Properties

Label 2034.2.c.e
Level $2034$
Weight $2$
Character orbit 2034.c
Analytic conductor $16.242$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(451,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,0,0,4,-4,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2415717711\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - x^{2} + 2x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 226)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - \beta_{2} q^{5} + ( - \beta_{3} + 1) q^{7} - q^{8} + \beta_{2} q^{10} + ( - \beta_{3} - 1) q^{11} - 4 q^{13} + (\beta_{3} - 1) q^{14} + q^{16} - 4 \beta_{2} q^{17} + ( - 3 \beta_{2} + \beta_1) q^{19}+ \cdots + (2 \beta_{3} - 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 4 q^{7} - 4 q^{8} - 4 q^{11} - 16 q^{13} - 4 q^{14} + 4 q^{16} + 4 q^{22} + 12 q^{25} + 16 q^{26} + 4 q^{28} + 12 q^{31} - 4 q^{32} + 4 q^{41} - 4 q^{44} + 28 q^{49} - 12 q^{50}+ \cdots - 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - x^{2} + 2x + 27 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 9\nu^{2} - 7\nu - 12 ) / 21 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 3\nu^{2} - 7\nu + 3 ) / 21 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + 6\nu^{2} + 28\nu - 15 ) / 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 2\beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 4\beta _1 + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} - 7\beta_{2} + 3\beta _1 + 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2034\mathbb{Z}\right)^\times\).

\(n\) \(227\) \(1585\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
451.1
2.30278 1.41421i
−1.30278 1.41421i
2.30278 + 1.41421i
−1.30278 + 1.41421i
−1.00000 0 1.00000 1.41421i 0 −2.60555 −1.00000 0 1.41421i
451.2 −1.00000 0 1.00000 1.41421i 0 4.60555 −1.00000 0 1.41421i
451.3 −1.00000 0 1.00000 1.41421i 0 −2.60555 −1.00000 0 1.41421i
451.4 −1.00000 0 1.00000 1.41421i 0 4.60555 −1.00000 0 1.41421i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
113.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2034.2.c.e 4
3.b odd 2 1 226.2.b.d 4
12.b even 2 1 1808.2.c.d 4
113.b even 2 1 inner 2034.2.c.e 4
339.c odd 2 1 226.2.b.d 4
1356.g even 2 1 1808.2.c.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
226.2.b.d 4 3.b odd 2 1
226.2.b.d 4 339.c odd 2 1
1808.2.c.d 4 12.b even 2 1
1808.2.c.d 4 1356.g even 2 1
2034.2.c.e 4 1.a even 1 1 trivial
2034.2.c.e 4 113.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2034, [\chi])\):

\( T_{5}^{2} + 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 2T_{7} - 12 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 2 T - 12)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2 T - 12)^{2} \) Copy content Toggle raw display
$13$ \( (T + 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 62T^{2} + 324 \) Copy content Toggle raw display
$23$ \( T^{4} + 38T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T^{2} + 26)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 6 T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 68T^{2} + 324 \) Copy content Toggle raw display
$41$ \( (T^{2} - 2 T - 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 38T^{2} + 36 \) Copy content Toggle raw display
$47$ \( T^{4} + 166T^{2} + 1156 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 94T^{2} + 1156 \) Copy content Toggle raw display
$61$ \( (T + 10)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 302 T^{2} + 19044 \) Copy content Toggle raw display
$71$ \( T^{4} + 22T^{2} + 4 \) Copy content Toggle raw display
$73$ \( T^{4} + 272T^{2} + 5184 \) Copy content Toggle raw display
$79$ \( T^{4} + 14T^{2} + 36 \) Copy content Toggle raw display
$83$ \( (T^{2} - 26 T + 156)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 208)^{2} \) Copy content Toggle raw display
show more
show less