Properties

Label 2034.2.a.s
Level $2034$
Weight $2$
Character orbit 2034.a
Self dual yes
Analytic conductor $16.242$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(1,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,4,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2415717711\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.77976.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 678)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta_{2} q^{5} + ( - \beta_{3} + 1) q^{7} + q^{8} - \beta_{2} q^{10} + (\beta_1 - 1) q^{11} + 2 q^{13} + ( - \beta_{3} + 1) q^{14} + q^{16} + ( - \beta_{3} - 2 \beta_1 + 1) q^{17}+ \cdots + ( - 4 \beta_{3} + 2 \beta_{2} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 5 q^{7} + 4 q^{8} - 3 q^{11} + 8 q^{13} + 5 q^{14} + 4 q^{16} + 3 q^{17} + 5 q^{19} - 3 q^{22} - 3 q^{23} + 16 q^{25} + 8 q^{26} + 5 q^{28} + 11 q^{31} + 4 q^{32} + 3 q^{34} + 6 q^{35}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 12x^{2} - x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 10\nu + 5 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 12\nu - 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 2\beta_{2} + 2\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} - 2\beta_{2} + 14\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.340820
0.248351
4.02657
−2.93410
1.00000 0 1.00000 −4.06815 0 −1.93410 1.00000 0 −4.06815
1.2 1.00000 0 1.00000 −1.20423 0 5.02657 1.00000 0 −1.20423
1.3 1.00000 0 1.00000 1.20423 0 1.24835 1.00000 0 1.20423
1.4 1.00000 0 1.00000 4.06815 0 0.659180 1.00000 0 4.06815
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(113\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2034.2.a.s 4
3.b odd 2 1 678.2.a.k 4
12.b even 2 1 5424.2.a.bm 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
678.2.a.k 4 3.b odd 2 1
2034.2.a.s 4 1.a even 1 1 trivial
5424.2.a.bm 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2034))\):

\( T_{5}^{4} - 18T_{5}^{2} + 24 \) Copy content Toggle raw display
\( T_{7}^{4} - 5T_{7}^{3} - 3T_{7}^{2} + 16T_{7} - 8 \) Copy content Toggle raw display
\( T_{11}^{4} + 3T_{11}^{3} - 9T_{11}^{2} - 24T_{11} - 12 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 18T^{2} + 24 \) Copy content Toggle raw display
$7$ \( T^{4} - 5 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$11$ \( T^{4} + 3 T^{3} + \cdots - 12 \) Copy content Toggle raw display
$13$ \( (T - 2)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 3 T^{3} + \cdots + 252 \) Copy content Toggle raw display
$19$ \( T^{4} - 5 T^{3} + \cdots - 8 \) Copy content Toggle raw display
$23$ \( T^{4} + 3 T^{3} + \cdots - 18 \) Copy content Toggle raw display
$29$ \( T^{4} - 18T^{2} + 24 \) Copy content Toggle raw display
$31$ \( T^{4} - 11 T^{3} + \cdots - 224 \) Copy content Toggle raw display
$37$ \( T^{4} - 11 T^{3} + \cdots - 998 \) Copy content Toggle raw display
$41$ \( (T^{2} - 6 T - 48)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 11 T^{3} + \cdots - 200 \) Copy content Toggle raw display
$47$ \( T^{4} + 3 T^{3} + \cdots + 1050 \) Copy content Toggle raw display
$53$ \( T^{4} + 9 T^{3} + \cdots - 972 \) Copy content Toggle raw display
$59$ \( T^{4} - 276 T^{2} + 18816 \) Copy content Toggle raw display
$61$ \( T^{4} - 2 T^{3} + \cdots - 1712 \) Copy content Toggle raw display
$67$ \( T^{4} - 11 T^{3} + \cdots - 200 \) Copy content Toggle raw display
$71$ \( T^{4} + 9 T^{3} + \cdots + 114 \) Copy content Toggle raw display
$73$ \( (T^{2} - 10 T - 32)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 4 T^{3} + \cdots + 2344 \) Copy content Toggle raw display
$83$ \( T^{4} - 3 T^{3} + \cdots + 252 \) Copy content Toggle raw display
$89$ \( T^{4} + 3 T^{3} + \cdots - 588 \) Copy content Toggle raw display
$97$ \( T^{4} + T^{3} + \cdots - 1568 \) Copy content Toggle raw display
show more
show less