Properties

Label 2028.4.b.a.337.2
Level $2028$
Weight $4$
Character 2028.337
Analytic conductor $119.656$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2028,4,Mod(337,2028)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2028, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2028.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2028.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(119.655873492\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2028.337
Dual form 2028.4.b.a.337.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +6.00000i q^{5} -4.00000i q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +6.00000i q^{5} -4.00000i q^{7} +9.00000 q^{9} +36.0000i q^{11} -18.0000i q^{15} -66.0000 q^{17} -56.0000i q^{19} +12.0000i q^{21} -96.0000 q^{23} +89.0000 q^{25} -27.0000 q^{27} +222.000 q^{29} -260.000i q^{31} -108.000i q^{33} +24.0000 q^{35} -106.000i q^{37} +90.0000i q^{41} -44.0000 q^{43} +54.0000i q^{45} +168.000i q^{47} +327.000 q^{49} +198.000 q^{51} +30.0000 q^{53} -216.000 q^{55} +168.000i q^{57} +348.000i q^{59} -346.000 q^{61} -36.0000i q^{63} +256.000i q^{67} +288.000 q^{69} +168.000i q^{71} -814.000i q^{73} -267.000 q^{75} +144.000 q^{77} +200.000 q^{79} +81.0000 q^{81} -1236.00i q^{83} -396.000i q^{85} -666.000 q^{87} +318.000i q^{89} +780.000i q^{93} +336.000 q^{95} +502.000i q^{97} +324.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} + 18 q^{9} - 132 q^{17} - 192 q^{23} + 178 q^{25} - 54 q^{27} + 444 q^{29} + 48 q^{35} - 88 q^{43} + 654 q^{49} + 396 q^{51} + 60 q^{53} - 432 q^{55} - 692 q^{61} + 576 q^{69} - 534 q^{75} + 288 q^{77} + 400 q^{79} + 162 q^{81} - 1332 q^{87} + 672 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 6.00000i 0.536656i 0.963328 + 0.268328i \(0.0864711\pi\)
−0.963328 + 0.268328i \(0.913529\pi\)
\(6\) 0 0
\(7\) − 4.00000i − 0.215980i −0.994152 0.107990i \(-0.965559\pi\)
0.994152 0.107990i \(-0.0344414\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 36.0000i 0.986764i 0.869813 + 0.493382i \(0.164240\pi\)
−0.869813 + 0.493382i \(0.835760\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 18.0000i − 0.309839i
\(16\) 0 0
\(17\) −66.0000 −0.941609 −0.470804 0.882238i \(-0.656036\pi\)
−0.470804 + 0.882238i \(0.656036\pi\)
\(18\) 0 0
\(19\) − 56.0000i − 0.676173i −0.941115 0.338086i \(-0.890220\pi\)
0.941115 0.338086i \(-0.109780\pi\)
\(20\) 0 0
\(21\) 12.0000i 0.124696i
\(22\) 0 0
\(23\) −96.0000 −0.870321 −0.435161 0.900353i \(-0.643308\pi\)
−0.435161 + 0.900353i \(0.643308\pi\)
\(24\) 0 0
\(25\) 89.0000 0.712000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 222.000 1.42153 0.710765 0.703430i \(-0.248349\pi\)
0.710765 + 0.703430i \(0.248349\pi\)
\(30\) 0 0
\(31\) − 260.000i − 1.50637i −0.657810 0.753184i \(-0.728517\pi\)
0.657810 0.753184i \(-0.271483\pi\)
\(32\) 0 0
\(33\) − 108.000i − 0.569709i
\(34\) 0 0
\(35\) 24.0000 0.115907
\(36\) 0 0
\(37\) − 106.000i − 0.470981i −0.971877 0.235490i \(-0.924330\pi\)
0.971877 0.235490i \(-0.0756696\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 90.0000i 0.342820i 0.985200 + 0.171410i \(0.0548323\pi\)
−0.985200 + 0.171410i \(0.945168\pi\)
\(42\) 0 0
\(43\) −44.0000 −0.156045 −0.0780225 0.996952i \(-0.524861\pi\)
−0.0780225 + 0.996952i \(0.524861\pi\)
\(44\) 0 0
\(45\) 54.0000i 0.178885i
\(46\) 0 0
\(47\) 168.000i 0.521390i 0.965421 + 0.260695i \(0.0839517\pi\)
−0.965421 + 0.260695i \(0.916048\pi\)
\(48\) 0 0
\(49\) 327.000 0.953353
\(50\) 0 0
\(51\) 198.000 0.543638
\(52\) 0 0
\(53\) 30.0000 0.0777513 0.0388756 0.999244i \(-0.487622\pi\)
0.0388756 + 0.999244i \(0.487622\pi\)
\(54\) 0 0
\(55\) −216.000 −0.529553
\(56\) 0 0
\(57\) 168.000i 0.390388i
\(58\) 0 0
\(59\) 348.000i 0.767894i 0.923355 + 0.383947i \(0.125435\pi\)
−0.923355 + 0.383947i \(0.874565\pi\)
\(60\) 0 0
\(61\) −346.000 −0.726242 −0.363121 0.931742i \(-0.618289\pi\)
−0.363121 + 0.931742i \(0.618289\pi\)
\(62\) 0 0
\(63\) − 36.0000i − 0.0719932i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 256.000i 0.466797i 0.972381 + 0.233398i \(0.0749846\pi\)
−0.972381 + 0.233398i \(0.925015\pi\)
\(68\) 0 0
\(69\) 288.000 0.502480
\(70\) 0 0
\(71\) 168.000i 0.280816i 0.990094 + 0.140408i \(0.0448414\pi\)
−0.990094 + 0.140408i \(0.955159\pi\)
\(72\) 0 0
\(73\) − 814.000i − 1.30509i −0.757750 0.652544i \(-0.773702\pi\)
0.757750 0.652544i \(-0.226298\pi\)
\(74\) 0 0
\(75\) −267.000 −0.411073
\(76\) 0 0
\(77\) 144.000 0.213121
\(78\) 0 0
\(79\) 200.000 0.284832 0.142416 0.989807i \(-0.454513\pi\)
0.142416 + 0.989807i \(0.454513\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 1236.00i − 1.63456i −0.576240 0.817281i \(-0.695480\pi\)
0.576240 0.817281i \(-0.304520\pi\)
\(84\) 0 0
\(85\) − 396.000i − 0.505320i
\(86\) 0 0
\(87\) −666.000 −0.820721
\(88\) 0 0
\(89\) 318.000i 0.378741i 0.981906 + 0.189370i \(0.0606447\pi\)
−0.981906 + 0.189370i \(0.939355\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 780.000i 0.869701i
\(94\) 0 0
\(95\) 336.000 0.362872
\(96\) 0 0
\(97\) 502.000i 0.525468i 0.964868 + 0.262734i \(0.0846241\pi\)
−0.964868 + 0.262734i \(0.915376\pi\)
\(98\) 0 0
\(99\) 324.000i 0.328921i
\(100\) 0 0
\(101\) −1062.00 −1.04627 −0.523133 0.852251i \(-0.675237\pi\)
−0.523133 + 0.852251i \(0.675237\pi\)
\(102\) 0 0
\(103\) 64.0000 0.0612243 0.0306122 0.999531i \(-0.490254\pi\)
0.0306122 + 0.999531i \(0.490254\pi\)
\(104\) 0 0
\(105\) −72.0000 −0.0669189
\(106\) 0 0
\(107\) −444.000 −0.401150 −0.200575 0.979678i \(-0.564281\pi\)
−0.200575 + 0.979678i \(0.564281\pi\)
\(108\) 0 0
\(109\) − 1382.00i − 1.21442i −0.794542 0.607209i \(-0.792289\pi\)
0.794542 0.607209i \(-0.207711\pi\)
\(110\) 0 0
\(111\) 318.000i 0.271921i
\(112\) 0 0
\(113\) −870.000 −0.724272 −0.362136 0.932125i \(-0.617952\pi\)
−0.362136 + 0.932125i \(0.617952\pi\)
\(114\) 0 0
\(115\) − 576.000i − 0.467063i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 264.000i 0.203368i
\(120\) 0 0
\(121\) 35.0000 0.0262960
\(122\) 0 0
\(123\) − 270.000i − 0.197927i
\(124\) 0 0
\(125\) 1284.00i 0.918756i
\(126\) 0 0
\(127\) −464.000 −0.324200 −0.162100 0.986774i \(-0.551827\pi\)
−0.162100 + 0.986774i \(0.551827\pi\)
\(128\) 0 0
\(129\) 132.000 0.0900927
\(130\) 0 0
\(131\) 1548.00 1.03244 0.516219 0.856457i \(-0.327339\pi\)
0.516219 + 0.856457i \(0.327339\pi\)
\(132\) 0 0
\(133\) −224.000 −0.146040
\(134\) 0 0
\(135\) − 162.000i − 0.103280i
\(136\) 0 0
\(137\) 294.000i 0.183344i 0.995789 + 0.0916720i \(0.0292211\pi\)
−0.995789 + 0.0916720i \(0.970779\pi\)
\(138\) 0 0
\(139\) 2564.00 1.56457 0.782286 0.622919i \(-0.214053\pi\)
0.782286 + 0.622919i \(0.214053\pi\)
\(140\) 0 0
\(141\) − 504.000i − 0.301025i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1332.00i 0.762873i
\(146\) 0 0
\(147\) −981.000 −0.550418
\(148\) 0 0
\(149\) − 114.000i − 0.0626795i −0.999509 0.0313397i \(-0.990023\pi\)
0.999509 0.0313397i \(-0.00997738\pi\)
\(150\) 0 0
\(151\) 2036.00i 1.09727i 0.836063 + 0.548634i \(0.184852\pi\)
−0.836063 + 0.548634i \(0.815148\pi\)
\(152\) 0 0
\(153\) −594.000 −0.313870
\(154\) 0 0
\(155\) 1560.00 0.808401
\(156\) 0 0
\(157\) 2870.00 1.45892 0.729462 0.684022i \(-0.239771\pi\)
0.729462 + 0.684022i \(0.239771\pi\)
\(158\) 0 0
\(159\) −90.0000 −0.0448897
\(160\) 0 0
\(161\) 384.000i 0.187972i
\(162\) 0 0
\(163\) 1472.00i 0.707337i 0.935371 + 0.353669i \(0.115066\pi\)
−0.935371 + 0.353669i \(0.884934\pi\)
\(164\) 0 0
\(165\) 648.000 0.305738
\(166\) 0 0
\(167\) − 240.000i − 0.111208i −0.998453 0.0556041i \(-0.982292\pi\)
0.998453 0.0556041i \(-0.0177085\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 504.000i − 0.225391i
\(172\) 0 0
\(173\) 306.000 0.134478 0.0672392 0.997737i \(-0.478581\pi\)
0.0672392 + 0.997737i \(0.478581\pi\)
\(174\) 0 0
\(175\) − 356.000i − 0.153778i
\(176\) 0 0
\(177\) − 1044.00i − 0.443344i
\(178\) 0 0
\(179\) 2052.00 0.856836 0.428418 0.903581i \(-0.359071\pi\)
0.428418 + 0.903581i \(0.359071\pi\)
\(180\) 0 0
\(181\) 4498.00 1.84715 0.923574 0.383421i \(-0.125254\pi\)
0.923574 + 0.383421i \(0.125254\pi\)
\(182\) 0 0
\(183\) 1038.00 0.419296
\(184\) 0 0
\(185\) 636.000 0.252755
\(186\) 0 0
\(187\) − 2376.00i − 0.929146i
\(188\) 0 0
\(189\) 108.000i 0.0415653i
\(190\) 0 0
\(191\) −4056.00 −1.53655 −0.768277 0.640117i \(-0.778886\pi\)
−0.768277 + 0.640117i \(0.778886\pi\)
\(192\) 0 0
\(193\) − 2062.00i − 0.769047i −0.923115 0.384523i \(-0.874366\pi\)
0.923115 0.384523i \(-0.125634\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4374.00i 1.58190i 0.611880 + 0.790951i \(0.290414\pi\)
−0.611880 + 0.790951i \(0.709586\pi\)
\(198\) 0 0
\(199\) 2536.00 0.903378 0.451689 0.892175i \(-0.350822\pi\)
0.451689 + 0.892175i \(0.350822\pi\)
\(200\) 0 0
\(201\) − 768.000i − 0.269505i
\(202\) 0 0
\(203\) − 888.000i − 0.307022i
\(204\) 0 0
\(205\) −540.000 −0.183977
\(206\) 0 0
\(207\) −864.000 −0.290107
\(208\) 0 0
\(209\) 2016.00 0.667223
\(210\) 0 0
\(211\) −4444.00 −1.44994 −0.724971 0.688780i \(-0.758147\pi\)
−0.724971 + 0.688780i \(0.758147\pi\)
\(212\) 0 0
\(213\) − 504.000i − 0.162129i
\(214\) 0 0
\(215\) − 264.000i − 0.0837426i
\(216\) 0 0
\(217\) −1040.00 −0.325345
\(218\) 0 0
\(219\) 2442.00i 0.753493i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2716.00i 0.815591i 0.913073 + 0.407796i \(0.133702\pi\)
−0.913073 + 0.407796i \(0.866298\pi\)
\(224\) 0 0
\(225\) 801.000 0.237333
\(226\) 0 0
\(227\) 4692.00i 1.37189i 0.727653 + 0.685945i \(0.240611\pi\)
−0.727653 + 0.685945i \(0.759389\pi\)
\(228\) 0 0
\(229\) 6446.00i 1.86010i 0.367429 + 0.930052i \(0.380238\pi\)
−0.367429 + 0.930052i \(0.619762\pi\)
\(230\) 0 0
\(231\) −432.000 −0.123046
\(232\) 0 0
\(233\) 3102.00 0.872184 0.436092 0.899902i \(-0.356362\pi\)
0.436092 + 0.899902i \(0.356362\pi\)
\(234\) 0 0
\(235\) −1008.00 −0.279807
\(236\) 0 0
\(237\) −600.000 −0.164448
\(238\) 0 0
\(239\) − 816.000i − 0.220848i −0.993885 0.110424i \(-0.964779\pi\)
0.993885 0.110424i \(-0.0352209\pi\)
\(240\) 0 0
\(241\) 3818.00i 1.02049i 0.860028 + 0.510247i \(0.170446\pi\)
−0.860028 + 0.510247i \(0.829554\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1962.00i 0.511623i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 3708.00i 0.943715i
\(250\) 0 0
\(251\) 6612.00 1.66273 0.831366 0.555725i \(-0.187559\pi\)
0.831366 + 0.555725i \(0.187559\pi\)
\(252\) 0 0
\(253\) − 3456.00i − 0.858802i
\(254\) 0 0
\(255\) 1188.00i 0.291747i
\(256\) 0 0
\(257\) 4806.00 1.16650 0.583249 0.812293i \(-0.301781\pi\)
0.583249 + 0.812293i \(0.301781\pi\)
\(258\) 0 0
\(259\) −424.000 −0.101722
\(260\) 0 0
\(261\) 1998.00 0.473843
\(262\) 0 0
\(263\) −4584.00 −1.07476 −0.537379 0.843341i \(-0.680586\pi\)
−0.537379 + 0.843341i \(0.680586\pi\)
\(264\) 0 0
\(265\) 180.000i 0.0417257i
\(266\) 0 0
\(267\) − 954.000i − 0.218666i
\(268\) 0 0
\(269\) 7134.00 1.61698 0.808490 0.588510i \(-0.200285\pi\)
0.808490 + 0.588510i \(0.200285\pi\)
\(270\) 0 0
\(271\) 3140.00i 0.703843i 0.936030 + 0.351921i \(0.114472\pi\)
−0.936030 + 0.351921i \(0.885528\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3204.00i 0.702576i
\(276\) 0 0
\(277\) 4786.00 1.03813 0.519067 0.854734i \(-0.326280\pi\)
0.519067 + 0.854734i \(0.326280\pi\)
\(278\) 0 0
\(279\) − 2340.00i − 0.502122i
\(280\) 0 0
\(281\) 3798.00i 0.806298i 0.915134 + 0.403149i \(0.132084\pi\)
−0.915134 + 0.403149i \(0.867916\pi\)
\(282\) 0 0
\(283\) −3572.00 −0.750295 −0.375147 0.926965i \(-0.622408\pi\)
−0.375147 + 0.926965i \(0.622408\pi\)
\(284\) 0 0
\(285\) −1008.00 −0.209504
\(286\) 0 0
\(287\) 360.000 0.0740423
\(288\) 0 0
\(289\) −557.000 −0.113373
\(290\) 0 0
\(291\) − 1506.00i − 0.303379i
\(292\) 0 0
\(293\) 7122.00i 1.42004i 0.704182 + 0.710020i \(0.251314\pi\)
−0.704182 + 0.710020i \(0.748686\pi\)
\(294\) 0 0
\(295\) −2088.00 −0.412095
\(296\) 0 0
\(297\) − 972.000i − 0.189903i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 176.000i 0.0337026i
\(302\) 0 0
\(303\) 3186.00 0.604062
\(304\) 0 0
\(305\) − 2076.00i − 0.389742i
\(306\) 0 0
\(307\) − 6856.00i − 1.27457i −0.770629 0.637284i \(-0.780058\pi\)
0.770629 0.637284i \(-0.219942\pi\)
\(308\) 0 0
\(309\) −192.000 −0.0353479
\(310\) 0 0
\(311\) 8832.00 1.61034 0.805172 0.593042i \(-0.202073\pi\)
0.805172 + 0.593042i \(0.202073\pi\)
\(312\) 0 0
\(313\) 3626.00 0.654804 0.327402 0.944885i \(-0.393827\pi\)
0.327402 + 0.944885i \(0.393827\pi\)
\(314\) 0 0
\(315\) 216.000 0.0386356
\(316\) 0 0
\(317\) − 10146.0i − 1.79765i −0.438304 0.898827i \(-0.644421\pi\)
0.438304 0.898827i \(-0.355579\pi\)
\(318\) 0 0
\(319\) 7992.00i 1.40272i
\(320\) 0 0
\(321\) 1332.00 0.231604
\(322\) 0 0
\(323\) 3696.00i 0.636690i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4146.00i 0.701145i
\(328\) 0 0
\(329\) 672.000 0.112610
\(330\) 0 0
\(331\) − 6536.00i − 1.08535i −0.839943 0.542675i \(-0.817411\pi\)
0.839943 0.542675i \(-0.182589\pi\)
\(332\) 0 0
\(333\) − 954.000i − 0.156994i
\(334\) 0 0
\(335\) −1536.00 −0.250509
\(336\) 0 0
\(337\) 6094.00 0.985048 0.492524 0.870299i \(-0.336074\pi\)
0.492524 + 0.870299i \(0.336074\pi\)
\(338\) 0 0
\(339\) 2610.00 0.418159
\(340\) 0 0
\(341\) 9360.00 1.48643
\(342\) 0 0
\(343\) − 2680.00i − 0.421885i
\(344\) 0 0
\(345\) 1728.00i 0.269659i
\(346\) 0 0
\(347\) −2724.00 −0.421418 −0.210709 0.977549i \(-0.567577\pi\)
−0.210709 + 0.977549i \(0.567577\pi\)
\(348\) 0 0
\(349\) − 1522.00i − 0.233441i −0.993165 0.116720i \(-0.962762\pi\)
0.993165 0.116720i \(-0.0372381\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1362.00i 0.205360i 0.994714 + 0.102680i \(0.0327417\pi\)
−0.994714 + 0.102680i \(0.967258\pi\)
\(354\) 0 0
\(355\) −1008.00 −0.150702
\(356\) 0 0
\(357\) − 792.000i − 0.117415i
\(358\) 0 0
\(359\) 8880.00i 1.30548i 0.757581 + 0.652742i \(0.226381\pi\)
−0.757581 + 0.652742i \(0.773619\pi\)
\(360\) 0 0
\(361\) 3723.00 0.542790
\(362\) 0 0
\(363\) −105.000 −0.0151820
\(364\) 0 0
\(365\) 4884.00 0.700384
\(366\) 0 0
\(367\) −3712.00 −0.527970 −0.263985 0.964527i \(-0.585037\pi\)
−0.263985 + 0.964527i \(0.585037\pi\)
\(368\) 0 0
\(369\) 810.000i 0.114273i
\(370\) 0 0
\(371\) − 120.000i − 0.0167927i
\(372\) 0 0
\(373\) 5726.00 0.794855 0.397428 0.917634i \(-0.369903\pi\)
0.397428 + 0.917634i \(0.369903\pi\)
\(374\) 0 0
\(375\) − 3852.00i − 0.530444i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 13168.0i 1.78468i 0.451361 + 0.892341i \(0.350939\pi\)
−0.451361 + 0.892341i \(0.649061\pi\)
\(380\) 0 0
\(381\) 1392.00 0.187177
\(382\) 0 0
\(383\) − 4872.00i − 0.649994i −0.945715 0.324997i \(-0.894637\pi\)
0.945715 0.324997i \(-0.105363\pi\)
\(384\) 0 0
\(385\) 864.000i 0.114373i
\(386\) 0 0
\(387\) −396.000 −0.0520150
\(388\) 0 0
\(389\) 1266.00 0.165010 0.0825048 0.996591i \(-0.473708\pi\)
0.0825048 + 0.996591i \(0.473708\pi\)
\(390\) 0 0
\(391\) 6336.00 0.819502
\(392\) 0 0
\(393\) −4644.00 −0.596078
\(394\) 0 0
\(395\) 1200.00i 0.152857i
\(396\) 0 0
\(397\) − 4882.00i − 0.617180i −0.951195 0.308590i \(-0.900143\pi\)
0.951195 0.308590i \(-0.0998571\pi\)
\(398\) 0 0
\(399\) 672.000 0.0843160
\(400\) 0 0
\(401\) − 90.0000i − 0.0112079i −0.999984 0.00560397i \(-0.998216\pi\)
0.999984 0.00560397i \(-0.00178381\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 486.000i 0.0596285i
\(406\) 0 0
\(407\) 3816.00 0.464747
\(408\) 0 0
\(409\) − 2354.00i − 0.284591i −0.989824 0.142296i \(-0.954552\pi\)
0.989824 0.142296i \(-0.0454484\pi\)
\(410\) 0 0
\(411\) − 882.000i − 0.105854i
\(412\) 0 0
\(413\) 1392.00 0.165849
\(414\) 0 0
\(415\) 7416.00 0.877198
\(416\) 0 0
\(417\) −7692.00 −0.903307
\(418\) 0 0
\(419\) 7020.00 0.818495 0.409248 0.912423i \(-0.365791\pi\)
0.409248 + 0.912423i \(0.365791\pi\)
\(420\) 0 0
\(421\) − 302.000i − 0.0349610i −0.999847 0.0174805i \(-0.994436\pi\)
0.999847 0.0174805i \(-0.00556450\pi\)
\(422\) 0 0
\(423\) 1512.00i 0.173797i
\(424\) 0 0
\(425\) −5874.00 −0.670426
\(426\) 0 0
\(427\) 1384.00i 0.156854i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 9816.00i − 1.09703i −0.836141 0.548515i \(-0.815193\pi\)
0.836141 0.548515i \(-0.184807\pi\)
\(432\) 0 0
\(433\) 14782.0 1.64059 0.820297 0.571937i \(-0.193808\pi\)
0.820297 + 0.571937i \(0.193808\pi\)
\(434\) 0 0
\(435\) − 3996.00i − 0.440445i
\(436\) 0 0
\(437\) 5376.00i 0.588487i
\(438\) 0 0
\(439\) −3584.00 −0.389647 −0.194823 0.980838i \(-0.562413\pi\)
−0.194823 + 0.980838i \(0.562413\pi\)
\(440\) 0 0
\(441\) 2943.00 0.317784
\(442\) 0 0
\(443\) 180.000 0.0193049 0.00965244 0.999953i \(-0.496927\pi\)
0.00965244 + 0.999953i \(0.496927\pi\)
\(444\) 0 0
\(445\) −1908.00 −0.203254
\(446\) 0 0
\(447\) 342.000i 0.0361880i
\(448\) 0 0
\(449\) − 3450.00i − 0.362618i −0.983426 0.181309i \(-0.941967\pi\)
0.983426 0.181309i \(-0.0580334\pi\)
\(450\) 0 0
\(451\) −3240.00 −0.338283
\(452\) 0 0
\(453\) − 6108.00i − 0.633507i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16654.0i 1.70469i 0.522984 + 0.852343i \(0.324819\pi\)
−0.522984 + 0.852343i \(0.675181\pi\)
\(458\) 0 0
\(459\) 1782.00 0.181213
\(460\) 0 0
\(461\) 14046.0i 1.41906i 0.704674 + 0.709531i \(0.251093\pi\)
−0.704674 + 0.709531i \(0.748907\pi\)
\(462\) 0 0
\(463\) − 4588.00i − 0.460524i −0.973129 0.230262i \(-0.926042\pi\)
0.973129 0.230262i \(-0.0739583\pi\)
\(464\) 0 0
\(465\) −4680.00 −0.466731
\(466\) 0 0
\(467\) 15372.0 1.52319 0.761597 0.648051i \(-0.224416\pi\)
0.761597 + 0.648051i \(0.224416\pi\)
\(468\) 0 0
\(469\) 1024.00 0.100819
\(470\) 0 0
\(471\) −8610.00 −0.842310
\(472\) 0 0
\(473\) − 1584.00i − 0.153980i
\(474\) 0 0
\(475\) − 4984.00i − 0.481435i
\(476\) 0 0
\(477\) 270.000 0.0259171
\(478\) 0 0
\(479\) 12864.0i 1.22708i 0.789664 + 0.613540i \(0.210255\pi\)
−0.789664 + 0.613540i \(0.789745\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 1152.00i − 0.108525i
\(484\) 0 0
\(485\) −3012.00 −0.281996
\(486\) 0 0
\(487\) 10276.0i 0.956160i 0.878316 + 0.478080i \(0.158667\pi\)
−0.878316 + 0.478080i \(0.841333\pi\)
\(488\) 0 0
\(489\) − 4416.00i − 0.408381i
\(490\) 0 0
\(491\) 11220.0 1.03127 0.515633 0.856810i \(-0.327557\pi\)
0.515633 + 0.856810i \(0.327557\pi\)
\(492\) 0 0
\(493\) −14652.0 −1.33853
\(494\) 0 0
\(495\) −1944.00 −0.176518
\(496\) 0 0
\(497\) 672.000 0.0606505
\(498\) 0 0
\(499\) − 17264.0i − 1.54878i −0.632707 0.774392i \(-0.718056\pi\)
0.632707 0.774392i \(-0.281944\pi\)
\(500\) 0 0
\(501\) 720.000i 0.0642060i
\(502\) 0 0
\(503\) −1896.00 −0.168069 −0.0840343 0.996463i \(-0.526781\pi\)
−0.0840343 + 0.996463i \(0.526781\pi\)
\(504\) 0 0
\(505\) − 6372.00i − 0.561486i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 5010.00i − 0.436276i −0.975918 0.218138i \(-0.930002\pi\)
0.975918 0.218138i \(-0.0699982\pi\)
\(510\) 0 0
\(511\) −3256.00 −0.281873
\(512\) 0 0
\(513\) 1512.00i 0.130129i
\(514\) 0 0
\(515\) 384.000i 0.0328564i
\(516\) 0 0
\(517\) −6048.00 −0.514489
\(518\) 0 0
\(519\) −918.000 −0.0776411
\(520\) 0 0
\(521\) 8610.00 0.724013 0.362007 0.932176i \(-0.382092\pi\)
0.362007 + 0.932176i \(0.382092\pi\)
\(522\) 0 0
\(523\) −5308.00 −0.443791 −0.221895 0.975070i \(-0.571224\pi\)
−0.221895 + 0.975070i \(0.571224\pi\)
\(524\) 0 0
\(525\) 1068.00i 0.0887835i
\(526\) 0 0
\(527\) 17160.0i 1.41841i
\(528\) 0 0
\(529\) −2951.00 −0.242541
\(530\) 0 0
\(531\) 3132.00i 0.255965i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 2664.00i − 0.215280i
\(536\) 0 0
\(537\) −6156.00 −0.494695
\(538\) 0 0
\(539\) 11772.0i 0.940735i
\(540\) 0 0
\(541\) 6182.00i 0.491285i 0.969361 + 0.245642i \(0.0789989\pi\)
−0.969361 + 0.245642i \(0.921001\pi\)
\(542\) 0 0
\(543\) −13494.0 −1.06645
\(544\) 0 0
\(545\) 8292.00 0.651725
\(546\) 0 0
\(547\) 1292.00 0.100991 0.0504954 0.998724i \(-0.483920\pi\)
0.0504954 + 0.998724i \(0.483920\pi\)
\(548\) 0 0
\(549\) −3114.00 −0.242081
\(550\) 0 0
\(551\) − 12432.0i − 0.961200i
\(552\) 0 0
\(553\) − 800.000i − 0.0615180i
\(554\) 0 0
\(555\) −1908.00 −0.145928
\(556\) 0 0
\(557\) − 12774.0i − 0.971727i −0.874035 0.485863i \(-0.838505\pi\)
0.874035 0.485863i \(-0.161495\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 7128.00i 0.536443i
\(562\) 0 0
\(563\) −16908.0 −1.26570 −0.632848 0.774276i \(-0.718114\pi\)
−0.632848 + 0.774276i \(0.718114\pi\)
\(564\) 0 0
\(565\) − 5220.00i − 0.388685i
\(566\) 0 0
\(567\) − 324.000i − 0.0239977i
\(568\) 0 0
\(569\) 11214.0 0.826213 0.413107 0.910683i \(-0.364444\pi\)
0.413107 + 0.910683i \(0.364444\pi\)
\(570\) 0 0
\(571\) −25220.0 −1.84838 −0.924189 0.381935i \(-0.875258\pi\)
−0.924189 + 0.381935i \(0.875258\pi\)
\(572\) 0 0
\(573\) 12168.0 0.887130
\(574\) 0 0
\(575\) −8544.00 −0.619669
\(576\) 0 0
\(577\) 17710.0i 1.27778i 0.769300 + 0.638888i \(0.220605\pi\)
−0.769300 + 0.638888i \(0.779395\pi\)
\(578\) 0 0
\(579\) 6186.00i 0.444009i
\(580\) 0 0
\(581\) −4944.00 −0.353032
\(582\) 0 0
\(583\) 1080.00i 0.0767222i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 20028.0i − 1.40825i −0.710075 0.704126i \(-0.751339\pi\)
0.710075 0.704126i \(-0.248661\pi\)
\(588\) 0 0
\(589\) −14560.0 −1.01856
\(590\) 0 0
\(591\) − 13122.0i − 0.913311i
\(592\) 0 0
\(593\) 19926.0i 1.37987i 0.723871 + 0.689935i \(0.242361\pi\)
−0.723871 + 0.689935i \(0.757639\pi\)
\(594\) 0 0
\(595\) −1584.00 −0.109139
\(596\) 0 0
\(597\) −7608.00 −0.521566
\(598\) 0 0
\(599\) −1704.00 −0.116233 −0.0581165 0.998310i \(-0.518509\pi\)
−0.0581165 + 0.998310i \(0.518509\pi\)
\(600\) 0 0
\(601\) 11018.0 0.747810 0.373905 0.927467i \(-0.378019\pi\)
0.373905 + 0.927467i \(0.378019\pi\)
\(602\) 0 0
\(603\) 2304.00i 0.155599i
\(604\) 0 0
\(605\) 210.000i 0.0141119i
\(606\) 0 0
\(607\) −448.000 −0.0299568 −0.0149784 0.999888i \(-0.504768\pi\)
−0.0149784 + 0.999888i \(0.504768\pi\)
\(608\) 0 0
\(609\) 2664.00i 0.177259i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 12586.0i 0.829272i 0.909987 + 0.414636i \(0.136091\pi\)
−0.909987 + 0.414636i \(0.863909\pi\)
\(614\) 0 0
\(615\) 1620.00 0.106219
\(616\) 0 0
\(617\) 29610.0i 1.93202i 0.258513 + 0.966008i \(0.416768\pi\)
−0.258513 + 0.966008i \(0.583232\pi\)
\(618\) 0 0
\(619\) − 7120.00i − 0.462321i −0.972916 0.231161i \(-0.925748\pi\)
0.972916 0.231161i \(-0.0742523\pi\)
\(620\) 0 0
\(621\) 2592.00 0.167493
\(622\) 0 0
\(623\) 1272.00 0.0818003
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) 0 0
\(627\) −6048.00 −0.385221
\(628\) 0 0
\(629\) 6996.00i 0.443480i
\(630\) 0 0
\(631\) − 15580.0i − 0.982932i −0.870897 0.491466i \(-0.836461\pi\)
0.870897 0.491466i \(-0.163539\pi\)
\(632\) 0 0
\(633\) 13332.0 0.837124
\(634\) 0 0
\(635\) − 2784.00i − 0.173984i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1512.00i 0.0936053i
\(640\) 0 0
\(641\) 19806.0 1.22042 0.610211 0.792239i \(-0.291085\pi\)
0.610211 + 0.792239i \(0.291085\pi\)
\(642\) 0 0
\(643\) − 24032.0i − 1.47392i −0.675937 0.736959i \(-0.736261\pi\)
0.675937 0.736959i \(-0.263739\pi\)
\(644\) 0 0
\(645\) 792.000i 0.0483488i
\(646\) 0 0
\(647\) 2808.00 0.170624 0.0853121 0.996354i \(-0.472811\pi\)
0.0853121 + 0.996354i \(0.472811\pi\)
\(648\) 0 0
\(649\) −12528.0 −0.757730
\(650\) 0 0
\(651\) 3120.00 0.187838
\(652\) 0 0
\(653\) 23886.0 1.43144 0.715721 0.698386i \(-0.246098\pi\)
0.715721 + 0.698386i \(0.246098\pi\)
\(654\) 0 0
\(655\) 9288.00i 0.554064i
\(656\) 0 0
\(657\) − 7326.00i − 0.435030i
\(658\) 0 0
\(659\) −3948.00 −0.233372 −0.116686 0.993169i \(-0.537227\pi\)
−0.116686 + 0.993169i \(0.537227\pi\)
\(660\) 0 0
\(661\) 5750.00i 0.338350i 0.985586 + 0.169175i \(0.0541102\pi\)
−0.985586 + 0.169175i \(0.945890\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 1344.00i − 0.0783731i
\(666\) 0 0
\(667\) −21312.0 −1.23719
\(668\) 0 0
\(669\) − 8148.00i − 0.470882i
\(670\) 0 0
\(671\) − 12456.0i − 0.716630i
\(672\) 0 0
\(673\) −28082.0 −1.60844 −0.804221 0.594330i \(-0.797417\pi\)
−0.804221 + 0.594330i \(0.797417\pi\)
\(674\) 0 0
\(675\) −2403.00 −0.137024
\(676\) 0 0
\(677\) −27954.0 −1.58694 −0.793471 0.608608i \(-0.791728\pi\)
−0.793471 + 0.608608i \(0.791728\pi\)
\(678\) 0 0
\(679\) 2008.00 0.113490
\(680\) 0 0
\(681\) − 14076.0i − 0.792061i
\(682\) 0 0
\(683\) − 28428.0i − 1.59263i −0.604881 0.796316i \(-0.706779\pi\)
0.604881 0.796316i \(-0.293221\pi\)
\(684\) 0 0
\(685\) −1764.00 −0.0983927
\(686\) 0 0
\(687\) − 19338.0i − 1.07393i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 21680.0i − 1.19355i −0.802407 0.596777i \(-0.796448\pi\)
0.802407 0.596777i \(-0.203552\pi\)
\(692\) 0 0
\(693\) 1296.00 0.0710404
\(694\) 0 0
\(695\) 15384.0i 0.839638i
\(696\) 0 0
\(697\) − 5940.00i − 0.322803i
\(698\) 0 0
\(699\) −9306.00 −0.503555
\(700\) 0 0
\(701\) 7482.00 0.403126 0.201563 0.979476i \(-0.435398\pi\)
0.201563 + 0.979476i \(0.435398\pi\)
\(702\) 0 0
\(703\) −5936.00 −0.318464
\(704\) 0 0
\(705\) 3024.00 0.161547
\(706\) 0 0
\(707\) 4248.00i 0.225972i
\(708\) 0 0
\(709\) 2270.00i 0.120242i 0.998191 + 0.0601210i \(0.0191487\pi\)
−0.998191 + 0.0601210i \(0.980851\pi\)
\(710\) 0 0
\(711\) 1800.00 0.0949441
\(712\) 0 0
\(713\) 24960.0i 1.31102i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2448.00i 0.127507i
\(718\) 0 0
\(719\) −36024.0 −1.86852 −0.934262 0.356588i \(-0.883940\pi\)
−0.934262 + 0.356588i \(0.883940\pi\)
\(720\) 0 0
\(721\) − 256.000i − 0.0132232i
\(722\) 0 0
\(723\) − 11454.0i − 0.589182i
\(724\) 0 0
\(725\) 19758.0 1.01213
\(726\) 0 0
\(727\) 21544.0 1.09907 0.549534 0.835471i \(-0.314805\pi\)
0.549534 + 0.835471i \(0.314805\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 2904.00 0.146933
\(732\) 0 0
\(733\) 1018.00i 0.0512970i 0.999671 + 0.0256485i \(0.00816506\pi\)
−0.999671 + 0.0256485i \(0.991835\pi\)
\(734\) 0 0
\(735\) − 5886.00i − 0.295386i
\(736\) 0 0
\(737\) −9216.00 −0.460618
\(738\) 0 0
\(739\) − 24568.0i − 1.22293i −0.791270 0.611467i \(-0.790580\pi\)
0.791270 0.611467i \(-0.209420\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 16968.0i − 0.837814i −0.908029 0.418907i \(-0.862413\pi\)
0.908029 0.418907i \(-0.137587\pi\)
\(744\) 0 0
\(745\) 684.000 0.0336373
\(746\) 0 0
\(747\) − 11124.0i − 0.544854i
\(748\) 0 0
\(749\) 1776.00i 0.0866404i
\(750\) 0 0
\(751\) −3224.00 −0.156652 −0.0783259 0.996928i \(-0.524957\pi\)
−0.0783259 + 0.996928i \(0.524957\pi\)
\(752\) 0 0
\(753\) −19836.0 −0.959979
\(754\) 0 0
\(755\) −12216.0 −0.588855
\(756\) 0 0
\(757\) −31570.0 −1.51576 −0.757881 0.652393i \(-0.773765\pi\)
−0.757881 + 0.652393i \(0.773765\pi\)
\(758\) 0 0
\(759\) 10368.0i 0.495829i
\(760\) 0 0
\(761\) − 34890.0i − 1.66197i −0.556293 0.830987i \(-0.687777\pi\)
0.556293 0.830987i \(-0.312223\pi\)
\(762\) 0 0
\(763\) −5528.00 −0.262290
\(764\) 0 0
\(765\) − 3564.00i − 0.168440i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 11522.0i − 0.540304i −0.962818 0.270152i \(-0.912926\pi\)
0.962818 0.270152i \(-0.0870740\pi\)
\(770\) 0 0
\(771\) −14418.0 −0.673478
\(772\) 0 0
\(773\) 28158.0i 1.31018i 0.755549 + 0.655092i \(0.227370\pi\)
−0.755549 + 0.655092i \(0.772630\pi\)
\(774\) 0 0
\(775\) − 23140.0i − 1.07253i
\(776\) 0 0
\(777\) 1272.00 0.0587294
\(778\) 0 0
\(779\) 5040.00 0.231806
\(780\) 0 0
\(781\) −6048.00 −0.277099
\(782\) 0 0
\(783\) −5994.00 −0.273574
\(784\) 0 0
\(785\) 17220.0i 0.782940i
\(786\) 0 0
\(787\) 14504.0i 0.656940i 0.944514 + 0.328470i \(0.106533\pi\)
−0.944514 + 0.328470i \(0.893467\pi\)
\(788\) 0 0
\(789\) 13752.0 0.620512
\(790\) 0 0
\(791\) 3480.00i 0.156428i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 540.000i − 0.0240903i
\(796\) 0 0
\(797\) 18090.0 0.803991 0.401995 0.915642i \(-0.368317\pi\)
0.401995 + 0.915642i \(0.368317\pi\)
\(798\) 0 0
\(799\) − 11088.0i − 0.490945i
\(800\) 0 0
\(801\) 2862.00i 0.126247i
\(802\) 0 0
\(803\) 29304.0 1.28782
\(804\) 0 0
\(805\) −2304.00 −0.100876
\(806\) 0 0
\(807\) −21402.0 −0.933564
\(808\) 0 0
\(809\) 36402.0 1.58199 0.790993 0.611826i \(-0.209565\pi\)
0.790993 + 0.611826i \(0.209565\pi\)
\(810\) 0 0
\(811\) 32368.0i 1.40147i 0.713420 + 0.700736i \(0.247145\pi\)
−0.713420 + 0.700736i \(0.752855\pi\)
\(812\) 0 0
\(813\) − 9420.00i − 0.406364i
\(814\) 0 0
\(815\) −8832.00 −0.379597
\(816\) 0 0
\(817\) 2464.00i 0.105513i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 35778.0i − 1.52090i −0.649395 0.760451i \(-0.724978\pi\)
0.649395 0.760451i \(-0.275022\pi\)
\(822\) 0 0
\(823\) 10240.0 0.433711 0.216855 0.976204i \(-0.430420\pi\)
0.216855 + 0.976204i \(0.430420\pi\)
\(824\) 0 0
\(825\) − 9612.00i − 0.405633i
\(826\) 0 0
\(827\) − 16284.0i − 0.684704i −0.939572 0.342352i \(-0.888776\pi\)
0.939572 0.342352i \(-0.111224\pi\)
\(828\) 0 0
\(829\) −14150.0 −0.592822 −0.296411 0.955060i \(-0.595790\pi\)
−0.296411 + 0.955060i \(0.595790\pi\)
\(830\) 0 0
\(831\) −14358.0 −0.599366
\(832\) 0 0
\(833\) −21582.0 −0.897685
\(834\) 0 0
\(835\) 1440.00 0.0596805
\(836\) 0 0
\(837\) 7020.00i 0.289900i
\(838\) 0 0
\(839\) 39576.0i 1.62850i 0.580511 + 0.814252i \(0.302853\pi\)
−0.580511 + 0.814252i \(0.697147\pi\)
\(840\) 0 0
\(841\) 24895.0 1.02075
\(842\) 0 0
\(843\) − 11394.0i − 0.465516i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 140.000i − 0.00567941i
\(848\) 0 0
\(849\) 10716.0 0.433183
\(850\) 0 0
\(851\) 10176.0i 0.409905i
\(852\) 0 0
\(853\) − 6922.00i − 0.277848i −0.990303 0.138924i \(-0.955636\pi\)
0.990303 0.138924i \(-0.0443645\pi\)
\(854\) 0 0
\(855\) 3024.00 0.120957
\(856\) 0 0
\(857\) −48162.0 −1.91970 −0.959850 0.280514i \(-0.909495\pi\)
−0.959850 + 0.280514i \(0.909495\pi\)
\(858\) 0 0
\(859\) −27652.0 −1.09834 −0.549170 0.835711i \(-0.685056\pi\)
−0.549170 + 0.835711i \(0.685056\pi\)
\(860\) 0 0
\(861\) −1080.00 −0.0427483
\(862\) 0 0
\(863\) − 648.000i − 0.0255599i −0.999918 0.0127799i \(-0.995932\pi\)
0.999918 0.0127799i \(-0.00406809\pi\)
\(864\) 0 0
\(865\) 1836.00i 0.0721686i
\(866\) 0 0
\(867\) 1671.00 0.0654558
\(868\) 0 0
\(869\) 7200.00i 0.281062i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 4518.00i 0.175156i
\(874\) 0 0
\(875\) 5136.00 0.198433
\(876\) 0 0
\(877\) − 7166.00i − 0.275916i −0.990438 0.137958i \(-0.955946\pi\)
0.990438 0.137958i \(-0.0440540\pi\)
\(878\) 0 0
\(879\) − 21366.0i − 0.819860i
\(880\) 0 0
\(881\) 37062.0 1.41731 0.708655 0.705555i \(-0.249302\pi\)
0.708655 + 0.705555i \(0.249302\pi\)
\(882\) 0 0
\(883\) −24716.0 −0.941970 −0.470985 0.882141i \(-0.656101\pi\)
−0.470985 + 0.882141i \(0.656101\pi\)
\(884\) 0 0
\(885\) 6264.00 0.237923
\(886\) 0 0
\(887\) 48672.0 1.84244 0.921221 0.389040i \(-0.127193\pi\)
0.921221 + 0.389040i \(0.127193\pi\)
\(888\) 0 0
\(889\) 1856.00i 0.0700205i
\(890\) 0 0
\(891\) 2916.00i 0.109640i
\(892\) 0 0
\(893\) 9408.00 0.352550
\(894\) 0 0
\(895\) 12312.0i 0.459827i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 57720.0i − 2.14135i
\(900\) 0 0
\(901\) −1980.00 −0.0732113
\(902\) 0 0
\(903\) − 528.000i − 0.0194582i
\(904\) 0 0
\(905\) 26988.0i 0.991283i
\(906\) 0 0
\(907\) 9484.00 0.347201 0.173600 0.984816i \(-0.444460\pi\)
0.173600 + 0.984816i \(0.444460\pi\)
\(908\) 0 0
\(909\) −9558.00 −0.348756
\(910\) 0 0
\(911\) 12792.0 0.465223 0.232611 0.972570i \(-0.425273\pi\)
0.232611 + 0.972570i \(0.425273\pi\)
\(912\) 0 0
\(913\) 44496.0 1.61293
\(914\) 0 0
\(915\) 6228.00i 0.225018i
\(916\) 0 0
\(917\) − 6192.00i − 0.222986i
\(918\) 0 0
\(919\) −18592.0 −0.667349 −0.333674 0.942688i \(-0.608289\pi\)
−0.333674 + 0.942688i \(0.608289\pi\)
\(920\) 0 0
\(921\) 20568.0i 0.735873i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 9434.00i − 0.335338i
\(926\) 0 0
\(927\) 576.000 0.0204081
\(928\) 0 0
\(929\) 15378.0i 0.543096i 0.962425 + 0.271548i \(0.0875355\pi\)
−0.962425 + 0.271548i \(0.912464\pi\)
\(930\) 0 0
\(931\) − 18312.0i − 0.644631i
\(932\) 0 0
\(933\) −26496.0 −0.929732
\(934\) 0 0
\(935\) 14256.0 0.498632
\(936\) 0 0
\(937\) −37078.0 −1.29273 −0.646364 0.763030i \(-0.723711\pi\)
−0.646364 + 0.763030i \(0.723711\pi\)
\(938\) 0 0
\(939\) −10878.0 −0.378051
\(940\) 0 0
\(941\) − 10842.0i − 0.375599i −0.982207 0.187800i \(-0.939864\pi\)
0.982207 0.187800i \(-0.0601356\pi\)
\(942\) 0 0
\(943\) − 8640.00i − 0.298364i
\(944\) 0 0
\(945\) −648.000 −0.0223063
\(946\) 0 0
\(947\) 41508.0i 1.42432i 0.702018 + 0.712159i \(0.252282\pi\)
−0.702018 + 0.712159i \(0.747718\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 30438.0i 1.03788i
\(952\) 0 0
\(953\) −38706.0 −1.31565 −0.657823 0.753173i \(-0.728522\pi\)
−0.657823 + 0.753173i \(0.728522\pi\)
\(954\) 0 0
\(955\) − 24336.0i − 0.824602i
\(956\) 0 0
\(957\) − 23976.0i − 0.809858i
\(958\) 0 0
\(959\) 1176.00 0.0395986
\(960\) 0 0
\(961\) −37809.0 −1.26914
\(962\) 0 0
\(963\) −3996.00 −0.133717
\(964\) 0 0
\(965\) 12372.0 0.412714
\(966\) 0 0
\(967\) 24388.0i 0.811029i 0.914089 + 0.405515i \(0.132908\pi\)
−0.914089 + 0.405515i \(0.867092\pi\)
\(968\) 0 0
\(969\) − 11088.0i − 0.367593i
\(970\) 0 0
\(971\) −14100.0 −0.466005 −0.233002 0.972476i \(-0.574855\pi\)
−0.233002 + 0.972476i \(0.574855\pi\)
\(972\) 0 0
\(973\) − 10256.0i − 0.337916i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 44838.0i − 1.46826i −0.679006 0.734132i \(-0.737589\pi\)
0.679006 0.734132i \(-0.262411\pi\)
\(978\) 0 0
\(979\) −11448.0 −0.373728
\(980\) 0 0
\(981\) − 12438.0i − 0.404806i
\(982\) 0 0
\(983\) 13176.0i 0.427517i 0.976887 + 0.213758i \(0.0685706\pi\)
−0.976887 + 0.213758i \(0.931429\pi\)
\(984\) 0 0
\(985\) −26244.0 −0.848937
\(986\) 0 0
\(987\) −2016.00 −0.0650152
\(988\) 0 0
\(989\) 4224.00 0.135809
\(990\) 0 0
\(991\) −43648.0 −1.39912 −0.699558 0.714576i \(-0.746620\pi\)
−0.699558 + 0.714576i \(0.746620\pi\)
\(992\) 0 0
\(993\) 19608.0i 0.626627i
\(994\) 0 0
\(995\) 15216.0i 0.484804i
\(996\) 0 0
\(997\) 62750.0 1.99329 0.996646 0.0818317i \(-0.0260770\pi\)
0.996646 + 0.0818317i \(0.0260770\pi\)
\(998\) 0 0
\(999\) 2862.00i 0.0906403i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2028.4.b.a.337.2 2
13.5 odd 4 2028.4.a.a.1.1 1
13.8 odd 4 156.4.a.a.1.1 1
13.12 even 2 inner 2028.4.b.a.337.1 2
39.8 even 4 468.4.a.b.1.1 1
52.47 even 4 624.4.a.h.1.1 1
104.21 odd 4 2496.4.a.n.1.1 1
104.99 even 4 2496.4.a.e.1.1 1
156.47 odd 4 1872.4.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.4.a.a.1.1 1 13.8 odd 4
468.4.a.b.1.1 1 39.8 even 4
624.4.a.h.1.1 1 52.47 even 4
1872.4.a.j.1.1 1 156.47 odd 4
2028.4.a.a.1.1 1 13.5 odd 4
2028.4.b.a.337.1 2 13.12 even 2 inner
2028.4.b.a.337.2 2 1.1 even 1 trivial
2496.4.a.e.1.1 1 104.99 even 4
2496.4.a.n.1.1 1 104.21 odd 4