Defining parameters
Level: | \( N \) | \(=\) | \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2028.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1456\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(2028, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2240 | 924 | 1316 |
Cusp forms | 2128 | 924 | 1204 |
Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(2028, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(2028, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(2028, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)