i \(0.305734\pi\)
−0.573118 + 0.819473i \(0.694266\pi\)
\(380\) −6.66559 −0.341937
\(381\) 0 0
\(382\) 1.73227i 0.0886306i
\(383\) −28.0008 −1.43078 −0.715388 0.698727i \(-0.753750\pi\)
−0.715388 + 0.698727i \(0.753750\pi\)
\(384\) 0 0
\(385\) 19.4318i 0.990337i
\(386\) 9.83806i 0.500744i
\(387\) 0 0
\(388\) 17.1838 0.872375
\(389\) 10.2988 0.522172 0.261086 0.965316i \(-0.415919\pi\)
0.261086 + 0.965316i \(0.415919\pi\)
\(390\) 0 0
\(391\) −0.913815 −0.0462136
\(392\) 5.64426 0.285078
\(393\) 0 0
\(394\) 15.9984i 0.805987i
\(395\) −6.87634 −0.345986
\(396\) 0 0
\(397\) 19.0594i 0.956564i −0.878206 0.478282i \(-0.841260\pi\)
0.878206 0.478282i \(-0.158740\pi\)
\(398\) 22.4105i 1.12334i
\(399\) 0 0
\(400\) 2.31146 0.115573
\(401\) −8.36675 −0.417816 −0.208908 0.977935i \(-0.566991\pi\)
−0.208908 + 0.977935i \(0.566991\pi\)
\(402\) 0 0
\(403\) −8.47779 −0.422309
\(404\) 17.7126i 0.881234i
\(405\) 0 0
\(406\) 13.3407i 0.662086i
\(407\) 14.1471i 0.701247i
\(408\) 0 0
\(409\) 0.359278i 0.0177652i −0.999961 0.00888259i \(-0.997173\pi\)
0.999961 0.00888259i \(-0.00282745\pi\)
\(410\) 12.5037i 0.617515i
\(411\) 0 0
\(412\) 10.9757i 0.540733i
\(413\) 12.8150i 0.630587i
\(414\) 0 0
\(415\) 13.9671i 0.685618i
\(416\) −1.82544 −0.0894994
\(417\) 0 0
\(418\) 13.5484i 0.662675i
\(419\) 13.9889i 0.683400i −0.939809 0.341700i \(-0.888997\pi\)
0.939809 0.341700i \(-0.111003\pi\)
\(420\) 0 0
\(421\) −37.7292 −1.83881 −0.919405 0.393311i \(-0.871330\pi\)
−0.919405 + 0.393311i \(0.871330\pi\)
\(422\) −15.1566 −0.737812
\(423\) 0 0
\(424\) −7.55807 −0.367052
\(425\) 0.246084i 0.0119368i
\(426\) 0 0
\(427\) −6.49102 −0.314123
\(428\) 2.15328i 0.104083i
\(429\) 0 0
\(430\) −19.4150 −0.936273
\(431\) 17.6158i 0.848521i −0.905540 0.424261i \(-0.860534\pi\)
0.905540 0.424261i \(-0.139466\pi\)
\(432\) 0 0
\(433\) 18.6072i 0.894205i 0.894483 + 0.447103i \(0.147544\pi\)
−0.894483 + 0.447103i \(0.852456\pi\)
\(434\) 16.5144 0.792716
\(435\) 0 0
\(436\) 2.66339 0.127553
\(437\) 34.8933 1.66917
\(438\) 0 0
\(439\) −16.5225 −0.788576 −0.394288 0.918987i \(-0.629009\pi\)
−0.394288 + 0.918987i \(0.629009\pi\)
\(440\) 5.46470i 0.260520i
\(441\) 0 0
\(442\) 0.194340i 0.00924383i
\(443\) 26.1482 1.24234 0.621170 0.783676i \(-0.286658\pi\)
0.621170 + 0.783676i \(0.286658\pi\)
\(444\) 0 0
\(445\) 17.4826 0.828754
\(446\) 15.6285i 0.740032i
\(447\) 0 0
\(448\) 3.55588 0.167999
\(449\) 36.2457i 1.71054i 0.518182 + 0.855271i \(0.326609\pi\)
−0.518182 + 0.855271i \(0.673391\pi\)
\(450\) 0 0
\(451\) −25.4150 −1.19674
\(452\) −9.37470 + 5.01149i −0.440949 + 0.235721i
\(453\) 0 0
\(454\) −7.55807 −0.354718
\(455\) 10.6432i 0.498960i
\(456\) 0 0
\(457\) 2.51954i 0.117859i −0.998262 0.0589296i \(-0.981231\pi\)
0.998262 0.0589296i \(-0.0187687\pi\)
\(458\) 6.60232i 0.308506i
\(459\) 0 0
\(460\) 14.0741 0.656208
\(461\) 42.2245 1.96659 0.983296 0.182016i \(-0.0582622\pi\)
0.983296 + 0.182016i \(0.0582622\pi\)
\(462\) 0 0
\(463\) 27.6497 1.28499 0.642495 0.766290i \(-0.277899\pi\)
0.642495 + 0.766290i \(0.277899\pi\)
\(464\) 3.75172i 0.174169i
\(465\) 0 0
\(466\) −7.04394 −0.326304
\(467\) 22.6581 1.04849 0.524245 0.851567i \(-0.324348\pi\)
0.524245 + 0.851567i \(0.324348\pi\)
\(468\) 0 0
\(469\) 36.9459i 1.70601i
\(470\) −6.51397 −0.300467
\(471\) 0 0
\(472\) 3.60391i 0.165883i
\(473\) 39.4627i 1.81450i
\(474\) 0 0
\(475\) 9.39652i 0.431142i
\(476\) 0.378567i 0.0173516i
\(477\) 0 0
\(478\) −12.7494 −0.583144
\(479\) 5.77817i 0.264011i 0.991249 + 0.132006i \(0.0421417\pi\)
−0.991249 + 0.132006i \(0.957858\pi\)
\(480\) 0 0
\(481\) 7.74866i 0.353308i
\(482\) −21.7079 −0.988768
\(483\) 0 0
\(484\) 0.107518 0.00488717
\(485\) 28.1759i 1.27940i
\(486\) 0 0
\(487\) 28.1323i 1.27479i 0.770536 + 0.637397i \(0.219989\pi\)
−0.770536 + 0.637397i \(0.780011\pi\)
\(488\) −1.82544 −0.0826336
\(489\) 0 0
\(490\) 9.25475i 0.418087i
\(491\) 23.7012i 1.06962i −0.844972 0.534810i \(-0.820383\pi\)
0.844972 0.534810i \(-0.179617\pi\)
\(492\) 0 0
\(493\) −0.399418 −0.0179889
\(494\) 7.42074i 0.333875i
\(495\) 0 0
\(496\) 4.64426 0.208533
\(497\) 8.03105i 0.360242i
\(498\) 0 0
\(499\) 27.0101i 1.20914i −0.796552 0.604570i \(-0.793345\pi\)
0.796552 0.604570i \(-0.206655\pi\)
\(500\) 11.9884i 0.536139i
\(501\) 0 0
\(502\) −17.0423 −0.760636
\(503\) −33.3353 −1.48635 −0.743173 0.669100i \(-0.766680\pi\)
−0.743173 + 0.669100i \(0.766680\pi\)
\(504\) 0 0
\(505\) −29.0429 −1.29239
\(506\) 28.6069i 1.27173i
\(507\) 0 0
\(508\) −2.29293 −0.101732
\(509\) 23.8569 1.05744 0.528719 0.848797i \(-0.322672\pi\)
0.528719 + 0.848797i \(0.322672\pi\)
\(510\) 0 0
\(511\) 50.1396i 2.21804i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 14.2913 0.630363
\(515\) −17.9966 −0.793023
\(516\) 0 0
\(517\) 13.2403i 0.582306i
\(518\) 15.0941i 0.663195i
\(519\) 0 0
\(520\) 2.99312i 0.131257i
\(521\) 21.4107 0.938019 0.469010 0.883193i \(-0.344611\pi\)
0.469010 + 0.883193i \(0.344611\pi\)
\(522\) 0 0
\(523\) 19.2346i 0.841069i −0.907276 0.420535i \(-0.861843\pi\)
0.907276 0.420535i \(-0.138157\pi\)
\(524\) −6.89248 −0.301099
\(525\) 0 0
\(526\) 29.0808i 1.26798i
\(527\) 0.494439i 0.0215381i
\(528\) 0 0
\(529\) −50.6757 −2.20329
\(530\) 12.3928i 0.538308i
\(531\) 0 0
\(532\) 14.4553i 0.626717i
\(533\) 13.9203 0.602954
\(534\) 0 0
\(535\) −3.53068 −0.152645
\(536\) 10.3901i 0.448784i
\(537\) 0 0
\(538\) 0.504192i 0.0217373i
\(539\) 18.8111 0.810253
\(540\) 0 0
\(541\) 14.4601i 0.621690i −0.950461 0.310845i \(-0.899388\pi\)
0.950461 0.310845i \(-0.100612\pi\)
\(542\) 31.8893i 1.36976i
\(543\) 0 0
\(544\) 0.106462i 0.00456454i
\(545\) 4.36710i 0.187066i
\(546\) 0 0
\(547\) 18.6581 0.797761 0.398881 0.917003i \(-0.369399\pi\)
0.398881 + 0.917003i \(0.369399\pi\)
\(548\) 9.80333i 0.418778i
\(549\) 0 0
\(550\) 7.70362 0.328484
\(551\) 15.2515 0.649734
\(552\) 0 0
\(553\) 14.9123i 0.634137i
\(554\) −5.73248 −0.243550
\(555\) 0 0
\(556\) 18.7397 0.794739
\(557\) 0.00590518 0.000250210 0.000125105 1.00000i \(-0.499960\pi\)
0.000125105 1.00000i \(0.499960\pi\)
\(558\) 0 0
\(559\) 21.6145i 0.914196i
\(560\) 5.83049i 0.246383i
\(561\) 0 0
\(562\) 5.73815i 0.242049i
\(563\) −25.5444 −1.07657 −0.538284 0.842764i \(-0.680927\pi\)
−0.538284 + 0.842764i \(0.680927\pi\)
\(564\) 0 0
\(565\) −8.21723 15.3715i −0.345701 0.646682i
\(566\) −20.6056 −0.866117
\(567\) 0 0
\(568\) 2.25853i 0.0947657i
\(569\) 40.8257 1.71150 0.855751 0.517389i \(-0.173096\pi\)
0.855751 + 0.517389i \(0.173096\pi\)
\(570\) 0 0
\(571\) 0.441540i 0.0184779i −0.999957 0.00923894i \(-0.997059\pi\)
0.999957 0.00923894i \(-0.00294089\pi\)
\(572\) −6.08380 −0.254377
\(573\) 0 0
\(574\) −27.1161 −1.13181
\(575\) 19.8403i 0.827399i
\(576\) 0 0
\(577\) 20.8824i 0.869347i 0.900588 + 0.434674i \(0.143136\pi\)
−0.900588 + 0.434674i \(0.856864\pi\)
\(578\) 16.9887 0.706635
\(579\) 0 0
\(580\) 6.15161 0.255432
\(581\) 30.2897 1.25663
\(582\) 0 0
\(583\) −25.1895 −1.04324
\(584\) 14.1005i 0.583482i
\(585\) 0 0
\(586\) 2.37440i 0.0980855i
\(587\) 13.7772 0.568645 0.284323 0.958729i \(-0.408231\pi\)
0.284323 + 0.958729i \(0.408231\pi\)
\(588\) 0 0
\(589\) 18.8798i 0.777927i
\(590\) −5.90924 −0.243280
\(591\) 0 0
\(592\) 4.24482i 0.174461i
\(593\) −15.0407 −0.617648 −0.308824 0.951119i \(-0.599935\pi\)
−0.308824 + 0.951119i \(0.599935\pi\)
\(594\) 0 0
\(595\) 0.620728 0.0254474
\(596\) −10.9585 −0.448879
\(597\) 0 0
\(598\) 15.6685i 0.640734i
\(599\) 7.30137i 0.298326i 0.988813 + 0.149163i \(0.0476579\pi\)
−0.988813 + 0.149163i \(0.952342\pi\)
\(600\) 0 0
\(601\) −12.2229 −0.498584 −0.249292 0.968428i \(-0.580198\pi\)
−0.249292 + 0.968428i \(0.580198\pi\)
\(602\) 42.1042i 1.71604i
\(603\) 0 0
\(604\) 10.9757i 0.446594i
\(605\) 0.176294i 0.00716738i
\(606\) 0 0
\(607\) 0.0687047i 0.00278864i −0.999999 0.00139432i \(-0.999556\pi\)
0.999999 0.00139432i \(-0.000443826\pi\)
\(608\) 4.06519i 0.164865i
\(609\) 0 0
\(610\) 2.99312i 0.121188i
\(611\) 7.25195i 0.293382i
\(612\) 0 0
\(613\) 12.2774i 0.495881i −0.968775 0.247941i \(-0.920246\pi\)
0.968775 0.247941i \(-0.0797538\pi\)
\(614\) 9.60278 0.387537
\(615\) 0 0
\(616\) 11.8510 0.477491
\(617\) 22.7419 0.915553 0.457777 0.889067i \(-0.348646\pi\)
0.457777 + 0.889067i \(0.348646\pi\)
\(618\) 0 0
\(619\) 4.42000i 0.177655i −0.996047 0.0888275i \(-0.971688\pi\)
0.996047 0.0888275i \(-0.0283120\pi\)
\(620\) 7.61508i 0.305829i
\(621\) 0 0
\(622\) −15.1161 −0.606102
\(623\) 37.9135i 1.51897i
\(624\) 0 0
\(625\) −8.09984 −0.323994
\(626\) 3.79867 0.151826
\(627\) 0 0
\(628\) −6.58587 −0.262805
\(629\) 0.451914 0.0180190
\(630\) 0 0
\(631\) 32.2485i 1.28379i −0.766791 0.641897i \(-0.778148\pi\)
0.766791 0.641897i \(-0.221852\pi\)
\(632\) 4.19372i 0.166817i
\(633\) 0 0
\(634\) −12.8788 −0.511482
\(635\) 3.75967i 0.149198i
\(636\) 0 0
\(637\) −10.3032 −0.408229
\(638\) 12.5037i 0.495027i
\(639\) 0 0
\(640\) 1.63968i 0.0648139i
\(641\) 24.9010i 0.983530i 0.870728 + 0.491765i \(0.163648\pi\)
−0.870728 + 0.491765i \(0.836352\pi\)
\(642\) 0 0
\(643\) 38.6536i 1.52435i 0.647371 + 0.762175i \(0.275869\pi\)
−0.647371 + 0.762175i \(0.724131\pi\)
\(644\) 30.5217i 1.20272i
\(645\) 0 0
\(646\) 0.432790 0.0170279
\(647\) 26.9535 1.05965 0.529825 0.848107i \(-0.322258\pi\)
0.529825 + 0.848107i \(0.322258\pi\)
\(648\) 0 0
\(649\) 12.0111i 0.471476i
\(650\) −4.21942 −0.165499
\(651\) 0 0
\(652\) 0.351323 0.0137589
\(653\) −12.7298 −0.498156 −0.249078 0.968483i \(-0.580127\pi\)
−0.249078 + 0.968483i \(0.580127\pi\)
\(654\) 0 0
\(655\) 11.3014i 0.441584i
\(656\) −7.62573 −0.297735
\(657\) 0 0
\(658\) 14.1265i 0.550708i
\(659\) 48.7716i 1.89987i 0.312442 + 0.949937i \(0.398853\pi\)
−0.312442 + 0.949937i \(0.601147\pi\)
\(660\) 0 0
\(661\) 6.80827i 0.264811i −0.991196 0.132406i \(-0.957730\pi\)
0.991196 0.132406i \(-0.0422701\pi\)
\(662\) −27.5350 −1.07018
\(663\) 0 0
\(664\) 8.51821 0.330571
\(665\) −23.7020 −0.919124
\(666\) 0 0
\(667\) −32.2027 −1.24690
\(668\) 3.23643i 0.125221i
\(669\) 0 0
\(670\) 17.0364 0.658174
\(671\) −6.08380 −0.234863
\(672\) 0 0
\(673\) 29.2699i 1.12827i −0.825682 0.564135i \(-0.809210\pi\)
0.825682 0.564135i \(-0.190790\pi\)
\(674\) 10.7898 0.415608
\(675\) 0 0
\(676\) −9.66778 −0.371838
\(677\) −20.2041 −0.776506 −0.388253 0.921553i \(-0.626921\pi\)
−0.388253 + 0.921553i \(0.626921\pi\)
\(678\) 0 0
\(679\) 61.1035 2.34494
\(680\) 0.174564 0.00669422
\(681\) 0 0
\(682\) 15.4783 0.592697
\(683\) 9.36715i 0.358424i −0.983810 0.179212i \(-0.942645\pi\)
0.983810 0.179212i \(-0.0573548\pi\)
\(684\) 0 0
\(685\) 16.0743 0.614167
\(686\) −4.82086 −0.184061
\(687\) 0 0
\(688\) 11.8407i 0.451424i
\(689\) 13.7968 0.525615
\(690\) 0 0
\(691\) 33.9704 1.29229 0.646147 0.763213i \(-0.276379\pi\)
0.646147 + 0.763213i \(0.276379\pi\)
\(692\) 10.9585 0.416580
\(693\) 0 0
\(694\) −8.66967 −0.329096
\(695\) 30.7270i 1.16554i
\(696\) 0 0
\(697\) 0.811854i 0.0307511i
\(698\) 17.8399i 0.675250i
\(699\) 0 0
\(700\) 8.21927 0.310659
\(701\) 27.3944i 1.03467i 0.855782 + 0.517336i \(0.173076\pi\)
−0.855782 + 0.517336i \(0.826924\pi\)
\(702\) 0 0
\(703\) −17.2560 −0.650822
\(704\) 3.33279 0.125609
\(705\) 0 0
\(706\) −8.20751 −0.308894
\(707\) 62.9837i 2.36875i
\(708\) 0 0
\(709\) −22.2760 −0.836592 −0.418296 0.908311i \(-0.637373\pi\)
−0.418296 + 0.908311i \(0.637373\pi\)
\(710\) 3.70326 0.138981
\(711\) 0 0
\(712\) 10.6622i 0.399583i
\(713\) 39.8637i 1.49291i
\(714\) 0 0
\(715\) 9.97547i 0.373061i
\(716\) 23.5698i 0.880847i
\(717\) 0 0
\(718\) 8.17173i 0.304966i
\(719\) −23.2555 −0.867285 −0.433643 0.901085i \(-0.642772\pi\)
−0.433643 + 0.901085i \(0.642772\pi\)
\(720\) 0 0
\(721\) 39.0281i 1.45348i
\(722\) 2.47427 0.0920827
\(723\) 0 0
\(724\) 0.865062i 0.0321498i
\(725\) 8.67197i 0.322069i
\(726\) 0 0
\(727\) −10.9416 −0.405801 −0.202900 0.979199i \(-0.565037\pi\)
−0.202900 + 0.979199i \(0.565037\pi\)
\(728\) −6.49102 −0.240573
\(729\) 0 0
\(730\) 23.1202 0.855718
\(731\) 1.26059 0.0466248
\(732\) 0 0
\(733\) 38.7822i 1.43245i 0.697868 + 0.716226i \(0.254132\pi\)
−0.697868 + 0.716226i \(0.745868\pi\)
\(734\) −18.3749 −0.678228
\(735\) 0 0
\(736\) 8.58345i 0.316390i
\(737\) 34.6281i 1.27554i
\(738\) 0 0
\(739\) 24.2954 0.893721 0.446860 0.894604i \(-0.352542\pi\)
0.446860 + 0.894604i \(0.352542\pi\)
\(740\) −6.96014 −0.255860
\(741\) 0 0
\(742\) −26.8756 −0.986633
\(743\) 16.4399i 0.603123i −0.953447 0.301561i \(-0.902492\pi\)
0.953447 0.301561i \(-0.0975078\pi\)
\(744\) 0 0
\(745\) 17.9684i 0.658312i
\(746\) 12.3241i 0.451217i
\(747\) 0 0
\(748\) 0.354817i 0.0129734i
\(749\) 7.65679i 0.279773i
\(750\) 0 0
\(751\) 12.5724i 0.458774i −0.973335 0.229387i \(-0.926328\pi\)
0.973335 0.229387i \(-0.0736722\pi\)
\(752\) 3.97272i 0.144870i
\(753\) 0 0
\(754\) 6.84853i 0.249409i
\(755\) 17.9966 0.654962
\(756\) 0 0
\(757\) 50.5476i 1.83718i 0.395208 + 0.918592i \(0.370672\pi\)
−0.395208 + 0.918592i \(0.629328\pi\)
\(758\) 31.9069i 1.15891i
\(759\) 0 0
\(760\) −6.66559 −0.241786
\(761\) 39.0373 1.41510 0.707550 0.706663i \(-0.249800\pi\)
0.707550 + 0.706663i \(0.249800\pi\)
\(762\) 0 0
\(763\) 9.47070 0.342862
\(764\) 1.73227i 0.0626713i
\(765\) 0 0
\(766\) −28.0008 −1.01171
\(767\) 6.57870i 0.237543i
\(768\) 0 0
\(769\) 25.2016 0.908792 0.454396 0.890800i \(-0.349855\pi\)
0.454396 + 0.890800i \(0.349855\pi\)
\(770\) 19.4318i 0.700274i
\(771\) 0 0
\(772\) 9.83806i 0.354079i
\(773\) 32.7476 1.17785 0.588924 0.808188i \(-0.299552\pi\)
0.588924 + 0.808188i \(0.299552\pi\)
\(774\) 0 0
\(775\) 10.7350 0.385613
\(776\) 17.1838 0.616862
\(777\) 0 0
\(778\) 10.2988 0.369231
\(779\) 31.0000i 1.11069i
\(780\) 0 0
\(781\) 7.52721i 0.269345i
\(782\) −0.913815 −0.0326780
\(783\) 0 0
\(784\) 5.64426 0.201581
\(785\) 10.7987i 0.385422i
\(786\) 0 0
\(787\) 37.4913 1.33642 0.668210 0.743973i \(-0.267061\pi\)
0.668210 + 0.743973i \(0.267061\pi\)
\(788\) 15.9984i 0.569919i
\(789\) 0 0
\(790\) −6.87634 −0.244649
\(791\) −33.3353 + 17.8203i −1.18527 + 0.633615i
\(792\) 0 0
\(793\) 3.33222 0.118330
\(794\) 19.0594i 0.676393i
\(795\) 0 0
\(796\) 22.4105i 0.794319i
\(797\) 0.593408i 0.0210196i −0.999945 0.0105098i \(-0.996655\pi\)
0.999945 0.0105098i \(-0.00334543\pi\)
\(798\) 0 0
\(799\) 0.422945 0.0149627
\(800\) 2.31146 0.0817225
\(801\) 0 0
\(802\) −8.36675 −0.295440
\(803\) 46.9940i 1.65838i
\(804\) 0 0
\(805\) 50.0457 1.76388
\(806\) −8.47779 −0.298617
\(807\) 0 0
\(808\) 17.7126i 0.623126i
\(809\) 24.3760 0.857013 0.428507 0.903539i \(-0.359040\pi\)
0.428507 + 0.903539i \(0.359040\pi\)
\(810\) 0 0
\(811\) 13.8055i 0.484776i −0.970179 0.242388i \(-0.922069\pi\)
0.970179 0.242388i \(-0.0779307\pi\)
\(812\) 13.3407i 0.468166i
\(813\) 0 0
\(814\) 14.1471i 0.495857i
\(815\) 0.576055i 0.0201783i
\(816\) 0 0
\(817\) −48.1348 −1.68402
\(818\) 0.359278i 0.0125619i
\(819\) 0 0
\(820\) 12.5037i 0.436649i
\(821\) −7.86099 −0.274350 −0.137175 0.990547i \(-0.543802\pi\)
−0.137175 + 0.990547i \(0.543802\pi\)
\(822\) 0 0
\(823\) 53.7088 1.87217 0.936085 0.351774i \(-0.114422\pi\)
0.936085 + 0.351774i \(0.114422\pi\)
\(824\) 10.9757i 0.382356i
\(825\) 0 0
\(826\) 12.8150i 0.445892i
\(827\) −49.1008 −1.70740 −0.853702 0.520762i \(-0.825648\pi\)
−0.853702 + 0.520762i \(0.825648\pi\)
\(828\) 0 0
\(829\) 25.5132i 0.886111i −0.896494 0.443056i \(-0.853894\pi\)
0.896494 0.443056i \(-0.146106\pi\)
\(830\) 13.9671i 0.484805i
\(831\) 0 0
\(832\) −1.82544 −0.0632856
\(833\) 0.600901i 0.0208200i
\(834\) 0 0
\(835\) −5.30670 −0.183646
\(836\) 13.5484i 0.468582i
\(837\) 0 0
\(838\) 13.9889i 0.483237i
\(839\) 28.7881i 0.993876i 0.867786 + 0.496938i \(0.165542\pi\)
−0.867786 + 0.496938i \(0.834458\pi\)
\(840\) 0 0
\(841\) 14.9246 0.514640
\(842\) −37.7292 −1.30024
\(843\) 0 0
\(844\) −15.1566 −0.521712
\(845\) 15.8520i 0.545327i
\(846\) 0 0
\(847\) 0.382319 0.0131367
\(848\) −7.55807 −0.259545
\(849\) 0 0
\(850\) 0.246084i 0.00844060i
\(851\) 36.4353 1.24898
\(852\) 0 0
\(853\) 34.6182 1.18530 0.592652 0.805459i \(-0.298081\pi\)
0.592652 + 0.805459i \(0.298081\pi\)
\(854\) −6.49102 −0.222118
\(855\) 0 0
\(856\) 2.15328i 0.0735975i
\(857\) 2.79479i 0.0954683i 0.998860 + 0.0477342i \(0.0152000\pi\)
−0.998860 + 0.0477342i \(0.984800\pi\)
\(858\) 0 0
\(859\) 17.1593i 0.585468i 0.956194 + 0.292734i \(0.0945651\pi\)
−0.956194 + 0.292734i \(0.905435\pi\)
\(860\) −19.4150 −0.662045
\(861\) 0 0
\(862\) 17.6158i 0.599995i
\(863\) −52.0008 −1.77013 −0.885065 0.465468i \(-0.845886\pi\)
−0.885065 + 0.465468i \(0.845886\pi\)
\(864\) 0 0
\(865\) 17.9684i 0.610945i
\(866\) 18.6072i 0.632299i
\(867\) 0 0
\(868\) 16.5144 0.560535
\(869\) 13.9768i 0.474130i
\(870\) 0 0
\(871\) 18.9665i 0.642655i
\(872\) 2.66339 0.0901939
\(873\) 0 0
\(874\) 34.8933 1.18028
\(875\) 42.6294i 1.44114i
\(876\) 0 0
\(877\) 3.64166i 0.122970i 0.998108 + 0.0614851i \(0.0195837\pi\)
−0.998108 + 0.0614851i \(0.980416\pi\)
\(878\) −16.5225 −0.557607
\(879\) 0 0
\(880\) 5.46470i 0.184215i
\(881\) 31.1027i 1.04788i 0.851757 + 0.523938i \(0.175538\pi\)
−0.851757 + 0.523938i \(0.824462\pi\)
\(882\) 0 0
\(883\) 5.41359i 0.182182i −0.995843 0.0910910i \(-0.970965\pi\)
0.995843 0.0910910i \(-0.0290354\pi\)
\(884\) 0.194340i 0.00653637i
\(885\) 0 0
\(886\) 26.1482 0.878467
\(887\) 12.4427i 0.417785i −0.977939 0.208892i \(-0.933014\pi\)
0.977939 0.208892i \(-0.0669858\pi\)
\(888\) 0 0
\(889\) −8.15339 −0.273456
\(890\) 17.4826 0.586018
\(891\) 0 0
\(892\) 15.6285i 0.523282i
\(893\) −16.1498 −0.540434
\(894\) 0 0
\(895\) 38.6469 1.29182
\(896\) 3.55588 0.118793
\(897\) 0 0
\(898\) 36.2457i 1.20954i
\(899\) 17.4240i 0.581122i
\(900\) 0 0
\(901\) 0.804651i 0.0268068i
\(902\) −25.4150 −0.846226
\(903\) 0 0
\(904\) −9.37470 + 5.01149i −0.311798 + 0.166680i
\(905\) 1.41842 0.0471499
\(906\) 0 0
\(907\) 3.88070i 0.128857i 0.997922 + 0.0644283i \(0.0205224\pi\)
−0.997922 + 0.0644283i \(0.979478\pi\)
\(908\) −7.55807 −0.250823
\(909\) 0 0
\(910\) 10.6432i 0.352818i
\(911\) −10.3826 −0.343992 −0.171996 0.985098i \(-0.555022\pi\)
−0.171996 + 0.985098i \(0.555022\pi\)
\(912\) 0 0
\(913\) 28.3894 0.939553
\(914\) 2.51954i 0.0833390i
\(915\) 0 0
\(916\) 6.60232i 0.218147i
\(917\) −24.5088 −0.809352
\(918\) 0 0
\(919\) −2.73753 −0.0903029 −0.0451514 0.998980i \(-0.514377\pi\)
−0.0451514 + 0.998980i \(0.514377\pi\)
\(920\) 14.0741 0.464009
\(921\) 0 0
\(922\) 42.2245 1.39059
\(923\) 4.12280i 0.135704i
\(924\) 0 0
\(925\) 9.81175i 0.322608i
\(926\) 27.6497 0.908625
\(927\) 0 0
\(928\) 3.75172i 0.123156i
\(929\) 14.3668 0.471358 0.235679 0.971831i \(-0.424269\pi\)
0.235679 + 0.971831i \(0.424269\pi\)
\(930\) 0 0
\(931\) 22.9449i 0.751990i
\(932\) −7.04394 −0.230732
\(933\) 0 0
\(934\) 22.6581 0.741395
\(935\) 0.581786 0.0190264
\(936\) 0 0
\(937\) 4.22723i 0.138098i 0.997613 + 0.0690488i \(0.0219964\pi\)
−0.997613 + 0.0690488i \(0.978004\pi\)
\(938\) 36.9459i 1.20633i
\(939\) 0 0
\(940\) −6.51397 −0.212462
\(941\) 13.4190i 0.437447i 0.975787 + 0.218724i \(0.0701893\pi\)
−0.975787 + 0.218724i \(0.929811\pi\)
\(942\) 0 0
\(943\) 65.4551i 2.13151i
\(944\) 3.60391i 0.117297i
\(945\) 0 0
\(946\) 39.4627i 1.28304i
\(947\) 24.4827i 0.795582i 0.917476 + 0.397791i \(0.130223\pi\)
−0.917476 + 0.397791i \(0.869777\pi\)
\(948\) 0 0
\(949\) 25.7395i 0.835540i
\(950\) 9.39652i 0.304863i
\(951\) 0 0
\(952\) 0.378567i 0.0122694i
\(953\) −52.4473 −1.69894 −0.849468 0.527641i \(-0.823077\pi\)
−0.849468 + 0.527641i \(0.823077\pi\)
\(954\) 0 0
\(955\) 2.84036 0.0919119
\(956\) −12.7494 −0.412345
\(957\) 0 0
\(958\) 5.77817i 0.186684i
\(959\) 34.8594i 1.12567i
\(960\) 0 0
\(961\) −9.43089 −0.304222
\(962\) 7.74866i 0.249827i
\(963\) 0 0
\(964\) −21.7079 −0.699165
\(965\) −16.1312 −0.519283
\(966\) 0 0
\(967\) 8.66339 0.278596 0.139298 0.990251i \(-0.455515\pi\)
0.139298 + 0.990251i \(0.455515\pi\)
\(968\) 0.107518 0.00345575
\(969\) 0 0
\(970\) 28.1759i 0.904673i
\(971\) 6.07931i 0.195094i −0.995231 0.0975472i \(-0.968900\pi\)
0.995231 0.0975472i \(-0.0310997\pi\)
\(972\) 0 0
\(973\) 66.6360 2.13625
\(974\) 28.1323i 0.901415i
\(975\) 0 0
\(976\) −1.82544 −0.0584308
\(977\) 18.4104i 0.589002i 0.955651 + 0.294501i \(0.0951534\pi\)
−0.955651 + 0.294501i \(0.904847\pi\)
\(978\) 0 0
\(979\) 35.5350i 1.13570i
\(980\) 9.25475i 0.295632i
\(981\) 0 0
\(982\) 23.7012i 0.756336i
\(983\) 56.2812i 1.79509i 0.440921 + 0.897546i \(0.354652\pi\)
−0.440921 + 0.897546i \(0.645348\pi\)
\(984\) 0 0
\(985\) 26.2322 0.835827
\(986\) −0.399418 −0.0127201
\(987\) 0 0
\(988\) 7.42074i 0.236085i
\(989\) 101.634 3.23179
\(990\) 0 0
\(991\) −7.11295 −0.225950 −0.112975 0.993598i \(-0.536038\pi\)
−0.112975 + 0.993598i \(0.536038\pi\)
\(992\) 4.64426 0.147455
\(993\) 0 0
\(994\) 8.03105i 0.254729i
\(995\) −36.7459 −1.16492
\(996\) 0 0
\(997\) 34.1051i 1.08012i −0.841627 0.540060i \(-0.818402\pi\)
0.841627 0.540060i \(-0.181598\pi\)
\(998\) 27.0101i 0.854991i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.2.c.h.451.8 yes 10
3.2 odd 2 2034.2.c.g.451.3 10
113.112 even 2 inner 2034.2.c.h.451.3 yes 10
339.338 odd 2 2034.2.c.g.451.8 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2034.2.c.g.451.3 10 3.2 odd 2
2034.2.c.g.451.8 yes 10 339.338 odd 2
2034.2.c.h.451.3 yes 10 113.112 even 2 inner
2034.2.c.h.451.8 yes 10 1.1 even 1 trivial