Properties

Label 2034.2.c.h
Level $2034$
Weight $2$
Character orbit 2034.c
Analytic conductor $16.242$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(451,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,10,0,10,0,0,0,10,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2415717711\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 25x^{8} + 190x^{6} + 482x^{4} + 368x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + \beta_1 q^{5} - \beta_{3} q^{7} + q^{8} + \beta_1 q^{10} - \beta_{6} q^{11} + \beta_{7} q^{13} - \beta_{3} q^{14} + q^{16} + ( - \beta_{9} - \beta_{8}) q^{17} + ( - \beta_{9} - \beta_{8} + \cdots + \beta_1) q^{19}+ \cdots + \beta_{5} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{2} + 10 q^{4} + 10 q^{8} + 2 q^{11} + 2 q^{13} + 10 q^{16} + 2 q^{22} + 2 q^{26} - 8 q^{31} + 10 q^{32} - 8 q^{41} + 2 q^{44} + 2 q^{49} + 2 q^{52} + 18 q^{53} + 2 q^{61} - 8 q^{62} + 10 q^{64}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 25x^{8} + 190x^{6} + 482x^{4} + 368x^{2} + 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{9} - 79\nu^{7} - 654\nu^{5} - 1806\nu^{3} - 632\nu ) / 192 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{8} + 79\nu^{6} + 654\nu^{4} + 1806\nu^{2} + 824 ) / 192 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{9} + 71\nu^{7} + 486\nu^{5} + 990\nu^{3} + 520\nu ) / 96 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 9\nu^{8} + 205\nu^{6} + 1290\nu^{4} + 2154\nu^{2} + 1064 ) / 192 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -9\nu^{8} - 205\nu^{6} - 1290\nu^{4} - 1962\nu^{2} - 104 ) / 192 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{8} - 121\nu^{6} - 834\nu^{4} - 1474\nu^{2} - 200 ) / 96 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -25\nu^{9} - 605\nu^{7} - 4266\nu^{5} - 8714\nu^{3} - 3304\nu ) / 384 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{9} + 25\nu^{7} + 190\nu^{5} + 482\nu^{3} + 368\nu ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} - \beta_{4} + 2\beta_{2} - 11\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{7} - 14\beta_{6} - 12\beta_{5} + 4\beta_{3} + 48 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -14\beta_{9} + 6\beta_{8} + 24\beta_{4} - 33\beta_{2} + 135\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -63\beta_{7} + 192\beta_{6} + 144\beta_{5} - 66\beta_{3} - 542 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 192\beta_{9} - 126\beta_{8} - 414\beta_{4} + 465\beta_{2} - 1727\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 1005\beta_{7} - 2606\beta_{6} - 1778\beta_{5} + 930\beta_{3} + 6544 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -2606\beta_{9} + 2010\beta_{8} + 6272\beta_{4} - 6319\beta_{2} + 22459\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
451.1
3.63944i
2.79442i
1.63968i
1.07598i
0.315272i
0.315272i
1.07598i
1.63968i
2.79442i
3.63944i
1.00000 0 1.00000 3.63944i 0 −2.08727 1.00000 0 3.63944i
451.2 1.00000 0 1.00000 2.79442i 0 −0.721771 1.00000 0 2.79442i
451.3 1.00000 0 1.00000 1.63968i 0 3.55588 1.00000 0 1.63968i
451.4 1.00000 0 1.00000 1.07598i 0 2.64314 1.00000 0 1.07598i
451.5 1.00000 0 1.00000 0.315272i 0 −3.38997 1.00000 0 0.315272i
451.6 1.00000 0 1.00000 0.315272i 0 −3.38997 1.00000 0 0.315272i
451.7 1.00000 0 1.00000 1.07598i 0 2.64314 1.00000 0 1.07598i
451.8 1.00000 0 1.00000 1.63968i 0 3.55588 1.00000 0 1.63968i
451.9 1.00000 0 1.00000 2.79442i 0 −0.721771 1.00000 0 2.79442i
451.10 1.00000 0 1.00000 3.63944i 0 −2.08727 1.00000 0 3.63944i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 451.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
113.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2034.2.c.h yes 10
3.b odd 2 1 2034.2.c.g 10
113.b even 2 1 inner 2034.2.c.h yes 10
339.c odd 2 1 2034.2.c.g 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2034.2.c.g 10 3.b odd 2 1
2034.2.c.g 10 339.c odd 2 1
2034.2.c.h yes 10 1.a even 1 1 trivial
2034.2.c.h yes 10 113.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2034, [\chi])\):

\( T_{5}^{10} + 25T_{5}^{8} + 190T_{5}^{6} + 482T_{5}^{4} + 368T_{5}^{2} + 32 \) Copy content Toggle raw display
\( T_{7}^{5} - 18T_{7}^{3} - 5T_{7}^{2} + 72T_{7} + 48 \) Copy content Toggle raw display
\( T_{11}^{5} - T_{11}^{4} - 35T_{11}^{3} + 270T_{11} + 108 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{10} \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + 25 T^{8} + \cdots + 32 \) Copy content Toggle raw display
$7$ \( (T^{5} - 18 T^{3} + \cdots + 48)^{2} \) Copy content Toggle raw display
$11$ \( (T^{5} - T^{4} - 35 T^{3} + \cdots + 108)^{2} \) Copy content Toggle raw display
$13$ \( (T^{5} - T^{4} - 38 T^{3} + \cdots + 112)^{2} \) Copy content Toggle raw display
$17$ \( T^{10} + 76 T^{8} + \cdots + 32 \) Copy content Toggle raw display
$19$ \( T^{10} + 91 T^{8} + \cdots + 373248 \) Copy content Toggle raw display
$23$ \( T^{10} + 108 T^{8} + \cdots + 50562 \) Copy content Toggle raw display
$29$ \( T^{10} + 112 T^{8} + \cdots + 51200 \) Copy content Toggle raw display
$31$ \( (T^{5} + 4 T^{4} + \cdots + 448)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + 271 T^{8} + \cdots + 7144200 \) Copy content Toggle raw display
$41$ \( (T^{5} + 4 T^{4} + \cdots + 4320)^{2} \) Copy content Toggle raw display
$43$ \( T^{10} + 379 T^{8} + \cdots + 89672832 \) Copy content Toggle raw display
$47$ \( T^{10} + 139 T^{8} + \cdots + 2635808 \) Copy content Toggle raw display
$53$ \( (T^{5} - 9 T^{4} + \cdots - 63504)^{2} \) Copy content Toggle raw display
$59$ \( T^{10} + 301 T^{8} + \cdots + 81102848 \) Copy content Toggle raw display
$61$ \( (T^{5} - T^{4} - 38 T^{3} + \cdots + 112)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 3584673792 \) Copy content Toggle raw display
$71$ \( T^{10} + 256 T^{8} + \cdots + 9065282 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 2633637888 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 497259648 \) Copy content Toggle raw display
$83$ \( (T^{5} + 7 T^{4} + \cdots - 10584)^{2} \) Copy content Toggle raw display
$89$ \( T^{10} + 403 T^{8} + \cdots + 4917248 \) Copy content Toggle raw display
$97$ \( (T^{5} - 5 T^{4} + \cdots - 2468)^{2} \) Copy content Toggle raw display
show more
show less