Properties

Label 2034.2.a.r.1.3
Level $2034$
Weight $2$
Character 2034.1
Self dual yes
Analytic conductor $16.242$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2034,2,Mod(1,2034)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2034.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2034, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2034 = 2 \cdot 3^{2} \cdot 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2034.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.2415717711\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 226)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.90211\) of defining polynomial
Character \(\chi\) \(=\) 2034.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -0.273457 q^{5} +1.23607 q^{7} -1.00000 q^{8} +0.273457 q^{10} +2.35114 q^{11} -5.04029 q^{13} -1.23607 q^{14} +1.00000 q^{16} -4.47214 q^{17} +3.75621 q^{19} -0.273457 q^{20} -2.35114 q^{22} +1.32739 q^{23} -4.92522 q^{25} +5.04029 q^{26} +1.23607 q^{28} -5.31375 q^{29} -6.82328 q^{31} -1.00000 q^{32} +4.47214 q^{34} -0.338012 q^{35} +1.86067 q^{37} -3.75621 q^{38} +0.273457 q^{40} -1.10194 q^{41} +5.43945 q^{43} +2.35114 q^{44} -1.32739 q^{46} +6.02967 q^{47} -5.47214 q^{49} +4.92522 q^{50} -5.04029 q^{52} -8.49338 q^{53} -0.642937 q^{55} -1.23607 q^{56} +5.31375 q^{58} -0.243785 q^{59} -6.85765 q^{61} +6.82328 q^{62} +1.00000 q^{64} +1.37831 q^{65} -5.28408 q^{67} -4.47214 q^{68} +0.338012 q^{70} -1.08540 q^{71} +13.7638 q^{73} -1.86067 q^{74} +3.75621 q^{76} +2.90617 q^{77} -5.03186 q^{79} -0.273457 q^{80} +1.10194 q^{82} +0.919299 q^{83} +1.22294 q^{85} -5.43945 q^{86} -2.35114 q^{88} -14.0000 q^{89} -6.23015 q^{91} +1.32739 q^{92} -6.02967 q^{94} -1.02717 q^{95} +13.2917 q^{97} +5.47214 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{5} - 4 q^{7} - 4 q^{8} + 4 q^{10} + 4 q^{13} + 4 q^{14} + 4 q^{16} - 6 q^{19} - 4 q^{20} + 6 q^{23} + 4 q^{25} - 4 q^{26} - 4 q^{28} - 4 q^{32} + 4 q^{35} - 8 q^{37} + 6 q^{38}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −0.273457 −0.122294 −0.0611469 0.998129i \(-0.519476\pi\)
−0.0611469 + 0.998129i \(0.519476\pi\)
\(6\) 0 0
\(7\) 1.23607 0.467190 0.233595 0.972334i \(-0.424951\pi\)
0.233595 + 0.972334i \(0.424951\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0.273457 0.0864748
\(11\) 2.35114 0.708896 0.354448 0.935076i \(-0.384669\pi\)
0.354448 + 0.935076i \(0.384669\pi\)
\(12\) 0 0
\(13\) −5.04029 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(14\) −1.23607 −0.330353
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.47214 −1.08465 −0.542326 0.840168i \(-0.682456\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(18\) 0 0
\(19\) 3.75621 0.861735 0.430867 0.902415i \(-0.358208\pi\)
0.430867 + 0.902415i \(0.358208\pi\)
\(20\) −0.273457 −0.0611469
\(21\) 0 0
\(22\) −2.35114 −0.501265
\(23\) 1.32739 0.276780 0.138390 0.990378i \(-0.455807\pi\)
0.138390 + 0.990378i \(0.455807\pi\)
\(24\) 0 0
\(25\) −4.92522 −0.985044
\(26\) 5.04029 0.988483
\(27\) 0 0
\(28\) 1.23607 0.233595
\(29\) −5.31375 −0.986739 −0.493369 0.869820i \(-0.664235\pi\)
−0.493369 + 0.869820i \(0.664235\pi\)
\(30\) 0 0
\(31\) −6.82328 −1.22550 −0.612748 0.790278i \(-0.709936\pi\)
−0.612748 + 0.790278i \(0.709936\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.47214 0.766965
\(35\) −0.338012 −0.0571345
\(36\) 0 0
\(37\) 1.86067 0.305892 0.152946 0.988235i \(-0.451124\pi\)
0.152946 + 0.988235i \(0.451124\pi\)
\(38\) −3.75621 −0.609339
\(39\) 0 0
\(40\) 0.273457 0.0432374
\(41\) −1.10194 −0.172095 −0.0860474 0.996291i \(-0.527424\pi\)
−0.0860474 + 0.996291i \(0.527424\pi\)
\(42\) 0 0
\(43\) 5.43945 0.829508 0.414754 0.909934i \(-0.363868\pi\)
0.414754 + 0.909934i \(0.363868\pi\)
\(44\) 2.35114 0.354448
\(45\) 0 0
\(46\) −1.32739 −0.195713
\(47\) 6.02967 0.879518 0.439759 0.898116i \(-0.355064\pi\)
0.439759 + 0.898116i \(0.355064\pi\)
\(48\) 0 0
\(49\) −5.47214 −0.781734
\(50\) 4.92522 0.696531
\(51\) 0 0
\(52\) −5.04029 −0.698963
\(53\) −8.49338 −1.16666 −0.583328 0.812237i \(-0.698250\pi\)
−0.583328 + 0.812237i \(0.698250\pi\)
\(54\) 0 0
\(55\) −0.642937 −0.0866936
\(56\) −1.23607 −0.165177
\(57\) 0 0
\(58\) 5.31375 0.697730
\(59\) −0.243785 −0.0317381 −0.0158691 0.999874i \(-0.505051\pi\)
−0.0158691 + 0.999874i \(0.505051\pi\)
\(60\) 0 0
\(61\) −6.85765 −0.878032 −0.439016 0.898479i \(-0.644673\pi\)
−0.439016 + 0.898479i \(0.644673\pi\)
\(62\) 6.82328 0.866557
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.37831 0.170958
\(66\) 0 0
\(67\) −5.28408 −0.645553 −0.322777 0.946475i \(-0.604616\pi\)
−0.322777 + 0.946475i \(0.604616\pi\)
\(68\) −4.47214 −0.542326
\(69\) 0 0
\(70\) 0.338012 0.0404002
\(71\) −1.08540 −0.128813 −0.0644067 0.997924i \(-0.520515\pi\)
−0.0644067 + 0.997924i \(0.520515\pi\)
\(72\) 0 0
\(73\) 13.7638 1.61093 0.805467 0.592641i \(-0.201915\pi\)
0.805467 + 0.592641i \(0.201915\pi\)
\(74\) −1.86067 −0.216298
\(75\) 0 0
\(76\) 3.75621 0.430867
\(77\) 2.90617 0.331189
\(78\) 0 0
\(79\) −5.03186 −0.566129 −0.283065 0.959101i \(-0.591351\pi\)
−0.283065 + 0.959101i \(0.591351\pi\)
\(80\) −0.273457 −0.0305735
\(81\) 0 0
\(82\) 1.10194 0.121689
\(83\) 0.919299 0.100906 0.0504531 0.998726i \(-0.483933\pi\)
0.0504531 + 0.998726i \(0.483933\pi\)
\(84\) 0 0
\(85\) 1.22294 0.132646
\(86\) −5.43945 −0.586551
\(87\) 0 0
\(88\) −2.35114 −0.250632
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −6.23015 −0.653097
\(92\) 1.32739 0.138390
\(93\) 0 0
\(94\) −6.02967 −0.621913
\(95\) −1.02717 −0.105385
\(96\) 0 0
\(97\) 13.2917 1.34957 0.674783 0.738016i \(-0.264237\pi\)
0.674783 + 0.738016i \(0.264237\pi\)
\(98\) 5.47214 0.552769
\(99\) 0 0
\(100\) −4.92522 −0.492522
\(101\) −13.1311 −1.30659 −0.653297 0.757102i \(-0.726615\pi\)
−0.653297 + 0.757102i \(0.726615\pi\)
\(102\) 0 0
\(103\) 10.3404 1.01887 0.509435 0.860509i \(-0.329854\pi\)
0.509435 + 0.860509i \(0.329854\pi\)
\(104\) 5.04029 0.494241
\(105\) 0 0
\(106\) 8.49338 0.824950
\(107\) 5.43945 0.525851 0.262926 0.964816i \(-0.415313\pi\)
0.262926 + 0.964816i \(0.415313\pi\)
\(108\) 0 0
\(109\) 2.02124 0.193600 0.0968000 0.995304i \(-0.469139\pi\)
0.0968000 + 0.995304i \(0.469139\pi\)
\(110\) 0.642937 0.0613016
\(111\) 0 0
\(112\) 1.23607 0.116797
\(113\) 1.00000 0.0940721
\(114\) 0 0
\(115\) −0.362985 −0.0338485
\(116\) −5.31375 −0.493369
\(117\) 0 0
\(118\) 0.243785 0.0224422
\(119\) −5.52786 −0.506738
\(120\) 0 0
\(121\) −5.47214 −0.497467
\(122\) 6.85765 0.620862
\(123\) 0 0
\(124\) −6.82328 −0.612748
\(125\) 2.71413 0.242759
\(126\) 0 0
\(127\) −21.5468 −1.91197 −0.955985 0.293416i \(-0.905208\pi\)
−0.955985 + 0.293416i \(0.905208\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −1.37831 −0.120885
\(131\) −18.4449 −1.61153 −0.805767 0.592232i \(-0.798247\pi\)
−0.805767 + 0.592232i \(0.798247\pi\)
\(132\) 0 0
\(133\) 4.64294 0.402594
\(134\) 5.28408 0.456475
\(135\) 0 0
\(136\) 4.47214 0.383482
\(137\) −13.2169 −1.12920 −0.564598 0.825366i \(-0.690969\pi\)
−0.564598 + 0.825366i \(0.690969\pi\)
\(138\) 0 0
\(139\) −0.313039 −0.0265516 −0.0132758 0.999912i \(-0.504226\pi\)
−0.0132758 + 0.999912i \(0.504226\pi\)
\(140\) −0.338012 −0.0285672
\(141\) 0 0
\(142\) 1.08540 0.0910848
\(143\) −11.8504 −0.990984
\(144\) 0 0
\(145\) 1.45309 0.120672
\(146\) −13.7638 −1.13910
\(147\) 0 0
\(148\) 1.86067 0.152946
\(149\) −12.5850 −1.03100 −0.515502 0.856888i \(-0.672395\pi\)
−0.515502 + 0.856888i \(0.672395\pi\)
\(150\) 0 0
\(151\) −8.44246 −0.687038 −0.343519 0.939146i \(-0.611619\pi\)
−0.343519 + 0.939146i \(0.611619\pi\)
\(152\) −3.75621 −0.304669
\(153\) 0 0
\(154\) −2.90617 −0.234186
\(155\) 1.86588 0.149871
\(156\) 0 0
\(157\) −0.997808 −0.0796337 −0.0398169 0.999207i \(-0.512677\pi\)
−0.0398169 + 0.999207i \(0.512677\pi\)
\(158\) 5.03186 0.400314
\(159\) 0 0
\(160\) 0.273457 0.0216187
\(161\) 1.64074 0.129309
\(162\) 0 0
\(163\) 3.90398 0.305783 0.152892 0.988243i \(-0.451141\pi\)
0.152892 + 0.988243i \(0.451141\pi\)
\(164\) −1.10194 −0.0860474
\(165\) 0 0
\(166\) −0.919299 −0.0713514
\(167\) 14.2275 1.10096 0.550480 0.834849i \(-0.314445\pi\)
0.550480 + 0.834849i \(0.314445\pi\)
\(168\) 0 0
\(169\) 12.4046 0.954197
\(170\) −1.22294 −0.0937951
\(171\) 0 0
\(172\) 5.43945 0.414754
\(173\) −0.884927 −0.0672798 −0.0336399 0.999434i \(-0.510710\pi\)
−0.0336399 + 0.999434i \(0.510710\pi\)
\(174\) 0 0
\(175\) −6.08791 −0.460203
\(176\) 2.35114 0.177224
\(177\) 0 0
\(178\) 14.0000 1.04934
\(179\) −15.7027 −1.17367 −0.586837 0.809705i \(-0.699627\pi\)
−0.586837 + 0.809705i \(0.699627\pi\)
\(180\) 0 0
\(181\) −10.4501 −0.776747 −0.388374 0.921502i \(-0.626963\pi\)
−0.388374 + 0.921502i \(0.626963\pi\)
\(182\) 6.23015 0.461809
\(183\) 0 0
\(184\) −1.32739 −0.0978565
\(185\) −0.508813 −0.0374087
\(186\) 0 0
\(187\) −10.5146 −0.768905
\(188\) 6.02967 0.439759
\(189\) 0 0
\(190\) 1.02717 0.0745184
\(191\) 14.9833 1.08416 0.542078 0.840328i \(-0.317638\pi\)
0.542078 + 0.840328i \(0.317638\pi\)
\(192\) 0 0
\(193\) 3.49119 0.251301 0.125651 0.992075i \(-0.459898\pi\)
0.125651 + 0.992075i \(0.459898\pi\)
\(194\) −13.2917 −0.954287
\(195\) 0 0
\(196\) −5.47214 −0.390867
\(197\) 12.0279 0.856951 0.428475 0.903553i \(-0.359051\pi\)
0.428475 + 0.903553i \(0.359051\pi\)
\(198\) 0 0
\(199\) −5.44027 −0.385651 −0.192825 0.981233i \(-0.561765\pi\)
−0.192825 + 0.981233i \(0.561765\pi\)
\(200\) 4.92522 0.348266
\(201\) 0 0
\(202\) 13.1311 0.923901
\(203\) −6.56816 −0.460994
\(204\) 0 0
\(205\) 0.301335 0.0210461
\(206\) −10.3404 −0.720450
\(207\) 0 0
\(208\) −5.04029 −0.349482
\(209\) 8.83139 0.610880
\(210\) 0 0
\(211\) 1.83860 0.126574 0.0632872 0.997995i \(-0.479842\pi\)
0.0632872 + 0.997995i \(0.479842\pi\)
\(212\) −8.49338 −0.583328
\(213\) 0 0
\(214\) −5.43945 −0.371833
\(215\) −1.48746 −0.101444
\(216\) 0 0
\(217\) −8.43403 −0.572540
\(218\) −2.02124 −0.136896
\(219\) 0 0
\(220\) −0.642937 −0.0433468
\(221\) 22.5409 1.51626
\(222\) 0 0
\(223\) −20.1103 −1.34668 −0.673341 0.739332i \(-0.735142\pi\)
−0.673341 + 0.739332i \(0.735142\pi\)
\(224\) −1.23607 −0.0825883
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) 15.1744 1.00716 0.503581 0.863948i \(-0.332016\pi\)
0.503581 + 0.863948i \(0.332016\pi\)
\(228\) 0 0
\(229\) −7.08361 −0.468098 −0.234049 0.972225i \(-0.575198\pi\)
−0.234049 + 0.972225i \(0.575198\pi\)
\(230\) 0.362985 0.0239345
\(231\) 0 0
\(232\) 5.31375 0.348865
\(233\) 19.8848 1.30270 0.651349 0.758779i \(-0.274204\pi\)
0.651349 + 0.758779i \(0.274204\pi\)
\(234\) 0 0
\(235\) −1.64886 −0.107560
\(236\) −0.243785 −0.0158691
\(237\) 0 0
\(238\) 5.52786 0.358318
\(239\) 5.09591 0.329627 0.164813 0.986325i \(-0.447298\pi\)
0.164813 + 0.986325i \(0.447298\pi\)
\(240\) 0 0
\(241\) −3.01532 −0.194234 −0.0971170 0.995273i \(-0.530962\pi\)
−0.0971170 + 0.995273i \(0.530962\pi\)
\(242\) 5.47214 0.351762
\(243\) 0 0
\(244\) −6.85765 −0.439016
\(245\) 1.49640 0.0956013
\(246\) 0 0
\(247\) −18.9324 −1.20464
\(248\) 6.82328 0.433279
\(249\) 0 0
\(250\) −2.71413 −0.171656
\(251\) −26.9288 −1.69973 −0.849867 0.526998i \(-0.823318\pi\)
−0.849867 + 0.526998i \(0.823318\pi\)
\(252\) 0 0
\(253\) 3.12088 0.196208
\(254\) 21.5468 1.35197
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.2741 −1.26466 −0.632330 0.774699i \(-0.717901\pi\)
−0.632330 + 0.774699i \(0.717901\pi\)
\(258\) 0 0
\(259\) 2.29991 0.142909
\(260\) 1.37831 0.0854789
\(261\) 0 0
\(262\) 18.4449 1.13953
\(263\) 9.93365 0.612535 0.306268 0.951945i \(-0.400920\pi\)
0.306268 + 0.951945i \(0.400920\pi\)
\(264\) 0 0
\(265\) 2.32258 0.142675
\(266\) −4.64294 −0.284677
\(267\) 0 0
\(268\) −5.28408 −0.322777
\(269\) −13.5924 −0.828744 −0.414372 0.910108i \(-0.635999\pi\)
−0.414372 + 0.910108i \(0.635999\pi\)
\(270\) 0 0
\(271\) −29.1506 −1.77077 −0.885385 0.464858i \(-0.846105\pi\)
−0.885385 + 0.464858i \(0.846105\pi\)
\(272\) −4.47214 −0.271163
\(273\) 0 0
\(274\) 13.2169 0.798462
\(275\) −11.5799 −0.698294
\(276\) 0 0
\(277\) −29.8825 −1.79547 −0.897733 0.440540i \(-0.854787\pi\)
−0.897733 + 0.440540i \(0.854787\pi\)
\(278\) 0.313039 0.0187748
\(279\) 0 0
\(280\) 0.338012 0.0202001
\(281\) 21.2432 1.26726 0.633630 0.773636i \(-0.281564\pi\)
0.633630 + 0.773636i \(0.281564\pi\)
\(282\) 0 0
\(283\) −13.9061 −0.826629 −0.413315 0.910588i \(-0.635629\pi\)
−0.413315 + 0.910588i \(0.635629\pi\)
\(284\) −1.08540 −0.0644067
\(285\) 0 0
\(286\) 11.8504 0.700731
\(287\) −1.36208 −0.0804009
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) −1.45309 −0.0853281
\(291\) 0 0
\(292\) 13.7638 0.805467
\(293\) 4.27346 0.249658 0.124829 0.992178i \(-0.460162\pi\)
0.124829 + 0.992178i \(0.460162\pi\)
\(294\) 0 0
\(295\) 0.0666648 0.00388138
\(296\) −1.86067 −0.108149
\(297\) 0 0
\(298\) 12.5850 0.729030
\(299\) −6.69044 −0.386918
\(300\) 0 0
\(301\) 6.72353 0.387538
\(302\) 8.44246 0.485809
\(303\) 0 0
\(304\) 3.75621 0.215434
\(305\) 1.87528 0.107378
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 2.90617 0.165594
\(309\) 0 0
\(310\) −1.86588 −0.105975
\(311\) −9.69636 −0.549830 −0.274915 0.961469i \(-0.588650\pi\)
−0.274915 + 0.961469i \(0.588650\pi\)
\(312\) 0 0
\(313\) 18.5550 1.04879 0.524396 0.851474i \(-0.324291\pi\)
0.524396 + 0.851474i \(0.324291\pi\)
\(314\) 0.997808 0.0563095
\(315\) 0 0
\(316\) −5.03186 −0.283065
\(317\) 10.8364 0.608633 0.304317 0.952571i \(-0.401572\pi\)
0.304317 + 0.952571i \(0.401572\pi\)
\(318\) 0 0
\(319\) −12.4934 −0.699495
\(320\) −0.273457 −0.0152867
\(321\) 0 0
\(322\) −1.64074 −0.0914351
\(323\) −16.7983 −0.934683
\(324\) 0 0
\(325\) 24.8246 1.37702
\(326\) −3.90398 −0.216221
\(327\) 0 0
\(328\) 1.10194 0.0608447
\(329\) 7.45309 0.410902
\(330\) 0 0
\(331\) 23.3914 1.28571 0.642855 0.765988i \(-0.277750\pi\)
0.642855 + 0.765988i \(0.277750\pi\)
\(332\) 0.919299 0.0504531
\(333\) 0 0
\(334\) −14.2275 −0.778496
\(335\) 1.44497 0.0789472
\(336\) 0 0
\(337\) −30.6939 −1.67201 −0.836003 0.548725i \(-0.815113\pi\)
−0.836003 + 0.548725i \(0.815113\pi\)
\(338\) −12.4046 −0.674719
\(339\) 0 0
\(340\) 1.22294 0.0663232
\(341\) −16.0425 −0.868749
\(342\) 0 0
\(343\) −15.4164 −0.832408
\(344\) −5.43945 −0.293275
\(345\) 0 0
\(346\) 0.884927 0.0475740
\(347\) −3.41641 −0.183402 −0.0917012 0.995787i \(-0.529230\pi\)
−0.0917012 + 0.995787i \(0.529230\pi\)
\(348\) 0 0
\(349\) 36.2851 1.94230 0.971148 0.238478i \(-0.0766486\pi\)
0.971148 + 0.238478i \(0.0766486\pi\)
\(350\) 6.08791 0.325412
\(351\) 0 0
\(352\) −2.35114 −0.125316
\(353\) 16.4684 0.876525 0.438262 0.898847i \(-0.355594\pi\)
0.438262 + 0.898847i \(0.355594\pi\)
\(354\) 0 0
\(355\) 0.296811 0.0157531
\(356\) −14.0000 −0.741999
\(357\) 0 0
\(358\) 15.7027 0.829912
\(359\) −24.1197 −1.27299 −0.636493 0.771282i \(-0.719616\pi\)
−0.636493 + 0.771282i \(0.719616\pi\)
\(360\) 0 0
\(361\) −4.89085 −0.257413
\(362\) 10.4501 0.549243
\(363\) 0 0
\(364\) −6.23015 −0.326548
\(365\) −3.76382 −0.197007
\(366\) 0 0
\(367\) 34.4413 1.79782 0.898910 0.438134i \(-0.144360\pi\)
0.898910 + 0.438134i \(0.144360\pi\)
\(368\) 1.32739 0.0691950
\(369\) 0 0
\(370\) 0.508813 0.0264519
\(371\) −10.4984 −0.545049
\(372\) 0 0
\(373\) 26.3540 1.36456 0.682280 0.731091i \(-0.260988\pi\)
0.682280 + 0.731091i \(0.260988\pi\)
\(374\) 10.5146 0.543698
\(375\) 0 0
\(376\) −6.02967 −0.310957
\(377\) 26.7829 1.37939
\(378\) 0 0
\(379\) 28.5509 1.46656 0.733281 0.679925i \(-0.237988\pi\)
0.733281 + 0.679925i \(0.237988\pi\)
\(380\) −1.02717 −0.0526925
\(381\) 0 0
\(382\) −14.9833 −0.766615
\(383\) −22.7425 −1.16209 −0.581043 0.813873i \(-0.697355\pi\)
−0.581043 + 0.813873i \(0.697355\pi\)
\(384\) 0 0
\(385\) −0.794714 −0.0405024
\(386\) −3.49119 −0.177697
\(387\) 0 0
\(388\) 13.2917 0.674783
\(389\) 36.7249 1.86203 0.931014 0.364982i \(-0.118925\pi\)
0.931014 + 0.364982i \(0.118925\pi\)
\(390\) 0 0
\(391\) −5.93627 −0.300210
\(392\) 5.47214 0.276385
\(393\) 0 0
\(394\) −12.0279 −0.605956
\(395\) 1.37600 0.0692341
\(396\) 0 0
\(397\) −14.7183 −0.738691 −0.369346 0.929292i \(-0.620418\pi\)
−0.369346 + 0.929292i \(0.620418\pi\)
\(398\) 5.44027 0.272696
\(399\) 0 0
\(400\) −4.92522 −0.246261
\(401\) 6.79702 0.339427 0.169713 0.985493i \(-0.445716\pi\)
0.169713 + 0.985493i \(0.445716\pi\)
\(402\) 0 0
\(403\) 34.3913 1.71315
\(404\) −13.1311 −0.653297
\(405\) 0 0
\(406\) 6.56816 0.325972
\(407\) 4.37469 0.216845
\(408\) 0 0
\(409\) 9.91919 0.490472 0.245236 0.969463i \(-0.421135\pi\)
0.245236 + 0.969463i \(0.421135\pi\)
\(410\) −0.301335 −0.0148819
\(411\) 0 0
\(412\) 10.3404 0.509435
\(413\) −0.301335 −0.0148277
\(414\) 0 0
\(415\) −0.251389 −0.0123402
\(416\) 5.04029 0.247121
\(417\) 0 0
\(418\) −8.83139 −0.431957
\(419\) 14.8498 0.725461 0.362731 0.931894i \(-0.381845\pi\)
0.362731 + 0.931894i \(0.381845\pi\)
\(420\) 0 0
\(421\) 3.49119 0.170150 0.0850750 0.996375i \(-0.472887\pi\)
0.0850750 + 0.996375i \(0.472887\pi\)
\(422\) −1.83860 −0.0895016
\(423\) 0 0
\(424\) 8.49338 0.412475
\(425\) 22.0263 1.06843
\(426\) 0 0
\(427\) −8.47652 −0.410208
\(428\) 5.43945 0.262926
\(429\) 0 0
\(430\) 1.48746 0.0717316
\(431\) 38.2963 1.84467 0.922333 0.386395i \(-0.126280\pi\)
0.922333 + 0.386395i \(0.126280\pi\)
\(432\) 0 0
\(433\) −39.4104 −1.89394 −0.946971 0.321320i \(-0.895874\pi\)
−0.946971 + 0.321320i \(0.895874\pi\)
\(434\) 8.43403 0.404847
\(435\) 0 0
\(436\) 2.02124 0.0968000
\(437\) 4.98596 0.238511
\(438\) 0 0
\(439\) 32.1518 1.53452 0.767260 0.641336i \(-0.221619\pi\)
0.767260 + 0.641336i \(0.221619\pi\)
\(440\) 0.642937 0.0306508
\(441\) 0 0
\(442\) −22.5409 −1.07216
\(443\) 40.0402 1.90237 0.951183 0.308627i \(-0.0998694\pi\)
0.951183 + 0.308627i \(0.0998694\pi\)
\(444\) 0 0
\(445\) 3.82840 0.181484
\(446\) 20.1103 0.952248
\(447\) 0 0
\(448\) 1.23607 0.0583987
\(449\) −4.86368 −0.229531 −0.114766 0.993393i \(-0.536612\pi\)
−0.114766 + 0.993393i \(0.536612\pi\)
\(450\) 0 0
\(451\) −2.59083 −0.121997
\(452\) 1.00000 0.0470360
\(453\) 0 0
\(454\) −15.1744 −0.712171
\(455\) 1.70368 0.0798697
\(456\) 0 0
\(457\) 8.12472 0.380059 0.190029 0.981778i \(-0.439142\pi\)
0.190029 + 0.981778i \(0.439142\pi\)
\(458\) 7.08361 0.330995
\(459\) 0 0
\(460\) −0.362985 −0.0169243
\(461\) −5.57177 −0.259503 −0.129752 0.991547i \(-0.541418\pi\)
−0.129752 + 0.991547i \(0.541418\pi\)
\(462\) 0 0
\(463\) −26.7235 −1.24195 −0.620974 0.783831i \(-0.713263\pi\)
−0.620974 + 0.783831i \(0.713263\pi\)
\(464\) −5.31375 −0.246685
\(465\) 0 0
\(466\) −19.8848 −0.921146
\(467\) 28.4469 1.31637 0.658184 0.752857i \(-0.271325\pi\)
0.658184 + 0.752857i \(0.271325\pi\)
\(468\) 0 0
\(469\) −6.53148 −0.301596
\(470\) 1.64886 0.0760562
\(471\) 0 0
\(472\) 0.243785 0.0112211
\(473\) 12.7889 0.588034
\(474\) 0 0
\(475\) −18.5002 −0.848847
\(476\) −5.52786 −0.253369
\(477\) 0 0
\(478\) −5.09591 −0.233081
\(479\) −5.05812 −0.231112 −0.115556 0.993301i \(-0.536865\pi\)
−0.115556 + 0.993301i \(0.536865\pi\)
\(480\) 0 0
\(481\) −9.37831 −0.427614
\(482\) 3.01532 0.137344
\(483\) 0 0
\(484\) −5.47214 −0.248733
\(485\) −3.63471 −0.165044
\(486\) 0 0
\(487\) −11.1660 −0.505979 −0.252990 0.967469i \(-0.581414\pi\)
−0.252990 + 0.967469i \(0.581414\pi\)
\(488\) 6.85765 0.310431
\(489\) 0 0
\(490\) −1.49640 −0.0676003
\(491\) 32.1169 1.44942 0.724708 0.689057i \(-0.241975\pi\)
0.724708 + 0.689057i \(0.241975\pi\)
\(492\) 0 0
\(493\) 23.7638 1.07027
\(494\) 18.9324 0.851810
\(495\) 0 0
\(496\) −6.82328 −0.306374
\(497\) −1.34163 −0.0601803
\(498\) 0 0
\(499\) 36.9671 1.65487 0.827437 0.561559i \(-0.189798\pi\)
0.827437 + 0.561559i \(0.189798\pi\)
\(500\) 2.71413 0.121379
\(501\) 0 0
\(502\) 26.9288 1.20189
\(503\) 13.7793 0.614387 0.307193 0.951647i \(-0.400610\pi\)
0.307193 + 0.951647i \(0.400610\pi\)
\(504\) 0 0
\(505\) 3.59080 0.159788
\(506\) −3.12088 −0.138740
\(507\) 0 0
\(508\) −21.5468 −0.955985
\(509\) −13.6772 −0.606231 −0.303116 0.952954i \(-0.598027\pi\)
−0.303116 + 0.952954i \(0.598027\pi\)
\(510\) 0 0
\(511\) 17.0130 0.752612
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 20.2741 0.894250
\(515\) −2.82766 −0.124602
\(516\) 0 0
\(517\) 14.1766 0.623487
\(518\) −2.29991 −0.101052
\(519\) 0 0
\(520\) −1.37831 −0.0604427
\(521\) −30.2360 −1.32466 −0.662331 0.749212i \(-0.730433\pi\)
−0.662331 + 0.749212i \(0.730433\pi\)
\(522\) 0 0
\(523\) 25.1287 1.09880 0.549401 0.835559i \(-0.314856\pi\)
0.549401 + 0.835559i \(0.314856\pi\)
\(524\) −18.4449 −0.805767
\(525\) 0 0
\(526\) −9.93365 −0.433128
\(527\) 30.5146 1.32924
\(528\) 0 0
\(529\) −21.2380 −0.923393
\(530\) −2.32258 −0.100886
\(531\) 0 0
\(532\) 4.64294 0.201297
\(533\) 5.55412 0.240576
\(534\) 0 0
\(535\) −1.48746 −0.0643084
\(536\) 5.28408 0.228237
\(537\) 0 0
\(538\) 13.5924 0.586011
\(539\) −12.8658 −0.554168
\(540\) 0 0
\(541\) 43.1046 1.85321 0.926606 0.376033i \(-0.122712\pi\)
0.926606 + 0.376033i \(0.122712\pi\)
\(542\) 29.1506 1.25212
\(543\) 0 0
\(544\) 4.47214 0.191741
\(545\) −0.552724 −0.0236761
\(546\) 0 0
\(547\) −19.3217 −0.826135 −0.413067 0.910700i \(-0.635543\pi\)
−0.413067 + 0.910700i \(0.635543\pi\)
\(548\) −13.2169 −0.564598
\(549\) 0 0
\(550\) 11.5799 0.493768
\(551\) −19.9596 −0.850307
\(552\) 0 0
\(553\) −6.21973 −0.264490
\(554\) 29.8825 1.26959
\(555\) 0 0
\(556\) −0.313039 −0.0132758
\(557\) 6.89677 0.292226 0.146113 0.989268i \(-0.453324\pi\)
0.146113 + 0.989268i \(0.453324\pi\)
\(558\) 0 0
\(559\) −27.4164 −1.15959
\(560\) −0.338012 −0.0142836
\(561\) 0 0
\(562\) −21.2432 −0.896089
\(563\) −1.36208 −0.0574047 −0.0287024 0.999588i \(-0.509138\pi\)
−0.0287024 + 0.999588i \(0.509138\pi\)
\(564\) 0 0
\(565\) −0.273457 −0.0115044
\(566\) 13.9061 0.584515
\(567\) 0 0
\(568\) 1.08540 0.0455424
\(569\) −23.9633 −1.00459 −0.502297 0.864695i \(-0.667512\pi\)
−0.502297 + 0.864695i \(0.667512\pi\)
\(570\) 0 0
\(571\) 25.4028 1.06307 0.531536 0.847035i \(-0.321615\pi\)
0.531536 + 0.847035i \(0.321615\pi\)
\(572\) −11.8504 −0.495492
\(573\) 0 0
\(574\) 1.36208 0.0568520
\(575\) −6.53769 −0.272641
\(576\) 0 0
\(577\) 32.6333 1.35854 0.679271 0.733887i \(-0.262296\pi\)
0.679271 + 0.733887i \(0.262296\pi\)
\(578\) −3.00000 −0.124784
\(579\) 0 0
\(580\) 1.45309 0.0603361
\(581\) 1.13632 0.0471423
\(582\) 0 0
\(583\) −19.9691 −0.827037
\(584\) −13.7638 −0.569551
\(585\) 0 0
\(586\) −4.27346 −0.176535
\(587\) −14.2953 −0.590030 −0.295015 0.955493i \(-0.595325\pi\)
−0.295015 + 0.955493i \(0.595325\pi\)
\(588\) 0 0
\(589\) −25.6297 −1.05605
\(590\) −0.0666648 −0.00274455
\(591\) 0 0
\(592\) 1.86067 0.0764729
\(593\) −4.34741 −0.178527 −0.0892634 0.996008i \(-0.528451\pi\)
−0.0892634 + 0.996008i \(0.528451\pi\)
\(594\) 0 0
\(595\) 1.51164 0.0619710
\(596\) −12.5850 −0.515502
\(597\) 0 0
\(598\) 6.69044 0.273592
\(599\) −18.1776 −0.742716 −0.371358 0.928490i \(-0.621108\pi\)
−0.371358 + 0.928490i \(0.621108\pi\)
\(600\) 0 0
\(601\) 25.6145 1.04484 0.522418 0.852689i \(-0.325030\pi\)
0.522418 + 0.852689i \(0.325030\pi\)
\(602\) −6.72353 −0.274030
\(603\) 0 0
\(604\) −8.44246 −0.343519
\(605\) 1.49640 0.0608372
\(606\) 0 0
\(607\) −13.2849 −0.539218 −0.269609 0.962970i \(-0.586894\pi\)
−0.269609 + 0.962970i \(0.586894\pi\)
\(608\) −3.75621 −0.152335
\(609\) 0 0
\(610\) −1.87528 −0.0759277
\(611\) −30.3913 −1.22950
\(612\) 0 0
\(613\) 22.3871 0.904208 0.452104 0.891965i \(-0.350674\pi\)
0.452104 + 0.891965i \(0.350674\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) −2.90617 −0.117093
\(617\) 21.4201 0.862342 0.431171 0.902270i \(-0.358101\pi\)
0.431171 + 0.902270i \(0.358101\pi\)
\(618\) 0 0
\(619\) 6.03050 0.242386 0.121193 0.992629i \(-0.461328\pi\)
0.121193 + 0.992629i \(0.461328\pi\)
\(620\) 1.86588 0.0749354
\(621\) 0 0
\(622\) 9.69636 0.388789
\(623\) −17.3050 −0.693308
\(624\) 0 0
\(625\) 23.8839 0.955356
\(626\) −18.5550 −0.741608
\(627\) 0 0
\(628\) −0.997808 −0.0398169
\(629\) −8.32115 −0.331786
\(630\) 0 0
\(631\) 6.17923 0.245991 0.122996 0.992407i \(-0.460750\pi\)
0.122996 + 0.992407i \(0.460750\pi\)
\(632\) 5.03186 0.200157
\(633\) 0 0
\(634\) −10.8364 −0.430369
\(635\) 5.89213 0.233822
\(636\) 0 0
\(637\) 27.5812 1.09281
\(638\) 12.4934 0.494618
\(639\) 0 0
\(640\) 0.273457 0.0108094
\(641\) 14.3549 0.566983 0.283492 0.958975i \(-0.408507\pi\)
0.283492 + 0.958975i \(0.408507\pi\)
\(642\) 0 0
\(643\) −38.5024 −1.51839 −0.759193 0.650865i \(-0.774406\pi\)
−0.759193 + 0.650865i \(0.774406\pi\)
\(644\) 1.64074 0.0646544
\(645\) 0 0
\(646\) 16.7983 0.660920
\(647\) 6.76601 0.265999 0.133000 0.991116i \(-0.457539\pi\)
0.133000 + 0.991116i \(0.457539\pi\)
\(648\) 0 0
\(649\) −0.573173 −0.0224990
\(650\) −24.8246 −0.973699
\(651\) 0 0
\(652\) 3.90398 0.152892
\(653\) 29.5718 1.15723 0.578616 0.815600i \(-0.303593\pi\)
0.578616 + 0.815600i \(0.303593\pi\)
\(654\) 0 0
\(655\) 5.04388 0.197081
\(656\) −1.10194 −0.0430237
\(657\) 0 0
\(658\) −7.45309 −0.290552
\(659\) 10.1953 0.397151 0.198576 0.980086i \(-0.436368\pi\)
0.198576 + 0.980086i \(0.436368\pi\)
\(660\) 0 0
\(661\) −9.35624 −0.363915 −0.181958 0.983306i \(-0.558243\pi\)
−0.181958 + 0.983306i \(0.558243\pi\)
\(662\) −23.3914 −0.909134
\(663\) 0 0
\(664\) −0.919299 −0.0356757
\(665\) −1.26965 −0.0492348
\(666\) 0 0
\(667\) −7.05342 −0.273110
\(668\) 14.2275 0.550480
\(669\) 0 0
\(670\) −1.44497 −0.0558241
\(671\) −16.1233 −0.622433
\(672\) 0 0
\(673\) −28.4280 −1.09582 −0.547909 0.836538i \(-0.684576\pi\)
−0.547909 + 0.836538i \(0.684576\pi\)
\(674\) 30.6939 1.18229
\(675\) 0 0
\(676\) 12.4046 0.477099
\(677\) −26.5453 −1.02022 −0.510109 0.860110i \(-0.670395\pi\)
−0.510109 + 0.860110i \(0.670395\pi\)
\(678\) 0 0
\(679\) 16.4294 0.630503
\(680\) −1.22294 −0.0468976
\(681\) 0 0
\(682\) 16.0425 0.614299
\(683\) 45.0433 1.72353 0.861767 0.507305i \(-0.169358\pi\)
0.861767 + 0.507305i \(0.169358\pi\)
\(684\) 0 0
\(685\) 3.61426 0.138094
\(686\) 15.4164 0.588601
\(687\) 0 0
\(688\) 5.43945 0.207377
\(689\) 42.8091 1.63090
\(690\) 0 0
\(691\) 18.9214 0.719803 0.359902 0.932990i \(-0.382810\pi\)
0.359902 + 0.932990i \(0.382810\pi\)
\(692\) −0.884927 −0.0336399
\(693\) 0 0
\(694\) 3.41641 0.129685
\(695\) 0.0856029 0.00324710
\(696\) 0 0
\(697\) 4.92804 0.186663
\(698\) −36.2851 −1.37341
\(699\) 0 0
\(700\) −6.08791 −0.230101
\(701\) 29.5285 1.11527 0.557637 0.830085i \(-0.311708\pi\)
0.557637 + 0.830085i \(0.311708\pi\)
\(702\) 0 0
\(703\) 6.98906 0.263598
\(704\) 2.35114 0.0886120
\(705\) 0 0
\(706\) −16.4684 −0.619797
\(707\) −16.2309 −0.610427
\(708\) 0 0
\(709\) 37.3085 1.40115 0.700576 0.713578i \(-0.252927\pi\)
0.700576 + 0.713578i \(0.252927\pi\)
\(710\) −0.296811 −0.0111391
\(711\) 0 0
\(712\) 14.0000 0.524672
\(713\) −9.05715 −0.339193
\(714\) 0 0
\(715\) 3.24059 0.121191
\(716\) −15.7027 −0.586837
\(717\) 0 0
\(718\) 24.1197 0.900138
\(719\) −3.72967 −0.139093 −0.0695467 0.997579i \(-0.522155\pi\)
−0.0695467 + 0.997579i \(0.522155\pi\)
\(720\) 0 0
\(721\) 12.7814 0.476006
\(722\) 4.89085 0.182019
\(723\) 0 0
\(724\) −10.4501 −0.388374
\(725\) 26.1714 0.971981
\(726\) 0 0
\(727\) −50.7068 −1.88061 −0.940306 0.340331i \(-0.889461\pi\)
−0.940306 + 0.340331i \(0.889461\pi\)
\(728\) 6.23015 0.230905
\(729\) 0 0
\(730\) 3.76382 0.139305
\(731\) −24.3259 −0.899727
\(732\) 0 0
\(733\) 10.5036 0.387959 0.193980 0.981006i \(-0.437860\pi\)
0.193980 + 0.981006i \(0.437860\pi\)
\(734\) −34.4413 −1.27125
\(735\) 0 0
\(736\) −1.32739 −0.0489283
\(737\) −12.4236 −0.457630
\(738\) 0 0
\(739\) 36.9036 1.35752 0.678761 0.734359i \(-0.262517\pi\)
0.678761 + 0.734359i \(0.262517\pi\)
\(740\) −0.508813 −0.0187043
\(741\) 0 0
\(742\) 10.4984 0.385408
\(743\) −27.4306 −1.00633 −0.503166 0.864190i \(-0.667832\pi\)
−0.503166 + 0.864190i \(0.667832\pi\)
\(744\) 0 0
\(745\) 3.44147 0.126086
\(746\) −26.3540 −0.964890
\(747\) 0 0
\(748\) −10.5146 −0.384453
\(749\) 6.72353 0.245672
\(750\) 0 0
\(751\) −15.0962 −0.550869 −0.275435 0.961320i \(-0.588822\pi\)
−0.275435 + 0.961320i \(0.588822\pi\)
\(752\) 6.02967 0.219880
\(753\) 0 0
\(754\) −26.7829 −0.975375
\(755\) 2.30865 0.0840205
\(756\) 0 0
\(757\) 0.208303 0.00757092 0.00378546 0.999993i \(-0.498795\pi\)
0.00378546 + 0.999993i \(0.498795\pi\)
\(758\) −28.5509 −1.03702
\(759\) 0 0
\(760\) 1.02717 0.0372592
\(761\) 41.3758 1.49987 0.749935 0.661511i \(-0.230085\pi\)
0.749935 + 0.661511i \(0.230085\pi\)
\(762\) 0 0
\(763\) 2.49839 0.0904479
\(764\) 14.9833 0.542078
\(765\) 0 0
\(766\) 22.7425 0.821719
\(767\) 1.22875 0.0443675
\(768\) 0 0
\(769\) −45.5051 −1.64096 −0.820478 0.571678i \(-0.806293\pi\)
−0.820478 + 0.571678i \(0.806293\pi\)
\(770\) 0.794714 0.0286395
\(771\) 0 0
\(772\) 3.49119 0.125651
\(773\) −46.8456 −1.68492 −0.842459 0.538760i \(-0.818893\pi\)
−0.842459 + 0.538760i \(0.818893\pi\)
\(774\) 0 0
\(775\) 33.6061 1.20717
\(776\) −13.2917 −0.477144
\(777\) 0 0
\(778\) −36.7249 −1.31665
\(779\) −4.13914 −0.148300
\(780\) 0 0
\(781\) −2.55193 −0.0913152
\(782\) 5.93627 0.212281
\(783\) 0 0
\(784\) −5.47214 −0.195433
\(785\) 0.272858 0.00973872
\(786\) 0 0
\(787\) −48.3311 −1.72282 −0.861409 0.507912i \(-0.830417\pi\)
−0.861409 + 0.507912i \(0.830417\pi\)
\(788\) 12.0279 0.428475
\(789\) 0 0
\(790\) −1.37600 −0.0489559
\(791\) 1.23607 0.0439495
\(792\) 0 0
\(793\) 34.5646 1.22742
\(794\) 14.7183 0.522333
\(795\) 0 0
\(796\) −5.44027 −0.192825
\(797\) −34.9772 −1.23895 −0.619477 0.785015i \(-0.712655\pi\)
−0.619477 + 0.785015i \(0.712655\pi\)
\(798\) 0 0
\(799\) −26.9655 −0.953971
\(800\) 4.92522 0.174133
\(801\) 0 0
\(802\) −6.79702 −0.240011
\(803\) 32.3607 1.14198
\(804\) 0 0
\(805\) −0.448674 −0.0158137
\(806\) −34.3913 −1.21138
\(807\) 0 0
\(808\) 13.1311 0.461951
\(809\) −47.8115 −1.68096 −0.840481 0.541841i \(-0.817727\pi\)
−0.840481 + 0.541841i \(0.817727\pi\)
\(810\) 0 0
\(811\) −12.7598 −0.448058 −0.224029 0.974582i \(-0.571921\pi\)
−0.224029 + 0.974582i \(0.571921\pi\)
\(812\) −6.56816 −0.230497
\(813\) 0 0
\(814\) −4.37469 −0.153333
\(815\) −1.06757 −0.0373954
\(816\) 0 0
\(817\) 20.4317 0.714816
\(818\) −9.91919 −0.346816
\(819\) 0 0
\(820\) 0.301335 0.0105231
\(821\) −43.5657 −1.52045 −0.760227 0.649657i \(-0.774912\pi\)
−0.760227 + 0.649657i \(0.774912\pi\)
\(822\) 0 0
\(823\) −1.44289 −0.0502960 −0.0251480 0.999684i \(-0.508006\pi\)
−0.0251480 + 0.999684i \(0.508006\pi\)
\(824\) −10.3404 −0.360225
\(825\) 0 0
\(826\) 0.301335 0.0104848
\(827\) −28.2397 −0.981990 −0.490995 0.871162i \(-0.663367\pi\)
−0.490995 + 0.871162i \(0.663367\pi\)
\(828\) 0 0
\(829\) −6.33036 −0.219862 −0.109931 0.993939i \(-0.535063\pi\)
−0.109931 + 0.993939i \(0.535063\pi\)
\(830\) 0.251389 0.00872585
\(831\) 0 0
\(832\) −5.04029 −0.174741
\(833\) 24.4721 0.847909
\(834\) 0 0
\(835\) −3.89062 −0.134641
\(836\) 8.83139 0.305440
\(837\) 0 0
\(838\) −14.8498 −0.512978
\(839\) 52.6519 1.81775 0.908873 0.417072i \(-0.136944\pi\)
0.908873 + 0.417072i \(0.136944\pi\)
\(840\) 0 0
\(841\) −0.764045 −0.0263464
\(842\) −3.49119 −0.120314
\(843\) 0 0
\(844\) 1.83860 0.0632872
\(845\) −3.39212 −0.116693
\(846\) 0 0
\(847\) −6.76393 −0.232411
\(848\) −8.49338 −0.291664
\(849\) 0 0
\(850\) −22.0263 −0.755494
\(851\) 2.46983 0.0846647
\(852\) 0 0
\(853\) 21.1090 0.722760 0.361380 0.932419i \(-0.382306\pi\)
0.361380 + 0.932419i \(0.382306\pi\)
\(854\) 8.47652 0.290061
\(855\) 0 0
\(856\) −5.43945 −0.185916
\(857\) −7.29333 −0.249136 −0.124568 0.992211i \(-0.539754\pi\)
−0.124568 + 0.992211i \(0.539754\pi\)
\(858\) 0 0
\(859\) −1.13617 −0.0387657 −0.0193828 0.999812i \(-0.506170\pi\)
−0.0193828 + 0.999812i \(0.506170\pi\)
\(860\) −1.48746 −0.0507219
\(861\) 0 0
\(862\) −38.2963 −1.30438
\(863\) −1.73677 −0.0591202 −0.0295601 0.999563i \(-0.509411\pi\)
−0.0295601 + 0.999563i \(0.509411\pi\)
\(864\) 0 0
\(865\) 0.241990 0.00822790
\(866\) 39.4104 1.33922
\(867\) 0 0
\(868\) −8.43403 −0.286270
\(869\) −11.8306 −0.401326
\(870\) 0 0
\(871\) 26.6333 0.902435
\(872\) −2.02124 −0.0684479
\(873\) 0 0
\(874\) −4.98596 −0.168653
\(875\) 3.35484 0.113414
\(876\) 0 0
\(877\) 2.27847 0.0769385 0.0384693 0.999260i \(-0.487752\pi\)
0.0384693 + 0.999260i \(0.487752\pi\)
\(878\) −32.1518 −1.08507
\(879\) 0 0
\(880\) −0.642937 −0.0216734
\(881\) −28.9120 −0.974069 −0.487035 0.873383i \(-0.661921\pi\)
−0.487035 + 0.873383i \(0.661921\pi\)
\(882\) 0 0
\(883\) −41.0479 −1.38137 −0.690686 0.723155i \(-0.742691\pi\)
−0.690686 + 0.723155i \(0.742691\pi\)
\(884\) 22.5409 0.758132
\(885\) 0 0
\(886\) −40.0402 −1.34518
\(887\) −23.4411 −0.787074 −0.393537 0.919309i \(-0.628749\pi\)
−0.393537 + 0.919309i \(0.628749\pi\)
\(888\) 0 0
\(889\) −26.6333 −0.893253
\(890\) −3.82840 −0.128328
\(891\) 0 0
\(892\) −20.1103 −0.673341
\(893\) 22.6487 0.757911
\(894\) 0 0
\(895\) 4.29401 0.143533
\(896\) −1.23607 −0.0412941
\(897\) 0 0
\(898\) 4.86368 0.162303
\(899\) 36.2572 1.20925
\(900\) 0 0
\(901\) 37.9835 1.26542
\(902\) 2.59083 0.0862651
\(903\) 0 0
\(904\) −1.00000 −0.0332595
\(905\) 2.85765 0.0949915
\(906\) 0 0
\(907\) −5.39798 −0.179237 −0.0896185 0.995976i \(-0.528565\pi\)
−0.0896185 + 0.995976i \(0.528565\pi\)
\(908\) 15.1744 0.503581
\(909\) 0 0
\(910\) −1.70368 −0.0564764
\(911\) −5.06757 −0.167896 −0.0839481 0.996470i \(-0.526753\pi\)
−0.0839481 + 0.996470i \(0.526753\pi\)
\(912\) 0 0
\(913\) 2.16140 0.0715320
\(914\) −8.12472 −0.268742
\(915\) 0 0
\(916\) −7.08361 −0.234049
\(917\) −22.7991 −0.752893
\(918\) 0 0
\(919\) −45.2550 −1.49282 −0.746412 0.665484i \(-0.768225\pi\)
−0.746412 + 0.665484i \(0.768225\pi\)
\(920\) 0.362985 0.0119673
\(921\) 0 0
\(922\) 5.57177 0.183497
\(923\) 5.47074 0.180072
\(924\) 0 0
\(925\) −9.16419 −0.301317
\(926\) 26.7235 0.878190
\(927\) 0 0
\(928\) 5.31375 0.174432
\(929\) −8.62169 −0.282869 −0.141434 0.989948i \(-0.545171\pi\)
−0.141434 + 0.989948i \(0.545171\pi\)
\(930\) 0 0
\(931\) −20.5545 −0.673647
\(932\) 19.8848 0.651349
\(933\) 0 0
\(934\) −28.4469 −0.930812
\(935\) 2.87530 0.0940324
\(936\) 0 0
\(937\) −17.5481 −0.573271 −0.286636 0.958040i \(-0.592537\pi\)
−0.286636 + 0.958040i \(0.592537\pi\)
\(938\) 6.53148 0.213260
\(939\) 0 0
\(940\) −1.64886 −0.0537799
\(941\) 32.7029 1.06608 0.533042 0.846089i \(-0.321049\pi\)
0.533042 + 0.846089i \(0.321049\pi\)
\(942\) 0 0
\(943\) −1.46271 −0.0476324
\(944\) −0.243785 −0.00793453
\(945\) 0 0
\(946\) −12.7889 −0.415803
\(947\) −59.7085 −1.94027 −0.970133 0.242575i \(-0.922008\pi\)
−0.970133 + 0.242575i \(0.922008\pi\)
\(948\) 0 0
\(949\) −69.3737 −2.25197
\(950\) 18.5002 0.600225
\(951\) 0 0
\(952\) 5.52786 0.179159
\(953\) 58.8800 1.90731 0.953654 0.300904i \(-0.0972885\pi\)
0.953654 + 0.300904i \(0.0972885\pi\)
\(954\) 0 0
\(955\) −4.09731 −0.132586
\(956\) 5.09591 0.164813
\(957\) 0 0
\(958\) 5.05812 0.163421
\(959\) −16.3370 −0.527549
\(960\) 0 0
\(961\) 15.5571 0.501842
\(962\) 9.37831 0.302369
\(963\) 0 0
\(964\) −3.01532 −0.0971170
\(965\) −0.954691 −0.0307326
\(966\) 0 0
\(967\) 51.4799 1.65548 0.827741 0.561110i \(-0.189626\pi\)
0.827741 + 0.561110i \(0.189626\pi\)
\(968\) 5.47214 0.175881
\(969\) 0 0
\(970\) 3.63471 0.116704
\(971\) −27.1359 −0.870834 −0.435417 0.900229i \(-0.643399\pi\)
−0.435417 + 0.900229i \(0.643399\pi\)
\(972\) 0 0
\(973\) −0.386938 −0.0124047
\(974\) 11.1660 0.357781
\(975\) 0 0
\(976\) −6.85765 −0.219508
\(977\) −25.8667 −0.827548 −0.413774 0.910380i \(-0.635790\pi\)
−0.413774 + 0.910380i \(0.635790\pi\)
\(978\) 0 0
\(979\) −32.9160 −1.05200
\(980\) 1.49640 0.0478006
\(981\) 0 0
\(982\) −32.1169 −1.02489
\(983\) −49.7983 −1.58832 −0.794159 0.607710i \(-0.792088\pi\)
−0.794159 + 0.607710i \(0.792088\pi\)
\(984\) 0 0
\(985\) −3.28911 −0.104800
\(986\) −23.7638 −0.756794
\(987\) 0 0
\(988\) −18.9324 −0.602321
\(989\) 7.22027 0.229591
\(990\) 0 0
\(991\) 36.7879 1.16861 0.584303 0.811536i \(-0.301368\pi\)
0.584303 + 0.811536i \(0.301368\pi\)
\(992\) 6.82328 0.216639
\(993\) 0 0
\(994\) 1.34163 0.0425539
\(995\) 1.48768 0.0471627
\(996\) 0 0
\(997\) 6.45172 0.204328 0.102164 0.994768i \(-0.467423\pi\)
0.102164 + 0.994768i \(0.467423\pi\)
\(998\) −36.9671 −1.17017
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2034.2.a.r.1.3 4
3.2 odd 2 226.2.a.d.1.3 4
12.11 even 2 1808.2.a.j.1.2 4
15.14 odd 2 5650.2.a.o.1.2 4
24.5 odd 2 7232.2.a.u.1.2 4
24.11 even 2 7232.2.a.v.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
226.2.a.d.1.3 4 3.2 odd 2
1808.2.a.j.1.2 4 12.11 even 2
2034.2.a.r.1.3 4 1.1 even 1 trivial
5650.2.a.o.1.2 4 15.14 odd 2
7232.2.a.u.1.2 4 24.5 odd 2
7232.2.a.v.1.3 4 24.11 even 2