Properties

Label 2034.2.a.r.1.4
Level $2034$
Weight $2$
Character 2034.1
Self dual yes
Analytic conductor $16.242$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(1,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2415717711\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 226)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.17557\) of defining polynomial
Character \(\chi\) \(=\) 2034.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.07768 q^{5} -3.23607 q^{7} -1.00000 q^{8} -2.07768 q^{10} -3.80423 q^{11} +0.884927 q^{13} +3.23607 q^{14} +1.00000 q^{16} +4.47214 q^{17} -3.67853 q^{19} +2.07768 q^{20} +3.80423 q^{22} +3.85224 q^{23} -0.683231 q^{25} -0.884927 q^{26} -3.23607 q^{28} +2.96261 q^{29} +8.27636 q^{31} -1.00000 q^{32} -4.47214 q^{34} -6.72353 q^{35} -11.1180 q^{37} +3.67853 q^{38} -2.07768 q^{40} -11.9596 q^{41} -0.659481 q^{43} -3.80423 q^{44} -3.85224 q^{46} -3.75621 q^{47} +3.47214 q^{49} +0.683231 q^{50} +0.884927 q^{52} -7.27044 q^{53} -7.90398 q^{55} +3.23607 q^{56} -2.96261 q^{58} -7.67853 q^{59} +13.0615 q^{61} -8.27636 q^{62} +1.00000 q^{64} +1.83860 q^{65} -6.79360 q^{67} +4.47214 q^{68} +6.72353 q^{70} -9.18806 q^{71} +3.24920 q^{73} +11.1180 q^{74} -3.67853 q^{76} +12.3107 q^{77} -16.6139 q^{79} +2.07768 q^{80} +11.9596 q^{82} -2.21702 q^{83} +9.29168 q^{85} +0.659481 q^{86} +3.80423 q^{88} -14.0000 q^{89} -2.86368 q^{91} +3.85224 q^{92} +3.75621 q^{94} -7.64282 q^{95} +11.7213 q^{97} -3.47214 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{5} - 4 q^{7} - 4 q^{8} + 4 q^{10} + 4 q^{13} + 4 q^{14} + 4 q^{16} - 6 q^{19} - 4 q^{20} + 6 q^{23} + 4 q^{25} - 4 q^{26} - 4 q^{28} - 4 q^{32} + 4 q^{35} - 8 q^{37} + 6 q^{38}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.07768 0.929168 0.464584 0.885529i \(-0.346204\pi\)
0.464584 + 0.885529i \(0.346204\pi\)
\(6\) 0 0
\(7\) −3.23607 −1.22312 −0.611559 0.791199i \(-0.709457\pi\)
−0.611559 + 0.791199i \(0.709457\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.07768 −0.657021
\(11\) −3.80423 −1.14702 −0.573509 0.819199i \(-0.694418\pi\)
−0.573509 + 0.819199i \(0.694418\pi\)
\(12\) 0 0
\(13\) 0.884927 0.245435 0.122717 0.992442i \(-0.460839\pi\)
0.122717 + 0.992442i \(0.460839\pi\)
\(14\) 3.23607 0.864876
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) −3.67853 −0.843913 −0.421956 0.906616i \(-0.638657\pi\)
−0.421956 + 0.906616i \(0.638657\pi\)
\(20\) 2.07768 0.464584
\(21\) 0 0
\(22\) 3.80423 0.811064
\(23\) 3.85224 0.803247 0.401623 0.915805i \(-0.368446\pi\)
0.401623 + 0.915805i \(0.368446\pi\)
\(24\) 0 0
\(25\) −0.683231 −0.136646
\(26\) −0.884927 −0.173548
\(27\) 0 0
\(28\) −3.23607 −0.611559
\(29\) 2.96261 0.550143 0.275071 0.961424i \(-0.411298\pi\)
0.275071 + 0.961424i \(0.411298\pi\)
\(30\) 0 0
\(31\) 8.27636 1.48648 0.743239 0.669026i \(-0.233288\pi\)
0.743239 + 0.669026i \(0.233288\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.47214 −0.766965
\(35\) −6.72353 −1.13648
\(36\) 0 0
\(37\) −11.1180 −1.82778 −0.913892 0.405957i \(-0.866938\pi\)
−0.913892 + 0.405957i \(0.866938\pi\)
\(38\) 3.67853 0.596737
\(39\) 0 0
\(40\) −2.07768 −0.328511
\(41\) −11.9596 −1.86777 −0.933887 0.357567i \(-0.883606\pi\)
−0.933887 + 0.357567i \(0.883606\pi\)
\(42\) 0 0
\(43\) −0.659481 −0.100570 −0.0502849 0.998735i \(-0.516013\pi\)
−0.0502849 + 0.998735i \(0.516013\pi\)
\(44\) −3.80423 −0.573509
\(45\) 0 0
\(46\) −3.85224 −0.567981
\(47\) −3.75621 −0.547900 −0.273950 0.961744i \(-0.588330\pi\)
−0.273950 + 0.961744i \(0.588330\pi\)
\(48\) 0 0
\(49\) 3.47214 0.496019
\(50\) 0.683231 0.0966235
\(51\) 0 0
\(52\) 0.884927 0.122717
\(53\) −7.27044 −0.998672 −0.499336 0.866408i \(-0.666423\pi\)
−0.499336 + 0.866408i \(0.666423\pi\)
\(54\) 0 0
\(55\) −7.90398 −1.06577
\(56\) 3.23607 0.432438
\(57\) 0 0
\(58\) −2.96261 −0.389010
\(59\) −7.67853 −0.999660 −0.499830 0.866124i \(-0.666604\pi\)
−0.499830 + 0.866124i \(0.666604\pi\)
\(60\) 0 0
\(61\) 13.0615 1.67236 0.836179 0.548456i \(-0.184784\pi\)
0.836179 + 0.548456i \(0.184784\pi\)
\(62\) −8.27636 −1.05110
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.83860 0.228050
\(66\) 0 0
\(67\) −6.79360 −0.829971 −0.414985 0.909828i \(-0.636213\pi\)
−0.414985 + 0.909828i \(0.636213\pi\)
\(68\) 4.47214 0.542326
\(69\) 0 0
\(70\) 6.72353 0.803615
\(71\) −9.18806 −1.09042 −0.545211 0.838299i \(-0.683550\pi\)
−0.545211 + 0.838299i \(0.683550\pi\)
\(72\) 0 0
\(73\) 3.24920 0.380290 0.190145 0.981756i \(-0.439104\pi\)
0.190145 + 0.981756i \(0.439104\pi\)
\(74\) 11.1180 1.29244
\(75\) 0 0
\(76\) −3.67853 −0.421956
\(77\) 12.3107 1.40294
\(78\) 0 0
\(79\) −16.6139 −1.86921 −0.934603 0.355693i \(-0.884245\pi\)
−0.934603 + 0.355693i \(0.884245\pi\)
\(80\) 2.07768 0.232292
\(81\) 0 0
\(82\) 11.9596 1.32072
\(83\) −2.21702 −0.243349 −0.121675 0.992570i \(-0.538826\pi\)
−0.121675 + 0.992570i \(0.538826\pi\)
\(84\) 0 0
\(85\) 9.29168 1.00782
\(86\) 0.659481 0.0711136
\(87\) 0 0
\(88\) 3.80423 0.405532
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −2.86368 −0.300196
\(92\) 3.85224 0.401623
\(93\) 0 0
\(94\) 3.75621 0.387424
\(95\) −7.64282 −0.784137
\(96\) 0 0
\(97\) 11.7213 1.19012 0.595061 0.803681i \(-0.297128\pi\)
0.595061 + 0.803681i \(0.297128\pi\)
\(98\) −3.47214 −0.350739
\(99\) 0 0
\(100\) −0.683231 −0.0683231
\(101\) 9.13922 0.909386 0.454693 0.890648i \(-0.349749\pi\)
0.454693 + 0.890648i \(0.349749\pi\)
\(102\) 0 0
\(103\) −14.6624 −1.44473 −0.722364 0.691513i \(-0.756944\pi\)
−0.722364 + 0.691513i \(0.756944\pi\)
\(104\) −0.884927 −0.0867742
\(105\) 0 0
\(106\) 7.27044 0.706168
\(107\) −0.659481 −0.0637544 −0.0318772 0.999492i \(-0.510149\pi\)
−0.0318772 + 0.999492i \(0.510149\pi\)
\(108\) 0 0
\(109\) 9.74258 0.933170 0.466585 0.884476i \(-0.345484\pi\)
0.466585 + 0.884476i \(0.345484\pi\)
\(110\) 7.90398 0.753615
\(111\) 0 0
\(112\) −3.23607 −0.305780
\(113\) 1.00000 0.0940721
\(114\) 0 0
\(115\) 8.00373 0.746352
\(116\) 2.96261 0.275071
\(117\) 0 0
\(118\) 7.67853 0.706866
\(119\) −14.4721 −1.32666
\(120\) 0 0
\(121\) 3.47214 0.315649
\(122\) −13.0615 −1.18254
\(123\) 0 0
\(124\) 8.27636 0.743239
\(125\) −11.8080 −1.05614
\(126\) 0 0
\(127\) −1.85776 −0.164850 −0.0824249 0.996597i \(-0.526266\pi\)
−0.0824249 + 0.996597i \(0.526266\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −1.83860 −0.161256
\(131\) 12.1018 1.05734 0.528671 0.848827i \(-0.322691\pi\)
0.528671 + 0.848827i \(0.322691\pi\)
\(132\) 0 0
\(133\) 11.9040 1.03221
\(134\) 6.79360 0.586878
\(135\) 0 0
\(136\) −4.47214 −0.383482
\(137\) −7.40456 −0.632615 −0.316307 0.948657i \(-0.602443\pi\)
−0.316307 + 0.948657i \(0.602443\pi\)
\(138\) 0 0
\(139\) −21.4508 −1.81943 −0.909716 0.415232i \(-0.863701\pi\)
−0.909716 + 0.415232i \(0.863701\pi\)
\(140\) −6.72353 −0.568242
\(141\) 0 0
\(142\) 9.18806 0.771045
\(143\) −3.36646 −0.281518
\(144\) 0 0
\(145\) 6.15537 0.511175
\(146\) −3.24920 −0.268905
\(147\) 0 0
\(148\) −11.1180 −0.913892
\(149\) 19.4104 1.59016 0.795080 0.606505i \(-0.207429\pi\)
0.795080 + 0.606505i \(0.207429\pi\)
\(150\) 0 0
\(151\) −9.28408 −0.755528 −0.377764 0.925902i \(-0.623307\pi\)
−0.377764 + 0.925902i \(0.623307\pi\)
\(152\) 3.67853 0.298368
\(153\) 0 0
\(154\) −12.3107 −0.992027
\(155\) 17.1957 1.38119
\(156\) 0 0
\(157\) 20.3701 1.62571 0.812855 0.582467i \(-0.197912\pi\)
0.812855 + 0.582467i \(0.197912\pi\)
\(158\) 16.6139 1.32173
\(159\) 0 0
\(160\) −2.07768 −0.164255
\(161\) −12.4661 −0.982466
\(162\) 0 0
\(163\) −8.05934 −0.631257 −0.315628 0.948883i \(-0.602215\pi\)
−0.315628 + 0.948883i \(0.602215\pi\)
\(164\) −11.9596 −0.933887
\(165\) 0 0
\(166\) 2.21702 0.172074
\(167\) 12.2759 0.949934 0.474967 0.880004i \(-0.342460\pi\)
0.474967 + 0.880004i \(0.342460\pi\)
\(168\) 0 0
\(169\) −12.2169 −0.939762
\(170\) −9.29168 −0.712640
\(171\) 0 0
\(172\) −0.659481 −0.0502849
\(173\) −2.56816 −0.195253 −0.0976267 0.995223i \(-0.531125\pi\)
−0.0976267 + 0.995223i \(0.531125\pi\)
\(174\) 0 0
\(175\) 2.21098 0.167135
\(176\) −3.80423 −0.286754
\(177\) 0 0
\(178\) 14.0000 1.04934
\(179\) −11.7473 −0.878033 −0.439016 0.898479i \(-0.644673\pi\)
−0.439016 + 0.898479i \(0.644673\pi\)
\(180\) 0 0
\(181\) −8.21181 −0.610379 −0.305189 0.952292i \(-0.598720\pi\)
−0.305189 + 0.952292i \(0.598720\pi\)
\(182\) 2.86368 0.212270
\(183\) 0 0
\(184\) −3.85224 −0.283991
\(185\) −23.0996 −1.69832
\(186\) 0 0
\(187\) −17.0130 −1.24411
\(188\) −3.75621 −0.273950
\(189\) 0 0
\(190\) 7.64282 0.554469
\(191\) −2.75841 −0.199591 −0.0997957 0.995008i \(-0.531819\pi\)
−0.0997957 + 0.995008i \(0.531819\pi\)
\(192\) 0 0
\(193\) −19.0996 −1.37482 −0.687411 0.726269i \(-0.741253\pi\)
−0.687411 + 0.726269i \(0.741253\pi\)
\(194\) −11.7213 −0.841543
\(195\) 0 0
\(196\) 3.47214 0.248010
\(197\) −10.7706 −0.767371 −0.383686 0.923464i \(-0.625345\pi\)
−0.383686 + 0.923464i \(0.625345\pi\)
\(198\) 0 0
\(199\) 15.0860 1.06942 0.534709 0.845036i \(-0.320421\pi\)
0.534709 + 0.845036i \(0.320421\pi\)
\(200\) 0.683231 0.0483117
\(201\) 0 0
\(202\) −9.13922 −0.643033
\(203\) −9.58721 −0.672890
\(204\) 0 0
\(205\) −24.8482 −1.73548
\(206\) 14.6624 1.02158
\(207\) 0 0
\(208\) 0.884927 0.0613586
\(209\) 13.9940 0.967983
\(210\) 0 0
\(211\) −4.43403 −0.305251 −0.152626 0.988284i \(-0.548773\pi\)
−0.152626 + 0.988284i \(0.548773\pi\)
\(212\) −7.27044 −0.499336
\(213\) 0 0
\(214\) 0.659481 0.0450812
\(215\) −1.37019 −0.0934463
\(216\) 0 0
\(217\) −26.7829 −1.81814
\(218\) −9.74258 −0.659851
\(219\) 0 0
\(220\) −7.90398 −0.532886
\(221\) 3.95751 0.266211
\(222\) 0 0
\(223\) 1.52607 0.102193 0.0510966 0.998694i \(-0.483728\pi\)
0.0510966 + 0.998694i \(0.483728\pi\)
\(224\) 3.23607 0.216219
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) −6.08059 −0.403583 −0.201791 0.979429i \(-0.564676\pi\)
−0.201791 + 0.979429i \(0.564676\pi\)
\(228\) 0 0
\(229\) −2.17371 −0.143643 −0.0718213 0.997418i \(-0.522881\pi\)
−0.0718213 + 0.997418i \(0.522881\pi\)
\(230\) −8.00373 −0.527750
\(231\) 0 0
\(232\) −2.96261 −0.194505
\(233\) 6.58129 0.431154 0.215577 0.976487i \(-0.430837\pi\)
0.215577 + 0.976487i \(0.430837\pi\)
\(234\) 0 0
\(235\) −7.80423 −0.509092
\(236\) −7.67853 −0.499830
\(237\) 0 0
\(238\) 14.4721 0.938089
\(239\) 2.07247 0.134057 0.0670286 0.997751i \(-0.478648\pi\)
0.0670286 + 0.997751i \(0.478648\pi\)
\(240\) 0 0
\(241\) −11.8423 −0.762831 −0.381416 0.924404i \(-0.624563\pi\)
−0.381416 + 0.924404i \(0.624563\pi\)
\(242\) −3.47214 −0.223197
\(243\) 0 0
\(244\) 13.0615 0.836179
\(245\) 7.21400 0.460886
\(246\) 0 0
\(247\) −3.25523 −0.207125
\(248\) −8.27636 −0.525550
\(249\) 0 0
\(250\) 11.8080 0.746801
\(251\) 14.7735 0.932493 0.466247 0.884655i \(-0.345606\pi\)
0.466247 + 0.884655i \(0.345606\pi\)
\(252\) 0 0
\(253\) −14.6548 −0.921338
\(254\) 1.85776 0.116566
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 26.4779 1.65165 0.825824 0.563927i \(-0.190710\pi\)
0.825824 + 0.563927i \(0.190710\pi\)
\(258\) 0 0
\(259\) 35.9785 2.23560
\(260\) 1.83860 0.114025
\(261\) 0 0
\(262\) −12.1018 −0.747654
\(263\) −11.8156 −0.728579 −0.364289 0.931286i \(-0.618688\pi\)
−0.364289 + 0.931286i \(0.618688\pi\)
\(264\) 0 0
\(265\) −15.1057 −0.927934
\(266\) −11.9040 −0.729880
\(267\) 0 0
\(268\) −6.79360 −0.414985
\(269\) −31.2733 −1.90677 −0.953385 0.301757i \(-0.902427\pi\)
−0.953385 + 0.301757i \(0.902427\pi\)
\(270\) 0 0
\(271\) −1.58900 −0.0965251 −0.0482626 0.998835i \(-0.515368\pi\)
−0.0482626 + 0.998835i \(0.515368\pi\)
\(272\) 4.47214 0.271163
\(273\) 0 0
\(274\) 7.40456 0.447326
\(275\) 2.59917 0.156736
\(276\) 0 0
\(277\) 19.7757 1.18820 0.594102 0.804390i \(-0.297507\pi\)
0.594102 + 0.804390i \(0.297507\pi\)
\(278\) 21.4508 1.28653
\(279\) 0 0
\(280\) 6.72353 0.401807
\(281\) −9.65094 −0.575727 −0.287863 0.957671i \(-0.592945\pi\)
−0.287863 + 0.957671i \(0.592945\pi\)
\(282\) 0 0
\(283\) −8.32386 −0.494802 −0.247401 0.968913i \(-0.579577\pi\)
−0.247401 + 0.968913i \(0.579577\pi\)
\(284\) −9.18806 −0.545211
\(285\) 0 0
\(286\) 3.36646 0.199063
\(287\) 38.7021 2.28451
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) −6.15537 −0.361456
\(291\) 0 0
\(292\) 3.24920 0.190145
\(293\) 1.92232 0.112303 0.0561515 0.998422i \(-0.482117\pi\)
0.0561515 + 0.998422i \(0.482117\pi\)
\(294\) 0 0
\(295\) −15.9536 −0.928852
\(296\) 11.1180 0.646219
\(297\) 0 0
\(298\) −19.4104 −1.12441
\(299\) 3.40895 0.197145
\(300\) 0 0
\(301\) 2.13412 0.123009
\(302\) 9.28408 0.534239
\(303\) 0 0
\(304\) −3.67853 −0.210978
\(305\) 27.1377 1.55390
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 12.3107 0.701469
\(309\) 0 0
\(310\) −17.1957 −0.976648
\(311\) 1.50870 0.0855505 0.0427753 0.999085i \(-0.486380\pi\)
0.0427753 + 0.999085i \(0.486380\pi\)
\(312\) 0 0
\(313\) 34.1150 1.92829 0.964146 0.265373i \(-0.0854952\pi\)
0.964146 + 0.265373i \(0.0854952\pi\)
\(314\) −20.3701 −1.14955
\(315\) 0 0
\(316\) −16.6139 −0.934603
\(317\) −16.8041 −0.943813 −0.471907 0.881649i \(-0.656434\pi\)
−0.471907 + 0.881649i \(0.656434\pi\)
\(318\) 0 0
\(319\) −11.2704 −0.631024
\(320\) 2.07768 0.116146
\(321\) 0 0
\(322\) 12.4661 0.694709
\(323\) −16.4509 −0.915352
\(324\) 0 0
\(325\) −0.604610 −0.0335377
\(326\) 8.05934 0.446366
\(327\) 0 0
\(328\) 11.9596 0.660358
\(329\) 12.1554 0.670147
\(330\) 0 0
\(331\) 11.3108 0.621700 0.310850 0.950459i \(-0.399386\pi\)
0.310850 + 0.950459i \(0.399386\pi\)
\(332\) −2.21702 −0.121675
\(333\) 0 0
\(334\) −12.2759 −0.671705
\(335\) −14.1150 −0.771183
\(336\) 0 0
\(337\) 31.8525 1.73512 0.867559 0.497335i \(-0.165688\pi\)
0.867559 + 0.497335i \(0.165688\pi\)
\(338\) 12.2169 0.664512
\(339\) 0 0
\(340\) 9.29168 0.503912
\(341\) −31.4852 −1.70502
\(342\) 0 0
\(343\) 11.4164 0.616428
\(344\) 0.659481 0.0355568
\(345\) 0 0
\(346\) 2.56816 0.138065
\(347\) 23.4164 1.25706 0.628529 0.777786i \(-0.283657\pi\)
0.628529 + 0.777786i \(0.283657\pi\)
\(348\) 0 0
\(349\) 1.74907 0.0936256 0.0468128 0.998904i \(-0.485094\pi\)
0.0468128 + 0.998904i \(0.485094\pi\)
\(350\) −2.21098 −0.118182
\(351\) 0 0
\(352\) 3.80423 0.202766
\(353\) 29.9977 1.59662 0.798308 0.602249i \(-0.205729\pi\)
0.798308 + 0.602249i \(0.205729\pi\)
\(354\) 0 0
\(355\) −19.0899 −1.01319
\(356\) −14.0000 −0.741999
\(357\) 0 0
\(358\) 11.7473 0.620863
\(359\) −12.4160 −0.655292 −0.327646 0.944801i \(-0.606255\pi\)
−0.327646 + 0.944801i \(0.606255\pi\)
\(360\) 0 0
\(361\) −5.46841 −0.287811
\(362\) 8.21181 0.431603
\(363\) 0 0
\(364\) −2.86368 −0.150098
\(365\) 6.75080 0.353353
\(366\) 0 0
\(367\) −22.1305 −1.15520 −0.577602 0.816318i \(-0.696012\pi\)
−0.577602 + 0.816318i \(0.696012\pi\)
\(368\) 3.85224 0.200812
\(369\) 0 0
\(370\) 23.0996 1.20089
\(371\) 23.5276 1.22149
\(372\) 0 0
\(373\) 12.1525 0.629231 0.314615 0.949219i \(-0.398124\pi\)
0.314615 + 0.949219i \(0.398124\pi\)
\(374\) 17.0130 0.879722
\(375\) 0 0
\(376\) 3.75621 0.193712
\(377\) 2.62169 0.135024
\(378\) 0 0
\(379\) −5.25634 −0.270000 −0.135000 0.990846i \(-0.543103\pi\)
−0.135000 + 0.990846i \(0.543103\pi\)
\(380\) −7.64282 −0.392069
\(381\) 0 0
\(382\) 2.75841 0.141132
\(383\) 10.4803 0.535516 0.267758 0.963486i \(-0.413717\pi\)
0.267758 + 0.963486i \(0.413717\pi\)
\(384\) 0 0
\(385\) 25.5778 1.30357
\(386\) 19.0996 0.972146
\(387\) 0 0
\(388\) 11.7213 0.595061
\(389\) −26.6927 −1.35337 −0.676686 0.736272i \(-0.736584\pi\)
−0.676686 + 0.736272i \(0.736584\pi\)
\(390\) 0 0
\(391\) 17.2277 0.871244
\(392\) −3.47214 −0.175369
\(393\) 0 0
\(394\) 10.7706 0.542613
\(395\) −34.5184 −1.73681
\(396\) 0 0
\(397\) 18.1795 0.912404 0.456202 0.889876i \(-0.349210\pi\)
0.456202 + 0.889876i \(0.349210\pi\)
\(398\) −15.0860 −0.756193
\(399\) 0 0
\(400\) −0.683231 −0.0341616
\(401\) 16.7791 0.837910 0.418955 0.908007i \(-0.362396\pi\)
0.418955 + 0.908007i \(0.362396\pi\)
\(402\) 0 0
\(403\) 7.32398 0.364833
\(404\) 9.13922 0.454693
\(405\) 0 0
\(406\) 9.58721 0.475805
\(407\) 42.2953 2.09650
\(408\) 0 0
\(409\) −8.20389 −0.405656 −0.202828 0.979214i \(-0.565013\pi\)
−0.202828 + 0.979214i \(0.565013\pi\)
\(410\) 24.8482 1.22717
\(411\) 0 0
\(412\) −14.6624 −0.722364
\(413\) 24.8482 1.22270
\(414\) 0 0
\(415\) −4.60626 −0.226112
\(416\) −0.884927 −0.0433871
\(417\) 0 0
\(418\) −13.9940 −0.684467
\(419\) −31.9630 −1.56150 −0.780748 0.624847i \(-0.785162\pi\)
−0.780748 + 0.624847i \(0.785162\pi\)
\(420\) 0 0
\(421\) −19.0996 −0.930859 −0.465430 0.885085i \(-0.654100\pi\)
−0.465430 + 0.885085i \(0.654100\pi\)
\(422\) 4.43403 0.215845
\(423\) 0 0
\(424\) 7.27044 0.353084
\(425\) −3.05550 −0.148214
\(426\) 0 0
\(427\) −42.2680 −2.04549
\(428\) −0.659481 −0.0318772
\(429\) 0 0
\(430\) 1.37019 0.0660765
\(431\) 26.7055 1.28636 0.643179 0.765716i \(-0.277615\pi\)
0.643179 + 0.765716i \(0.277615\pi\)
\(432\) 0 0
\(433\) 1.30353 0.0626435 0.0313218 0.999509i \(-0.490028\pi\)
0.0313218 + 0.999509i \(0.490028\pi\)
\(434\) 26.7829 1.28562
\(435\) 0 0
\(436\) 9.74258 0.466585
\(437\) −14.1706 −0.677871
\(438\) 0 0
\(439\) −1.48179 −0.0707219 −0.0353609 0.999375i \(-0.511258\pi\)
−0.0353609 + 0.999375i \(0.511258\pi\)
\(440\) 7.90398 0.376807
\(441\) 0 0
\(442\) −3.95751 −0.188240
\(443\) 19.1282 0.908808 0.454404 0.890796i \(-0.349852\pi\)
0.454404 + 0.890796i \(0.349852\pi\)
\(444\) 0 0
\(445\) −29.0876 −1.37888
\(446\) −1.52607 −0.0722615
\(447\) 0 0
\(448\) −3.23607 −0.152890
\(449\) 1.17442 0.0554242 0.0277121 0.999616i \(-0.491178\pi\)
0.0277121 + 0.999616i \(0.491178\pi\)
\(450\) 0 0
\(451\) 45.4970 2.14237
\(452\) 1.00000 0.0470360
\(453\) 0 0
\(454\) 6.08059 0.285376
\(455\) −5.94983 −0.278932
\(456\) 0 0
\(457\) −17.1377 −0.801670 −0.400835 0.916150i \(-0.631280\pi\)
−0.400835 + 0.916150i \(0.631280\pi\)
\(458\) 2.17371 0.101571
\(459\) 0 0
\(460\) 8.00373 0.373176
\(461\) 28.8695 1.34459 0.672293 0.740285i \(-0.265309\pi\)
0.672293 + 0.740285i \(0.265309\pi\)
\(462\) 0 0
\(463\) −22.1341 −1.02866 −0.514330 0.857592i \(-0.671959\pi\)
−0.514330 + 0.857592i \(0.671959\pi\)
\(464\) 2.96261 0.137536
\(465\) 0 0
\(466\) −6.58129 −0.304872
\(467\) 4.28138 0.198118 0.0990592 0.995082i \(-0.468417\pi\)
0.0990592 + 0.995082i \(0.468417\pi\)
\(468\) 0 0
\(469\) 21.9846 1.01515
\(470\) 7.80423 0.359982
\(471\) 0 0
\(472\) 7.67853 0.353433
\(473\) 2.50881 0.115355
\(474\) 0 0
\(475\) 2.51329 0.115318
\(476\) −14.4721 −0.663329
\(477\) 0 0
\(478\) −2.07247 −0.0947928
\(479\) 8.44164 0.385708 0.192854 0.981227i \(-0.438226\pi\)
0.192854 + 0.981227i \(0.438226\pi\)
\(480\) 0 0
\(481\) −9.83860 −0.448601
\(482\) 11.8423 0.539403
\(483\) 0 0
\(484\) 3.47214 0.157824
\(485\) 24.3532 1.10582
\(486\) 0 0
\(487\) −7.41820 −0.336151 −0.168075 0.985774i \(-0.553755\pi\)
−0.168075 + 0.985774i \(0.553755\pi\)
\(488\) −13.0615 −0.591268
\(489\) 0 0
\(490\) −7.21400 −0.325895
\(491\) −20.0392 −0.904357 −0.452178 0.891927i \(-0.649353\pi\)
−0.452178 + 0.891927i \(0.649353\pi\)
\(492\) 0 0
\(493\) 13.2492 0.596714
\(494\) 3.25523 0.146460
\(495\) 0 0
\(496\) 8.27636 0.371620
\(497\) 29.7332 1.33372
\(498\) 0 0
\(499\) 9.83891 0.440450 0.220225 0.975449i \(-0.429321\pi\)
0.220225 + 0.975449i \(0.429321\pi\)
\(500\) −11.8080 −0.528068
\(501\) 0 0
\(502\) −14.7735 −0.659372
\(503\) 27.0784 1.20737 0.603683 0.797224i \(-0.293699\pi\)
0.603683 + 0.797224i \(0.293699\pi\)
\(504\) 0 0
\(505\) 18.9884 0.844973
\(506\) 14.6548 0.651484
\(507\) 0 0
\(508\) −1.85776 −0.0824249
\(509\) −1.13193 −0.0501720 −0.0250860 0.999685i \(-0.507986\pi\)
−0.0250860 + 0.999685i \(0.507986\pi\)
\(510\) 0 0
\(511\) −10.5146 −0.465140
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −26.4779 −1.16789
\(515\) −30.4638 −1.34240
\(516\) 0 0
\(517\) 14.2895 0.628451
\(518\) −35.9785 −1.58081
\(519\) 0 0
\(520\) −1.83860 −0.0806279
\(521\) −10.7771 −0.472152 −0.236076 0.971735i \(-0.575861\pi\)
−0.236076 + 0.971735i \(0.575861\pi\)
\(522\) 0 0
\(523\) 34.2467 1.49750 0.748752 0.662851i \(-0.230654\pi\)
0.748752 + 0.662851i \(0.230654\pi\)
\(524\) 12.1018 0.528671
\(525\) 0 0
\(526\) 11.8156 0.515183
\(527\) 37.0130 1.61231
\(528\) 0 0
\(529\) −8.16027 −0.354794
\(530\) 15.1057 0.656149
\(531\) 0 0
\(532\) 11.9040 0.516103
\(533\) −10.5834 −0.458416
\(534\) 0 0
\(535\) −1.37019 −0.0592386
\(536\) 6.79360 0.293439
\(537\) 0 0
\(538\) 31.2733 1.34829
\(539\) −13.2088 −0.568943
\(540\) 0 0
\(541\) 15.9425 0.685423 0.342712 0.939441i \(-0.388655\pi\)
0.342712 + 0.939441i \(0.388655\pi\)
\(542\) 1.58900 0.0682536
\(543\) 0 0
\(544\) −4.47214 −0.191741
\(545\) 20.2420 0.867072
\(546\) 0 0
\(547\) 29.8040 1.27433 0.637164 0.770729i \(-0.280108\pi\)
0.637164 + 0.770729i \(0.280108\pi\)
\(548\) −7.40456 −0.316307
\(549\) 0 0
\(550\) −2.59917 −0.110829
\(551\) −10.8981 −0.464273
\(552\) 0 0
\(553\) 53.7636 2.28626
\(554\) −19.7757 −0.840187
\(555\) 0 0
\(556\) −21.4508 −0.909716
\(557\) 6.36865 0.269849 0.134924 0.990856i \(-0.456921\pi\)
0.134924 + 0.990856i \(0.456921\pi\)
\(558\) 0 0
\(559\) −0.583592 −0.0246833
\(560\) −6.72353 −0.284121
\(561\) 0 0
\(562\) 9.65094 0.407100
\(563\) 38.7021 1.63110 0.815549 0.578689i \(-0.196435\pi\)
0.815549 + 0.578689i \(0.196435\pi\)
\(564\) 0 0
\(565\) 2.07768 0.0874088
\(566\) 8.32386 0.349878
\(567\) 0 0
\(568\) 9.18806 0.385522
\(569\) 7.57177 0.317425 0.158713 0.987325i \(-0.449266\pi\)
0.158713 + 0.987325i \(0.449266\pi\)
\(570\) 0 0
\(571\) −12.2313 −0.511862 −0.255931 0.966695i \(-0.582382\pi\)
−0.255931 + 0.966695i \(0.582382\pi\)
\(572\) −3.36646 −0.140759
\(573\) 0 0
\(574\) −38.7021 −1.61539
\(575\) −2.63197 −0.109761
\(576\) 0 0
\(577\) −0.0118438 −0.000493065 0 −0.000246533 1.00000i \(-0.500078\pi\)
−0.000246533 1.00000i \(0.500078\pi\)
\(578\) −3.00000 −0.124784
\(579\) 0 0
\(580\) 6.15537 0.255588
\(581\) 7.17442 0.297645
\(582\) 0 0
\(583\) 27.6584 1.14549
\(584\) −3.24920 −0.134453
\(585\) 0 0
\(586\) −1.92232 −0.0794102
\(587\) 24.7354 1.02094 0.510469 0.859896i \(-0.329472\pi\)
0.510469 + 0.859896i \(0.329472\pi\)
\(588\) 0 0
\(589\) −30.4449 −1.25446
\(590\) 15.9536 0.656798
\(591\) 0 0
\(592\) −11.1180 −0.456946
\(593\) −20.6656 −0.848635 −0.424317 0.905514i \(-0.639486\pi\)
−0.424317 + 0.905514i \(0.639486\pi\)
\(594\) 0 0
\(595\) −30.0685 −1.23269
\(596\) 19.4104 0.795080
\(597\) 0 0
\(598\) −3.40895 −0.139402
\(599\) −45.7304 −1.86849 −0.934246 0.356629i \(-0.883926\pi\)
−0.934246 + 0.356629i \(0.883926\pi\)
\(600\) 0 0
\(601\) 36.5894 1.49251 0.746256 0.665659i \(-0.231849\pi\)
0.746256 + 0.665659i \(0.231849\pi\)
\(602\) −2.13412 −0.0869804
\(603\) 0 0
\(604\) −9.28408 −0.377764
\(605\) 7.21400 0.293291
\(606\) 0 0
\(607\) −0.367085 −0.0148995 −0.00744976 0.999972i \(-0.502371\pi\)
−0.00744976 + 0.999972i \(0.502371\pi\)
\(608\) 3.67853 0.149184
\(609\) 0 0
\(610\) −27.1377 −1.09878
\(611\) −3.32398 −0.134474
\(612\) 0 0
\(613\) 13.6955 0.553157 0.276579 0.960991i \(-0.410799\pi\)
0.276579 + 0.960991i \(0.410799\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) −12.3107 −0.496014
\(617\) −27.8862 −1.12266 −0.561329 0.827593i \(-0.689710\pi\)
−0.561329 + 0.827593i \(0.689710\pi\)
\(618\) 0 0
\(619\) −18.1827 −0.730826 −0.365413 0.930846i \(-0.619072\pi\)
−0.365413 + 0.930846i \(0.619072\pi\)
\(620\) 17.1957 0.690594
\(621\) 0 0
\(622\) −1.50870 −0.0604934
\(623\) 45.3050 1.81510
\(624\) 0 0
\(625\) −21.1170 −0.844682
\(626\) −34.1150 −1.36351
\(627\) 0 0
\(628\) 20.3701 0.812855
\(629\) −49.7211 −1.98251
\(630\) 0 0
\(631\) 4.87732 0.194163 0.0970816 0.995276i \(-0.469049\pi\)
0.0970816 + 0.995276i \(0.469049\pi\)
\(632\) 16.6139 0.660864
\(633\) 0 0
\(634\) 16.8041 0.667377
\(635\) −3.85984 −0.153173
\(636\) 0 0
\(637\) 3.07259 0.121740
\(638\) 11.2704 0.446201
\(639\) 0 0
\(640\) −2.07768 −0.0821277
\(641\) −14.2741 −0.563791 −0.281896 0.959445i \(-0.590963\pi\)
−0.281896 + 0.959445i \(0.590963\pi\)
\(642\) 0 0
\(643\) 24.6286 0.971258 0.485629 0.874165i \(-0.338591\pi\)
0.485629 + 0.874165i \(0.338591\pi\)
\(644\) −12.4661 −0.491233
\(645\) 0 0
\(646\) 16.4509 0.647252
\(647\) 17.6193 0.692685 0.346343 0.938108i \(-0.387423\pi\)
0.346343 + 0.938108i \(0.387423\pi\)
\(648\) 0 0
\(649\) 29.2109 1.14663
\(650\) 0.604610 0.0237147
\(651\) 0 0
\(652\) −8.05934 −0.315628
\(653\) −4.86949 −0.190558 −0.0952790 0.995451i \(-0.530374\pi\)
−0.0952790 + 0.995451i \(0.530374\pi\)
\(654\) 0 0
\(655\) 25.1438 0.982449
\(656\) −11.9596 −0.466944
\(657\) 0 0
\(658\) −12.1554 −0.473866
\(659\) −11.6937 −0.455523 −0.227762 0.973717i \(-0.573141\pi\)
−0.227762 + 0.973717i \(0.573141\pi\)
\(660\) 0 0
\(661\) −16.5225 −0.642652 −0.321326 0.946969i \(-0.604129\pi\)
−0.321326 + 0.946969i \(0.604129\pi\)
\(662\) −11.3108 −0.439609
\(663\) 0 0
\(664\) 2.21702 0.0860369
\(665\) 24.7327 0.959093
\(666\) 0 0
\(667\) 11.4127 0.441901
\(668\) 12.2759 0.474967
\(669\) 0 0
\(670\) 14.1150 0.545308
\(671\) −49.6890 −1.91822
\(672\) 0 0
\(673\) −32.8958 −1.26804 −0.634019 0.773317i \(-0.718596\pi\)
−0.634019 + 0.773317i \(0.718596\pi\)
\(674\) −31.8525 −1.22691
\(675\) 0 0
\(676\) −12.2169 −0.469881
\(677\) −50.6977 −1.94847 −0.974235 0.225536i \(-0.927587\pi\)
−0.974235 + 0.225536i \(0.927587\pi\)
\(678\) 0 0
\(679\) −37.9310 −1.45566
\(680\) −9.29168 −0.356320
\(681\) 0 0
\(682\) 31.4852 1.20563
\(683\) −36.6711 −1.40318 −0.701590 0.712581i \(-0.747526\pi\)
−0.701590 + 0.712581i \(0.747526\pi\)
\(684\) 0 0
\(685\) −15.3843 −0.587805
\(686\) −11.4164 −0.435880
\(687\) 0 0
\(688\) −0.659481 −0.0251425
\(689\) −6.43381 −0.245109
\(690\) 0 0
\(691\) 22.1662 0.843242 0.421621 0.906772i \(-0.361461\pi\)
0.421621 + 0.906772i \(0.361461\pi\)
\(692\) −2.56816 −0.0976267
\(693\) 0 0
\(694\) −23.4164 −0.888875
\(695\) −44.5679 −1.69056
\(696\) 0 0
\(697\) −53.4849 −2.02589
\(698\) −1.74907 −0.0662033
\(699\) 0 0
\(700\) 2.21098 0.0835673
\(701\) −5.92813 −0.223902 −0.111951 0.993714i \(-0.535710\pi\)
−0.111951 + 0.993714i \(0.535710\pi\)
\(702\) 0 0
\(703\) 40.8978 1.54249
\(704\) −3.80423 −0.143377
\(705\) 0 0
\(706\) −29.9977 −1.12898
\(707\) −29.5751 −1.11229
\(708\) 0 0
\(709\) 0.723751 0.0271810 0.0135905 0.999908i \(-0.495674\pi\)
0.0135905 + 0.999908i \(0.495674\pi\)
\(710\) 19.0899 0.716430
\(711\) 0 0
\(712\) 14.0000 0.524672
\(713\) 31.8825 1.19401
\(714\) 0 0
\(715\) −6.99444 −0.261577
\(716\) −11.7473 −0.439016
\(717\) 0 0
\(718\) 12.4160 0.463361
\(719\) −28.0081 −1.04453 −0.522263 0.852784i \(-0.674912\pi\)
−0.522263 + 0.852784i \(0.674912\pi\)
\(720\) 0 0
\(721\) 47.4485 1.76707
\(722\) 5.46841 0.203513
\(723\) 0 0
\(724\) −8.21181 −0.305189
\(725\) −2.02415 −0.0751750
\(726\) 0 0
\(727\) −32.6332 −1.21030 −0.605149 0.796112i \(-0.706886\pi\)
−0.605149 + 0.796112i \(0.706886\pi\)
\(728\) 2.86368 0.106135
\(729\) 0 0
\(730\) −6.75080 −0.249858
\(731\) −2.94929 −0.109083
\(732\) 0 0
\(733\) 4.78600 0.176775 0.0883875 0.996086i \(-0.471829\pi\)
0.0883875 + 0.996086i \(0.471829\pi\)
\(734\) 22.1305 0.816853
\(735\) 0 0
\(736\) −3.85224 −0.141995
\(737\) 25.8444 0.951991
\(738\) 0 0
\(739\) −20.0200 −0.736446 −0.368223 0.929737i \(-0.620034\pi\)
−0.368223 + 0.929737i \(0.620034\pi\)
\(740\) −23.0996 −0.849160
\(741\) 0 0
\(742\) −23.5276 −0.863727
\(743\) 33.0018 1.21072 0.605360 0.795952i \(-0.293029\pi\)
0.605360 + 0.795952i \(0.293029\pi\)
\(744\) 0 0
\(745\) 40.3286 1.47753
\(746\) −12.1525 −0.444933
\(747\) 0 0
\(748\) −17.0130 −0.622057
\(749\) 2.13412 0.0779792
\(750\) 0 0
\(751\) 25.6966 0.937684 0.468842 0.883282i \(-0.344671\pi\)
0.468842 + 0.883282i \(0.344671\pi\)
\(752\) −3.75621 −0.136975
\(753\) 0 0
\(754\) −2.62169 −0.0954765
\(755\) −19.2894 −0.702012
\(756\) 0 0
\(757\) 33.5214 1.21835 0.609177 0.793034i \(-0.291500\pi\)
0.609177 + 0.793034i \(0.291500\pi\)
\(758\) 5.25634 0.190919
\(759\) 0 0
\(760\) 7.64282 0.277234
\(761\) −24.4921 −0.887838 −0.443919 0.896067i \(-0.646412\pi\)
−0.443919 + 0.896067i \(0.646412\pi\)
\(762\) 0 0
\(763\) −31.5276 −1.14138
\(764\) −2.75841 −0.0997957
\(765\) 0 0
\(766\) −10.4803 −0.378667
\(767\) −6.79494 −0.245351
\(768\) 0 0
\(769\) −27.0841 −0.976676 −0.488338 0.872654i \(-0.662397\pi\)
−0.488338 + 0.872654i \(0.662397\pi\)
\(770\) −25.5778 −0.921760
\(771\) 0 0
\(772\) −19.0996 −0.687411
\(773\) 0.835776 0.0300608 0.0150304 0.999887i \(-0.495216\pi\)
0.0150304 + 0.999887i \(0.495216\pi\)
\(774\) 0 0
\(775\) −5.65467 −0.203122
\(776\) −11.7213 −0.420771
\(777\) 0 0
\(778\) 26.6927 0.956978
\(779\) 43.9937 1.57624
\(780\) 0 0
\(781\) 34.9534 1.25073
\(782\) −17.2277 −0.616062
\(783\) 0 0
\(784\) 3.47214 0.124005
\(785\) 42.3226 1.51056
\(786\) 0 0
\(787\) 54.3473 1.93727 0.968636 0.248482i \(-0.0799318\pi\)
0.968636 + 0.248482i \(0.0799318\pi\)
\(788\) −10.7706 −0.383686
\(789\) 0 0
\(790\) 34.5184 1.22811
\(791\) −3.23607 −0.115061
\(792\) 0 0
\(793\) 11.5585 0.410455
\(794\) −18.1795 −0.645167
\(795\) 0 0
\(796\) 15.0860 0.534709
\(797\) 38.5129 1.36420 0.682099 0.731260i \(-0.261067\pi\)
0.682099 + 0.731260i \(0.261067\pi\)
\(798\) 0 0
\(799\) −16.7983 −0.594281
\(800\) 0.683231 0.0241559
\(801\) 0 0
\(802\) −16.7791 −0.592492
\(803\) −12.3607 −0.436199
\(804\) 0 0
\(805\) −25.9006 −0.912877
\(806\) −7.32398 −0.257976
\(807\) 0 0
\(808\) −9.13922 −0.321517
\(809\) 28.5623 1.00420 0.502098 0.864811i \(-0.332562\pi\)
0.502098 + 0.864811i \(0.332562\pi\)
\(810\) 0 0
\(811\) 32.1352 1.12842 0.564210 0.825631i \(-0.309181\pi\)
0.564210 + 0.825631i \(0.309181\pi\)
\(812\) −9.58721 −0.336445
\(813\) 0 0
\(814\) −42.2953 −1.48245
\(815\) −16.7448 −0.586544
\(816\) 0 0
\(817\) 2.42592 0.0848722
\(818\) 8.20389 0.286842
\(819\) 0 0
\(820\) −24.8482 −0.867739
\(821\) 4.75661 0.166007 0.0830035 0.996549i \(-0.473549\pi\)
0.0830035 + 0.996549i \(0.473549\pi\)
\(822\) 0 0
\(823\) 20.4982 0.714521 0.357261 0.934005i \(-0.383711\pi\)
0.357261 + 0.934005i \(0.383711\pi\)
\(824\) 14.6624 0.510788
\(825\) 0 0
\(826\) −24.8482 −0.864581
\(827\) 13.6928 0.476144 0.238072 0.971247i \(-0.423485\pi\)
0.238072 + 0.971247i \(0.423485\pi\)
\(828\) 0 0
\(829\) 3.44853 0.119772 0.0598862 0.998205i \(-0.480926\pi\)
0.0598862 + 0.998205i \(0.480926\pi\)
\(830\) 4.60626 0.159886
\(831\) 0 0
\(832\) 0.884927 0.0306793
\(833\) 15.5279 0.538009
\(834\) 0 0
\(835\) 25.5053 0.882649
\(836\) 13.9940 0.483991
\(837\) 0 0
\(838\) 31.9630 1.10414
\(839\) 29.1429 1.00612 0.503062 0.864250i \(-0.332207\pi\)
0.503062 + 0.864250i \(0.332207\pi\)
\(840\) 0 0
\(841\) −20.2229 −0.697343
\(842\) 19.0996 0.658217
\(843\) 0 0
\(844\) −4.43403 −0.152626
\(845\) −25.3829 −0.873197
\(846\) 0 0
\(847\) −11.2361 −0.386076
\(848\) −7.27044 −0.249668
\(849\) 0 0
\(850\) 3.05550 0.104803
\(851\) −42.8291 −1.46816
\(852\) 0 0
\(853\) 5.54472 0.189848 0.0949238 0.995485i \(-0.469739\pi\)
0.0949238 + 0.995485i \(0.469739\pi\)
\(854\) 42.2680 1.44638
\(855\) 0 0
\(856\) 0.659481 0.0225406
\(857\) 23.1317 0.790164 0.395082 0.918646i \(-0.370716\pi\)
0.395082 + 0.918646i \(0.370716\pi\)
\(858\) 0 0
\(859\) 34.6930 1.18371 0.591854 0.806045i \(-0.298396\pi\)
0.591854 + 0.806045i \(0.298396\pi\)
\(860\) −1.37019 −0.0467232
\(861\) 0 0
\(862\) −26.7055 −0.909593
\(863\) 0.406756 0.0138461 0.00692307 0.999976i \(-0.497796\pi\)
0.00692307 + 0.999976i \(0.497796\pi\)
\(864\) 0 0
\(865\) −5.33582 −0.181423
\(866\) −1.30353 −0.0442957
\(867\) 0 0
\(868\) −26.7829 −0.909070
\(869\) 63.2029 2.14401
\(870\) 0 0
\(871\) −6.01184 −0.203704
\(872\) −9.74258 −0.329925
\(873\) 0 0
\(874\) 14.1706 0.479327
\(875\) 38.2113 1.29178
\(876\) 0 0
\(877\) −32.8758 −1.11014 −0.555068 0.831805i \(-0.687308\pi\)
−0.555068 + 0.831805i \(0.687308\pi\)
\(878\) 1.48179 0.0500079
\(879\) 0 0
\(880\) −7.90398 −0.266443
\(881\) −22.2241 −0.748749 −0.374375 0.927278i \(-0.622143\pi\)
−0.374375 + 0.927278i \(0.622143\pi\)
\(882\) 0 0
\(883\) −32.0428 −1.07833 −0.539163 0.842201i \(-0.681259\pi\)
−0.539163 + 0.842201i \(0.681259\pi\)
\(884\) 3.95751 0.133106
\(885\) 0 0
\(886\) −19.1282 −0.642625
\(887\) −19.6255 −0.658958 −0.329479 0.944163i \(-0.606873\pi\)
−0.329479 + 0.944163i \(0.606873\pi\)
\(888\) 0 0
\(889\) 6.01184 0.201631
\(890\) 29.0876 0.975018
\(891\) 0 0
\(892\) 1.52607 0.0510966
\(893\) 13.8174 0.462380
\(894\) 0 0
\(895\) −24.4071 −0.815840
\(896\) 3.23607 0.108109
\(897\) 0 0
\(898\) −1.17442 −0.0391908
\(899\) 24.5196 0.817776
\(900\) 0 0
\(901\) −32.5144 −1.08321
\(902\) −45.4970 −1.51488
\(903\) 0 0
\(904\) −1.00000 −0.0332595
\(905\) −17.0615 −0.567145
\(906\) 0 0
\(907\) −30.5406 −1.01408 −0.507041 0.861922i \(-0.669261\pi\)
−0.507041 + 0.861922i \(0.669261\pi\)
\(908\) −6.08059 −0.201791
\(909\) 0 0
\(910\) 5.94983 0.197235
\(911\) −20.7448 −0.687305 −0.343652 0.939097i \(-0.611664\pi\)
−0.343652 + 0.939097i \(0.611664\pi\)
\(912\) 0 0
\(913\) 8.43403 0.279126
\(914\) 17.1377 0.566866
\(915\) 0 0
\(916\) −2.17371 −0.0718213
\(917\) −39.1623 −1.29325
\(918\) 0 0
\(919\) −12.1496 −0.400777 −0.200388 0.979717i \(-0.564220\pi\)
−0.200388 + 0.979717i \(0.564220\pi\)
\(920\) −8.00373 −0.263875
\(921\) 0 0
\(922\) −28.8695 −0.950766
\(923\) −8.13076 −0.267627
\(924\) 0 0
\(925\) 7.59615 0.249760
\(926\) 22.1341 0.727372
\(927\) 0 0
\(928\) −2.96261 −0.0972525
\(929\) −8.16140 −0.267767 −0.133883 0.990997i \(-0.542745\pi\)
−0.133883 + 0.990997i \(0.542745\pi\)
\(930\) 0 0
\(931\) −12.7724 −0.418597
\(932\) 6.58129 0.215577
\(933\) 0 0
\(934\) −4.28138 −0.140091
\(935\) −35.3477 −1.15599
\(936\) 0 0
\(937\) 12.4705 0.407393 0.203697 0.979034i \(-0.434704\pi\)
0.203697 + 0.979034i \(0.434704\pi\)
\(938\) −21.9846 −0.717822
\(939\) 0 0
\(940\) −7.80423 −0.254546
\(941\) −24.0087 −0.782662 −0.391331 0.920250i \(-0.627985\pi\)
−0.391331 + 0.920250i \(0.627985\pi\)
\(942\) 0 0
\(943\) −46.0712 −1.50028
\(944\) −7.67853 −0.249915
\(945\) 0 0
\(946\) −2.50881 −0.0815686
\(947\) −39.6607 −1.28880 −0.644399 0.764689i \(-0.722892\pi\)
−0.644399 + 0.764689i \(0.722892\pi\)
\(948\) 0 0
\(949\) 2.87530 0.0933363
\(950\) −2.51329 −0.0815418
\(951\) 0 0
\(952\) 14.4721 0.469045
\(953\) 6.37905 0.206638 0.103319 0.994648i \(-0.467054\pi\)
0.103319 + 0.994648i \(0.467054\pi\)
\(954\) 0 0
\(955\) −5.73110 −0.185454
\(956\) 2.07247 0.0670286
\(957\) 0 0
\(958\) −8.44164 −0.272737
\(959\) 23.9617 0.773763
\(960\) 0 0
\(961\) 37.4982 1.20962
\(962\) 9.83860 0.317209
\(963\) 0 0
\(964\) −11.8423 −0.381416
\(965\) −39.6830 −1.27744
\(966\) 0 0
\(967\) 17.8376 0.573618 0.286809 0.957988i \(-0.407406\pi\)
0.286809 + 0.957988i \(0.407406\pi\)
\(968\) −3.47214 −0.111599
\(969\) 0 0
\(970\) −24.3532 −0.781935
\(971\) 38.6667 1.24087 0.620437 0.784256i \(-0.286955\pi\)
0.620437 + 0.784256i \(0.286955\pi\)
\(972\) 0 0
\(973\) 69.4162 2.22538
\(974\) 7.41820 0.237695
\(975\) 0 0
\(976\) 13.0615 0.418090
\(977\) −57.9071 −1.85261 −0.926306 0.376771i \(-0.877034\pi\)
−0.926306 + 0.376771i \(0.877034\pi\)
\(978\) 0 0
\(979\) 53.2592 1.70217
\(980\) 7.21400 0.230443
\(981\) 0 0
\(982\) 20.0392 0.639477
\(983\) 33.2788 1.06143 0.530715 0.847550i \(-0.321923\pi\)
0.530715 + 0.847550i \(0.321923\pi\)
\(984\) 0 0
\(985\) −22.3778 −0.713017
\(986\) −13.2492 −0.421940
\(987\) 0 0
\(988\) −3.25523 −0.103563
\(989\) −2.54048 −0.0807824
\(990\) 0 0
\(991\) −20.1764 −0.640924 −0.320462 0.947261i \(-0.603838\pi\)
−0.320462 + 0.947261i \(0.603838\pi\)
\(992\) −8.27636 −0.262775
\(993\) 0 0
\(994\) −29.7332 −0.943079
\(995\) 31.3439 0.993670
\(996\) 0 0
\(997\) −24.6412 −0.780396 −0.390198 0.920731i \(-0.627593\pi\)
−0.390198 + 0.920731i \(0.627593\pi\)
\(998\) −9.83891 −0.311445
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.2.a.r.1.4 4
3.2 odd 2 226.2.a.d.1.4 4
12.11 even 2 1808.2.a.j.1.1 4
15.14 odd 2 5650.2.a.o.1.1 4
24.5 odd 2 7232.2.a.u.1.1 4
24.11 even 2 7232.2.a.v.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
226.2.a.d.1.4 4 3.2 odd 2
1808.2.a.j.1.1 4 12.11 even 2
2034.2.a.r.1.4 4 1.1 even 1 trivial
5650.2.a.o.1.1 4 15.14 odd 2
7232.2.a.u.1.1 4 24.5 odd 2
7232.2.a.v.1.4 4 24.11 even 2