Properties

Label 2028.2.q.b
Level $2028$
Weight $2$
Character orbit 2028.q
Analytic conductor $16.194$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(361,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2028 = 2^{2} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2028.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,0,0,0,0,-1,0,-6,0,0,0,6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.1936615299\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{3} + (4 \zeta_{6} - 2) q^{5} - \zeta_{6} q^{9} + ( - 2 \zeta_{6} - 2) q^{11} + (2 \zeta_{6} + 2) q^{15} - 6 \zeta_{6} q^{17} + (4 \zeta_{6} - 8) q^{19} - 7 q^{25} - q^{27} + ( - 6 \zeta_{6} + 6) q^{29} + \cdots + (4 \zeta_{6} - 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{9} - 6 q^{11} + 6 q^{15} - 6 q^{17} - 12 q^{19} - 14 q^{25} - 2 q^{27} + 6 q^{29} - 6 q^{33} + 6 q^{41} - 8 q^{43} + 6 q^{45} - 7 q^{49} - 12 q^{51} + 12 q^{53} + 12 q^{55} - 6 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1861\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 + 0.866025i 0 3.46410i 0 0 0 −0.500000 + 0.866025i 0
1837.1 0 0.500000 0.866025i 0 3.46410i 0 0 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.2.q.b 2
13.b even 2 1 2028.2.q.c 2
13.c even 3 1 156.2.b.a 2
13.c even 3 1 2028.2.q.c 2
13.d odd 4 2 2028.2.i.i 4
13.e even 6 1 156.2.b.a 2
13.e even 6 1 inner 2028.2.q.b 2
13.f odd 12 2 2028.2.a.g 2
13.f odd 12 2 2028.2.i.i 4
39.h odd 6 1 468.2.b.a 2
39.i odd 6 1 468.2.b.a 2
39.k even 12 2 6084.2.a.v 2
52.i odd 6 1 624.2.c.f 2
52.j odd 6 1 624.2.c.f 2
52.l even 12 2 8112.2.a.bs 2
65.l even 6 1 3900.2.c.c 2
65.n even 6 1 3900.2.c.c 2
65.q odd 12 2 3900.2.j.h 4
65.r odd 12 2 3900.2.j.h 4
91.n odd 6 1 7644.2.e.g 2
91.t odd 6 1 7644.2.e.g 2
104.n odd 6 1 2496.2.c.e 2
104.p odd 6 1 2496.2.c.e 2
104.r even 6 1 2496.2.c.l 2
104.s even 6 1 2496.2.c.l 2
156.p even 6 1 1872.2.c.c 2
156.r even 6 1 1872.2.c.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.b.a 2 13.c even 3 1
156.2.b.a 2 13.e even 6 1
468.2.b.a 2 39.h odd 6 1
468.2.b.a 2 39.i odd 6 1
624.2.c.f 2 52.i odd 6 1
624.2.c.f 2 52.j odd 6 1
1872.2.c.c 2 156.p even 6 1
1872.2.c.c 2 156.r even 6 1
2028.2.a.g 2 13.f odd 12 2
2028.2.i.i 4 13.d odd 4 2
2028.2.i.i 4 13.f odd 12 2
2028.2.q.b 2 1.a even 1 1 trivial
2028.2.q.b 2 13.e even 6 1 inner
2028.2.q.c 2 13.b even 2 1
2028.2.q.c 2 13.c even 3 1
2496.2.c.e 2 104.n odd 6 1
2496.2.c.e 2 104.p odd 6 1
2496.2.c.l 2 104.r even 6 1
2496.2.c.l 2 104.s even 6 1
3900.2.c.c 2 65.l even 6 1
3900.2.c.c 2 65.n even 6 1
3900.2.j.h 4 65.q odd 12 2
3900.2.j.h 4 65.r odd 12 2
6084.2.a.v 2 39.k even 12 2
7644.2.e.g 2 91.n odd 6 1
7644.2.e.g 2 91.t odd 6 1
8112.2.a.bs 2 52.l even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2028, [\chi])\):

\( T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 12 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 12 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$19$ \( T^{2} + 12T + 48 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$31$ \( T^{2} + 48 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 12 \) Copy content Toggle raw display
$43$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 12 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 6T + 12 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 24T + 192 \) Copy content Toggle raw display
$71$ \( T^{2} - 18T + 108 \) Copy content Toggle raw display
$73$ \( T^{2} + 48 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 12 \) Copy content Toggle raw display
$89$ \( T^{2} - 30T + 300 \) Copy content Toggle raw display
$97$ \( T^{2} - 12T + 48 \) Copy content Toggle raw display
show more
show less