Properties

Label 2028.4.k
Level $2028$
Weight $4$
Character orbit 2028.k
Rep. character $\chi_{2028}(775,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $924$
Sturm bound $1456$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2028.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Sturm bound: \(1456\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2028, [\chi])\).

Total New Old
Modular forms 2240 924 1316
Cusp forms 2128 924 1204
Eisenstein series 112 0 112

Trace form

\( 924 q + 4 q^{5} - 8316 q^{9} + 416 q^{14} - 144 q^{16} + 460 q^{20} + 120 q^{21} - 88 q^{22} - 180 q^{24} - 416 q^{28} + 1100 q^{32} + 72 q^{34} - 372 q^{37} - 2856 q^{40} + 1772 q^{41} - 936 q^{42} + 1132 q^{44}+ \cdots + 1016 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)